Skip to main content

Advertisement

Log in

The role of magnetic resonance imaging in oncology

  • Educational Series
  • Current Technology in Cancer Research and Treatment
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Conventional diagnostic magnetic resonance imaging (MRI) techniques have focused on improving the spatial resolution and image acquisition speed (whole-body MRI) or on new contrast agents. Most advances in MRI go beyond morphologic study to obtain functional and structural information in vivo about different physiological processes of tumor microenvironment, such as oxygenation levels, cellular proliferation, or tumor vascularization through MRI analysis of some characteristics: angiogenesis (perfusion MRI), metabolism (MRI spectroscopy), cellularity (diffusion-weighted MRI), lymph node function, or hypoxia [blood-oxygen-level-dependent (BOLD) MRI]. We discuss the contributions of different MRI techniques than must be integrated in oncologic patients to substantially advance tumor detection and characterization risk stratification, prognosis, predicting and monitoring response to treatment, and development of new drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Torigian DA, Huang SS, Houseni M, Alavi A (2007) Functional Imaging of Cancer with Emphasis on Molecular Techniques. CA Cancer J Clin 57:206–224

    Article  PubMed  Google Scholar 

  2. Atri M (2006) New technologies and directed agents for applications of cancer imaging. J Clin Oncol 24:3299–308

    Article  PubMed  Google Scholar 

  3. Martí-Bonmatí L, Sopena R (2007) Receptors and markers: toward a science of imaging through hybridization. Radiología 49:299–304

    Article  PubMed  Google Scholar 

  4. Dawson LA, Sharpe MB (2006) Image-guided radiotherapy: rationale, benefits, and limitations. Lancet Oncol 7:848–58

    Article  PubMed  Google Scholar 

  5. Bentzen SM (2005) Theragnostic imaging for radiation oncology: dose — painting by numbers. Lancet Oncol 6:112–117

    Article  PubMed  Google Scholar 

  6. Desar IM, van Herpen CM, van Laarhoven HW (2009) Beyond RECIST: Molecular and functional imaging techniques for evaluation of response to targeted therapy. Cancer Treat Revs 35:309–321

    Article  CAS  Google Scholar 

  7. Weidner N (1998) Tumoural vascularity as a prognostic factor in cancer patients: the evidence continues to grow. J Pathol 184:119–122

    Article  PubMed  CAS  Google Scholar 

  8. Cuenod CA, Fournier L, Balvay D, Guinebretière JM (2006) Tumor angiogenesis: pathophysiology and implications for contrast-enhanced MRI and CT assessment. Abdom Imaging 31:188–193

    Article  PubMed  CAS  Google Scholar 

  9. Goh V, Padhani AR (2006) Imaging tumor angiogenesis: functional assessment using MDCT or MRI? Abdom Imaging 31:194–199

    Article  PubMed  CAS  Google Scholar 

  10. Kambadakone AR, Sahani DV (2009) Body perfusion CT: technique, clinical applications and advances. Radiol Clin N Am 1:161–178

    Article  Google Scholar 

  11. Goh V, Padhani AR, Rasheed Sh (2008) Functional imaging of colorectal cancer angiogenesis. Lancet Oncol 8:245–255

    Article  Google Scholar 

  12. Jeswani T, Padhani AR (2005) Imaging tumour angiogenesis. Cancer Imaging. 5:131–138

    Article  PubMed  Google Scholar 

  13. Turkbey B, Kobayashi H, Ogawa M et al (2009) Imaging of tumor angiogenesis: functional or targeted? AJR Am J Roentgenol 193:304–313

    Article  PubMed  Google Scholar 

  14. Provenzale J (2007) Imaging of angiogenesis: clinical techniques and novel imaging methods. AJR Am J Roentgenol 188:11–23

    Article  PubMed  Google Scholar 

  15. Padhani AR, Husband JE (2001) Dynamic contrast-enhanced MRI studies in oncology with an emphasis on quantification, validation and human studies. Clin Radiol 56:607–620

    Article  PubMed  CAS  Google Scholar 

  16. Kuhl CK, Mielcareck P, Klaschik S et al (1999) Dynamic breast MR imaging: are signal intensity time course data useful for differential diagnosis of enhancing lesions? Radiology 211:101–110

