Skip to main content

Advertisement

Log in

Imaging tumor angiogenesis: functional assessment using MDCT or MRI?

  • Published:
Abdominal Imaging Aims and scope Submit manuscript

Abstract

Functional imaging using multidetector row computed tomography and dynamic contrast-enhanced magnetic resonance imaging are increasingly advocated for assessment of tumor vascularity because these techniques provide excellent anatomic imaging and reliable quantitative perfusion data and are easily incorporated into routine examinations. However, differences in acquisition techniques, mathematical analysis, measurement parameters, and propensity to artifacts influence the choice of imaging modality, which is explored in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971;285:1182–1186

    Article  CAS  PubMed  Google Scholar 

  2. Tozer GM. Measuring tumor vascular response to antivascular and antiangiogenic drugs. Br J Radiol 2003;76:S23–S35

    CAS  PubMed  Google Scholar 

  3. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004;350:2335–2342

    Article  CAS  PubMed  Google Scholar 

  4. World Health Organisation. WHO hand book for reporting results of cancer treatment. WHO offset publication 48. Geneva, Switzerland: World Health Organisation, 1979

  5. Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst 2000;92:205–216

    Article  CAS  PubMed  Google Scholar 

  6. Miles KA, Griffiths MR. Perfusion CT: a worthwhile enhancement? Br J Radiol 2003;76:220–231

    CAS  PubMed  Google Scholar 

  7. Leach MO, Brindle KM, Evelhoch JL, et al. Assessment of antiangiogenic and antivascular therapeutics using MRI: recommendations for appropriate methodology for clinical trials. Br J Radiol 2003;76:S87–S91

    PubMed  Google Scholar 

  8. Galbraith SM, Maxwell RJ, Lodge MA, et al. Combretastatin A4 phosphate has tumor antivascular activity in rat and man as demonstrated by dynamic magnetic resonance imaging. J Clin Oncol 2003;21:2831–2842

    Article  CAS  PubMed  Google Scholar 

  9. Morgan B, Thomas AL, Drevs J, et al. Dynamic contrast enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies. J Clin Oncol 2003;21:3955–3964

    Article  CAS  PubMed  Google Scholar 

  10. Endrich B, Vaupel P. The role of the microcirculation in the treatment of malignant tumors: facts and fiction. In: Molls M, Vaupel P, eds. Blood perfusion and microenvironment of human tumors: implications for clinical radiooncology. Berlin, Germany: Springer-Verlag, 2001:19–39

    Google Scholar 

  11. Yi CA, Lee KS, Kim EA, et al. Solitary pulmonary nodules: dynamic enhanced multidetector row CT study and comparison with vascular endothelial growth factor and microvessel density. Radiology 2004;233:191–199

    PubMed  Google Scholar 

  12. Tateishi U, Nishihara H, Tsukamoto E, et al. Lung tumors evaluated with FDG-PET and dynamic CT: the relationship between vascular density and glucose metabolism. J Comput Assist Tomogr 2002;26:185–190

    PubMed  Google Scholar 

  13. George ML, Dzik-Jurasz AS, Padhani AR, et al. Noninvasive methods of assessing angiogenesis and their value in predicting response to treatment in colorectal cancer. Br J Surg 2001;88:1628–1636

    Article  CAS  PubMed  Google Scholar 

  14. Buckley DL, Drew PJ, Mussurakis S, et al. Microvessel density of invasive breast cancer assessed by dynamic Gd-DTPA enhanced MRI. J Magn Reson Imaging 1997;7:461–464

    CAS  PubMed  Google Scholar 

  15. Stomper PC, Winston JS, Herman S, et al. Angiogenesis and dynamic MR imaging gadolinium enhancement of malignant and benign breast lesions. Breast Cancer Res Treat 1997;45:39–46

    CAS  PubMed  Google Scholar 

  16. Hawighorst H, Knapstein PG, Weikel W, et al. Angiogenesis of uterine cervical carcinoma: characterization by pharmacokinetic magnetic resonance parameters and histological microvessel density with correlation to lymphatic involvement. Cancer Res 1997;57:4777–4786