    PubMed  CAS  Google Scholar 

  17. Padhani AR (2002) Functional MRI for anticancer therapy assessment. Eur J Cancer 38:2116–2127

    Article  PubMed  CAS  Google Scholar 

  18. Hylton N (2006) Dynamic contrast-enhanced magnetic resonance imaging as an imaging biomarker. J Clin Oncol 24:3293–3298

    Article  PubMed  CAS  Google Scholar 

  19. Alonzi R, Padhani A, Allen C (2007) Dynamic contrast enhanced MRI in prostate cancer. Eur J Radiol 63:335–350

    Article  PubMed  Google Scholar 

  20. Liu PF, Krestin GP, Huch RA et al (1998) MRI of the uterus, uterine cervix, and vagina: diagnostic performance of dynamic contrast-enhanced fast multiplanar gradient-echo imaging in comparison with fast spin-echo T2-weighted pulse imaging. Eur Radiol 8:1433–1440

    Article  PubMed  CAS  Google Scholar 

  21. Kambadakone AR, Sahani DV (2009) Body perfusion CT: technique, clinical applications and advances. Radiol Clin N Am 1:161–178

    Article  Google Scholar 

  22. Schwartz LH, Bogaerts J, Ford R et al (2009) Evaluation of lymph nodes with RECIST 1.1. Eur J Cancer 45:261–267

    Article  PubMed  CAS  Google Scholar 

  23. Barentsz JO, Jager GJ, van Vierzen PB et al (1996) Staging urinary bladder cancer after transurethral biopsy: value of fast dynamic contrastenhanced MR imaging. Radiology 201:185–193

    PubMed  CAS  Google Scholar 

  24. Jager GJ, Ruijter ET, van de Kaa CA et al (1998) Dynamic TurboFLASH subtraction technique for contrast-enhanced MR imaging of the prostate: correlation with histopathologic results. Radiology 203:645–652

    Google Scholar 

  25. Huch Boni RA, Boner JA, Lutolf UM, Trinkler F et al (1995) Contrast-enhanced endorectal coil MRI in local staging of prostate carcinoma. J Comput Assist Tomogr 19:232–237

    Article  PubMed  CAS  Google Scholar 

  26. Gwyther S, Schwartz L (2008) How to assess anti-tumour efficacy by imaging techniques. Eur J Cancer 44:39–45

    Article  PubMed  CAS  Google Scholar 

  27. Knopp MV, Brix G, Junkermann HJ, Sinn HP (1994) MR mammography with pharmacokinetic mapping for monitoring of breast cancer treatment during neoadjuvant therapy. Magn Reson Imaging Clin N Am 2:633–658

    PubMed  CAS  Google Scholar 

  28. Newbold K, Castellano I, Charles-Edwards E et al (2009) An exploratory study into the role of dynamic contrast-enhanced magnetic resonance or perfusion computed tomography for detection of intratumoral hypoxia in head-and neck cancer. Int J Radiation Oncology Biol Phys 74:29–37

    Google Scholar 

  29. Zahra MA, Hollingsworth KG, Sala E et al (2007) Dynamic contrast-enhanced MRI as a predictor of tumor response to radiotherapy. Lancet Oncol:63–74

  30. Le Bihan D, Breton E, Lallemand D et al (1988) Separation of diffusion and perfusion in intravoxel incoherent motion (IVIM) MR imaging. Radiology 168:497–505

    PubMed  Google Scholar 

  31. Lemke A, Schad LR, Laun F, Stieltjes B (2009) Differentiation of pancreas carcinoma from healthy pancreatic tissue using a wide range of bvalues: comparison of ADC and IVIM parameters. Proc Intl Soc Mag Reson Med 7:666

    Google Scholar 

  32. Barrett, T, Brechbiel M, Bernardo M, Choyke PL (2007) MRI of tumor angiogenesis. J Magn Reson Imaging 26:235–249

    Article  PubMed  Google Scholar 

  33. Ng QS, Goh V, Fichte H et al (2006) Lung cancer perfusion at multi-detector row CT: reproducibility of whole tumor quantitative measurements. Radiology 239:547–553

    Article  PubMed  Google Scholar 

  34. Padhani AR, Liu G, Koh DM et al (2009) Diffusion-weighted magnetic resonance imaging a as a cancer biomarker: consensus and recommendations. Neoplasia 11:102–125

    PubMed  CAS  Google Scholar 

  35. Thoeny HC, De Keyzer F (2007) Extracranial applications of diffusion weighted magnetic resonance imaging. Eur Radiol 17:1385–1393

    Article  PubMed  Google Scholar 

  36. Koh DM, Takahara T, Imai Y, Collins DJ (2007) Practical aspects of assessing tumors using clinical diffusion weighted imaging in the body. Magn Reson Med Sci 6:211–224

    Article  PubMed  Google Scholar 

  37. Koh DM, Collins DJ (2007) Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 188:1622–1635

    Article  PubMed  Google Scholar 

  38. Inoue T, Ogasawara K, Beppu T et al (2005) Diffusion tensor imaging for preoperative evaluation of tumor grade in gliomas. Clin Neurol Neurosurg 107:174–180

    Article  PubMed  Google Scholar 

  39. Ries M, Jones RA, Basseau F et al (2001) Diffusion tensor MRI of the human kidney. J Magn Reson Imaging 14:42–49

    Article  PubMed  CAS  Google Scholar 

  40. Taouli B, Martin AJ, Qayyum A et al (2004) Parallel imaging and diffusion tensor imaging for diffusion-weighted MRI of the liver: preliminary experience in healthy volunteers. AJR Am J Roentgenol 183:677–680

    PubMed  Google Scholar 

  41. Sinha S, Sinha U (2004) In vivo diffusion tensor imaging of the human prostate. Magn Reson Med 52:530–537

    Article  PubMed  Google Scholar 

  42. Charles-Edwards EM, De Souza NM (2006) Diffusion-weighted magnetic resonance imaging and its application to cancer. Cancer Imaging 6:135–143

    Article  PubMed  Google Scholar 

  43. Schmidt GP, Reiser MF, Baur-Melnyk A (2009) Whole-body MRI for the staging and follow-up of patients with metastasis. Eur J Radiol 70:393–400

    Article  PubMed  Google Scholar 

  44. Barceló J, Vilanova JC, Riera E et al (2007) Resonancia magnética de todo el cuerpo con técnica de difusión (PET virtual) para el cribado de las metástasis óseas. Radiologia 49:407–415

    Article  PubMed  Google Scholar 

  45. Ichikawa T, Erturk SM, Motosugi U et al (2006) High-B-value diffusion weighted MRI in colorectal cancer. AJR Am J Roentgenol 187:181–184

    Article  PubMed  Google Scholar 

  46. Whittaker CS, Andy Coady A, Culver L et al (2009) Diffusion-weighted MR imaging of female pelvic tumors: a pictorial review. Radiographics 29:759–778

    Article  PubMed  Google Scholar 

  47. Van AsN, Charles-Edwards E, Jackson A et al (2008) Correlation of diffusion-weighted MRI with whole mount radical prostatectomy specimens. Br J Radiol 81:456–462

    Article  Google Scholar 

  48. Kuroki Y, Nasu K (2008) Advances in breast MRI: diffusion weighted imaging of the breast. Breast Cancer 15:212–217

    Article  PubMed  Google Scholar 

  49. Ichikawa T, Erturk SM, Motosugi U et al (2007) High-b value diffusion-weighted MRI for detecting pancreatic adenocarcinoma: preliminary results. AJR Am J Roentgenol 188:409–414

    Article  PubMed  Google Scholar 

  50. Bruegel M, Holzapfel K, Gaa J et al (2008) Characterization of focal liver lesions by ADC measurements using a respiratory triggered diffusion-weighted single-shot echo-planar MR imaging technique. Eur Radiol 18:477–485

    Article  PubMed  Google Scholar 

  51. Low RN, Sebrechts CP, Barone RM, Muller W (2009) Diffusion-weighted MRI of peritoneal tumors: comparison with conventional MRI and surgical and histopathologic findings—a feasibility study. AJR Am J Roentgenol 193:461–470

    Article  PubMed  Google Scholar 

  52. Saton S, Kitazume Y, Ohdama S et al (2008) Can Malignant and benign pulmonary nodules be differentiated with diffusion-weighted MRI? AJR Am J Roetgenol 191:464–470

    Article  Google Scholar 

  53. Kwee TC, Takahara T, Luijten PR, Nievelstein RAJ (2010) ADC measurements of lymph nodes: Inter- and intra-observer reproducibility study and an overview of the literature. Eur J Radiol 75(2):215–220

    Article  PubMed  Google Scholar 

  54. Taouli B, Vilgrain V, Dumont E et al (2003) Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences: prospective study in 66 patients. Radiology 226:71–78

    Article  PubMed  Google Scholar 

  55. Kim T, Murakami T, Takahashi S et al (1999) Diffusion-weighted single-shot echoplanar MR imaging for liver disease. AJR Am J Roentgenol 173:393–398

    PubMed  CAS  Google Scholar 

  56. Gauvain KM, McKinstry RC, Mukherjee P et al (2001) Evaluating pediatric brain tumor cellularity with diffusion-tensor imaging. AJR Am J Roentgenol 17:7449–7454

    Google Scholar 

  57. Park SW, Lee JH, Ehara S et al (2004) Single shot fast spin echo diffusion-weighted MR imaging of the spine: is it useful in differentiating malignant metastatic tumor infiltration from benign fracture edema? Clin Imaging 28:102–108

    Article  PubMed  Google Scholar 

  58. Baur A, Huber A, Durr HR et al (2002) Differentiation of benign osteoporotic and neoplastic vertebral compression fractures with a diffusion-weighted, steady-state free precession sequence [in German]. Rofo 174:70–75

    PubMed  CAS  Google Scholar 

  59. Bhugaloo AA, Abdullah BJJ, Siow YS, Ng KH (2006) Diffusion-weighted MR imaging in acute vertebral compression fractures: differentiation between malignant and benign causes. Biomed Imaging Interv J 2:e12

    Article  Google Scholar 

  60. Chan JH, Peh WC, Tsui EY et al (2002) Acute vertebral body compression fractures: discrimination between benign and malignant causes using apparent diffusion coefficients. Br J Radiol 75:207–214

    PubMed  CAS  Google Scholar 

  61. Byun WM, Shin SO, Chang Y et al (2002) Diffusion-weighted MR imaging of metastatic disease of the spine: assessment of response to therapy. Am J Neuroradiol 23:906–912

    PubMed  Google Scholar 

  62. Spuentrup E, Buecker A, Adam G et al (2001) Diffusion-weighted MR imaging for differentiation of benign fracture edema and tumor infiltration of the vertebral body. AJR Am J Roentgenol 176:351–335

    PubMed  CAS  Google Scholar 

  63. Moffat BA, Chenevert TL, Lawrence TS et al (2005) Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proc Natl Acad Sci U S A 102:5524–5529

    Article  PubMed  CAS  Google Scholar 

  64. Moffat BA, Hall DE, Stojanovska J et al (2004) Diffusion imaging for evaluation of tumor therapies in preclinical animal models. MAGMA 17:249–259

    Article  PubMed  CAS  Google Scholar 

  65. Chen CY, Li CW, Kuo YT et al (2006) Early response of hepatocellular carcinoma to transcatheter arterial chemoembolization: choline levels and MR diffusion constants—initial experience. Radiology 239:448–456

    Article  PubMed  Google Scholar 

  66. Chenevert TL, McKeever PE, Ross BD (1997) Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging. Clin Cancer Res 3:1457–1466

    PubMed  CAS  Google Scholar 

  67. Einarsdottir H, Karlsson M, Wejde J, Bauer HC (2004) Diffusion-weighted MRI of soft tissue tumours. Eur Radiol 14:959–963

    Article  PubMed  Google Scholar 

  68. Koh DM, Scurr E, Collins DJ et al (2007) Predicting response of colorectal hepatic metastases: the value of pre-treatment apparent diffusion coefficients. AJR Am J Roentgenol 188(4):1001–1008

    Article  PubMed  Google Scholar 

  69. Hamstra DA, Rehemtulla A, Ross BD (2007) Diffusion magnetic resonance imaging: A biomarker for treatment response in oncology. J Clin Oncol 25:4104–4109

    Article  PubMed  Google Scholar 

  70. Nakanishi K, Kobayashi M, Nakaguchi K et al (2007) Whole-body MRI for detecting metastatic bone tumor: diagnostic value of diffusion weighted images. Magn Reson Med Sci 6(3):147–155

    Article  PubMed  Google Scholar 

  71. Cari F, Shortt CP, Shelly MJ et al (2010) Wholebody imaging modalities in oncology. Semin Musculoskelet Radiol 14(1)68–85

    Article  Google Scholar 

  72. Baur-Melnyk A, Buhmann S, Becker C et al (2008) Whole-body MRI versus whole-body MDCT for staging of multiple myeloma. AJR Am J Roentgenol 190:1097–1104

    Article  PubMed  Google Scholar 

  73. Shortt CP, Gleeson TG, Breen KA et al (2009) Whole-body MRI versus PET in assessment in multiple myeloma disease activity. AJR Am J Roentgenol 192:980–986

    Article  PubMed  Google Scholar 

  74. Moulopoulos LA, Gika D, Anagnostopoulos A et al (2005) Prognostic significance of magnetic resonance imaging of bone marrow in previously untreated patients with multiple myeloma. Ann Oncol 16(11):1824–1828

    Article  PubMed  CAS  Google Scholar 

  75. Schmidt GP, Reiser MF, Baur-Melynk A (2009) Whole-body MRI for the staging and follow up of patients with metastasis. Eur J Rad 70:393–400

    Article  Google Scholar 

  76. Evelhoch J, Garwood M, Vigneron D et al (2005) Expanding the use of magnetic resonance in the assessment of tumor response to therapy: workshop report. Cancer Res 65:7041–7044

    Article  PubMed  CAS  Google Scholar 

  77. Kwock L, Smith JK, Castillo M et al (2006) Clinical role of proton magnetic resonance spectroscopy in oncology: Brain, breast, and prostate cancer. Lancet Oncol 7:859–868

    Article  PubMed  Google Scholar 

  78. Moller-Hartmann W, Herminghaus S, Krings T et al (2002) Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions. Neuroradiology 44:371–381

    Article  PubMed  CAS  Google Scholar 

  79. Majós C (2005) Magnetic resonance spectroscopy for diagnosing brain tumors. Radiología 47:1–12

    Article  Google Scholar 

  80. Stanwell P, Mountford C (2007) In vivo proton MR spectroscopy of the breast. Radiographics 27:S253–S266

    Article  PubMed  Google Scholar 

  81. Meisamy S, Bolan PJ, Baker EH et al (2004) Neoadjuvant chemotherapy of locally advanced breast cancer: predicting response with in vivo 1H MR spectroscopy. A pilot study at 4.0T. Radiology 233:424–431

    Article  PubMed  Google Scholar 

  82. Katz-Brull R, Lavin PT, Lenkinski RE (2002) Clinical utility of proton magnetic resonance spectroscopy in characterizing breast lesions. J Natl Cancer Inst 94:1197–1203

    PubMed  CAS  Google Scholar 

  83. Vilanova JC, Comet J, Barceló-Vidal C et al (2009) Peripheral zone prostate cancer in patients with elevated PSA levels and low free-to-total PSA ratio: detection with MR imaging and MR spectroscopy. Radiology 253:135–143

    Article  PubMed  Google Scholar 

  84. Zakian KL, Sircar K, Hricak H et al (2005) Correlation of proton MR spectroscopic imaging with Gleason score based on step-section pathologic analysis after radical prostatectomy. Radiology 234:804–814

    Article  PubMed  Google Scholar 

  85. King AD, Yeung DK, Ahuja AT et al (2004) In vivo proton MR spectroscopy of primary and nodal nasopharyngeal carcinoma. AJNR Am J Neuroradiol 25:484–490

    PubMed  Google Scholar 

  86. King AD, Yeung DK, Ahuja AT et al (2005) Human cervical lymphadenopathy: Evaluation with in vivo 1H-MRS at 1.5T. Clin Radiol 60:592–598

    Article  PubMed  CAS  Google Scholar 

  87. Mahon MM, Williams AD, Soutter WP et al (2004) 1H magnetic resonance spectroscopy of invasive cervical cancer: an in vivo study with ex vivo corroboration. NMR Biomed 17:1–9

    Article  PubMed  Google Scholar 

  88. Soler-Padros J, Perez-Mayoral E, Dominguez L et al (2007) Novel generation of pH indicators for proton magnetic resonance spectroscopic imaging. J Med Chem 50:4539–4542

    Article  PubMed  CAS  Google Scholar 

  89. Vapel P, Harrison L (2004) Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response. Oncologist 9:4–9

    Article  Google Scholar 

  90. Rajendran JG, Krohn KA (2005) Imaging hypoxia and angiogenesis in tumors. Radiol Clin North Am 43:169–187

    Article  PubMed  Google Scholar 

  91. Padhani AR, Krohn KA, Lewis JS, Alber M (2007) Imaging oxygenation of human tumours. Eur Radiol 17:861–872

    Article  PubMed  Google Scholar 

  92. Hoskin PJ, Carnell DM, Taylor NJ et al (2007) Hypoxia in prostate cancer: correlation of BOLDMRI with pimonidazole immunohistochemistry: initial observations. Int J Radiat Oncol Biol Phys 68:1065–1071

    PubMed  CAS  Google Scholar 

  93. Vandecaveye V, De Keyzer F, Van der Poorten V et al (2009) Head and neck squamous cell carcinoma: value of diffusion-weighted MR imaging for nodal staging. Radiology 251:134–146

    Article  PubMed  Google Scholar 

  94. Misselwitz B (2006) MR contrast agents in lymph node imaging. Eur J Radiol 58:375–382

    Article  PubMed  Google Scholar 

  95. Harisinghani MG, Barentsz J, Hahn PF et al (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348:2491–2499

    Article  PubMed  Google Scholar 

  96. Narayanan P, Iyngkaran T, Sohaib SA et al (2009) Pearls and pitfalls of MR lymphography in gynecologic malignancy. Radiographics 29:1057–1071

    Article  PubMed  Google Scholar 

  97. Saksena M, Harisinghani M, Hahn P et al (2006) Comparison of lymphotropic nanoparticle-enhanced MRI sequences in patients with various primary cancers. AJR Am J Roentgenol 187:W582–W588

    Article  PubMed  Google Scholar 

  98. Thoeny HC, Triantafyllou M, Birkhaeuser FD et al (2009) Combined ultrasmall superparamagnetic particles of iron oxide-enhanced and diffusion-weighted magnetic resonance imaging reliably detect pelvic lymph node metastases in normal-sized nodes of bladder and prostate cancer patients. Eur Urol 55:761–769

    Article  PubMed  Google Scholar 

  99. Kauzcor HU (2005) Multimodal imaging and computer assisted diagnosis for functional tumour characterization. Cancer Imaging 5:46–50

    Article  Google Scholar 

  100. Goh V, Halligan S, Wellsted DM, Bartram CI (2009) Can perfusion CT assessment of primary colorectal adenocarcinoma blood flow at staging predict for subsequent metastatic disease? A pilot study. Eur Radiol 19:79–89

    Article  PubMed  Google Scholar 

  101. Miles KA, Williams RE (2008) Warburg revisited: imaging tumour blood flow and metabolism. Cancer Imaging 8:81–86

    Article  PubMed  CAS  Google Scholar 

  102. Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247

    Article  PubMed  CAS  Google Scholar 

  103. Galbraith SM, Maxwell RJ, Lodge MA et al (2003) Combretastatin A4 phosphate has tumor antivascular activity in rat and man as demonstrated by dynamic magnetic resonance imaging. J Clin Oncol 21:2831–2842

    Article  PubMed  CAS  Google Scholar 

  104. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62

    Article  PubMed  CAS  Google Scholar 

  105. Desar IM, Van Herpen CM, Van Laarhoven HW (2009) Beyond RECIST: Molecular and functional imaging techniques for evaluation of response to targeted therapy. Cancer Treat Revs 35:309–321

    Article  CAS  Google Scholar 

  106. Jubb AM, Oates AJ, Holden S (2006) Predicting benefit from antiangiogenic agents in malignancy. Nature 6:626–635

    CAS  Google Scholar 

  107. Abdulkader I, Ruibal A, Cameselle-Teijeiro J et al (2009) EGFR expression correlates with maximum standardized uptake value of 18F-fluorodeoxyglucose-PET in squamous cell lung carcinoma. Curr Radiopharm 2:175–176

    Article  CAS  Google Scholar 

  108. O’Connor JP, Jackson A, Asselin MC et al (2008) Quantitative imaging biomarkers in the clinical development of targeted therapeutics: current and future perspectives. Lancet Oncol 9:766–776

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Concepción González Hernando.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernando, C.G., Esteban, L., Cañas, T. et al. The role of magnetic resonance imaging in oncology. Clin Transl Oncol 12, 606–613 (2010). https://doi.org/10.1007/s12094-010-0565-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-010-0565-x

Keywords

Navigation