    CAS  PubMed  Google Scholar 

  17. Dawson P. Contrast agents as tracers. In: Miles KA, Dawson P, Hayball MP, eds. Functional computed tomography. Oxford, UK: Isis Medical Media, 1997:29–45

    Google Scholar 

  18. Padhani AR. MRI for assessing antivascular cancer treatments. Br J Radiol 2003;76:S60–S80

    PubMed  Google Scholar 

  19. Fournier LS, Cuenod CA, de Balazaire C, et al. Early modifications of hepatic perfusion measured by functional CT in a rat model of hepatocellular carcinoma using a blood pool agent. Eur Radiol 2004;14:2125–2133

    Article  PubMed  Google Scholar 

  20. Brasch RC, Li KC, Husband JE, et al. In vivo monitoring of tumor angiogenesis with MR imaging. Acad Radiol 2000;7:812–823

    Article  CAS  PubMed  Google Scholar 

  21. Daldrup-Link HE, Rydland J, Helbich TH, et al. Quantification of breast tumor microvascular permeability with feruglose-enhanced MR imaging: initial phase II multicenter trial. Radiology 2003;229:885–892

    PubMed  Google Scholar 

  22. Miles KA. Perfusion CT for the assessment of tumor vascularity: which protocol. Br J Radiol 2003;76:S36–S42

    PubMed  Google Scholar 

  23. Purdie TG, Henderson E, Lee TY. Functional CT imaging of angiogenesis in rabbit VX2 soft-tissue tumor. Phys Med Biol 2001;46:3161–3175

    Article  CAS  PubMed  Google Scholar 

  24. Cenic A, Nabavi DG, Craen RA, et al. Dynamic CT measurement of cerebral blood flow: a validation study. AJNR 1999;20:63–73

    CAS  PubMed  Google Scholar 

  25. Gobbel GT, Cann CE, Iwamoto HS, Fike JR. Measurement of regional cerebral blood flow in dog using ultrafast computed tomography. Experimental validation. Stroke 1991;22:772–779

    CAS  PubMed  Google Scholar 

  26. Gobbel GT, Cann CE, Fike JR. Comparison of xenon-enhanced CT with ultrafast CT for measurement of regional cerebral blood flow. AJNR 1993;14:543–550

    CAS  PubMed  Google Scholar 

  27. Wintermark M, Thiran JP, Maeder P, et al. Simultaneous measurement of regional cerebral blood flow by perfusion CT and stable xenon CT: a validation study. AJNR 2001;22:905–914

    CAS  PubMed  Google Scholar 

  28. Gillard JH, Minhas PS, Hayball MP, et al. Assessment of quantitative computed tomographic cerebral perfusion imaging with H2(15)O positron emission tomography. Neurol Res 2000;22:457–464

    CAS  PubMed  Google Scholar 

  29. Jinzaki M, Tanimoto A, Mukai M, et al. Double phase helical CT of small renal parenchymal neoplasms: correlation with pathologic findings and tumor angiogenesis. J Comput Assist Tomogr 2000;24:835–842

    CAS  PubMed  Google Scholar 

  30. Nabavi DG, Cenic A, Dool J, et al. Quantitative assessment of cerebral hemodynamics using CT: stability, accuracy, and precision studies in dogs. J Comput Assist Tomogr 1999;23:506–515

    Article  CAS  PubMed  Google Scholar 

  31. Cenic A, Nabavi DG, Craen RA, et al. A CT method to measure hemodynamics in brain tumors: validation and application of cerebral blood flow maps. AJNR 2000;21:462–470

    CAS  PubMed  Google Scholar 

  32. Gillard JH, Antoun NM, Burnet NG, Pickard JD. Reproducibility of quantitative CT perfusion imaging. Br J Radiol 2001;74:552–555

    CAS  PubMed  Google Scholar 

  33. Miles KA, Griffiths MR. Perfusion CT: a worthwhile enhancement? Br J Radiol 2003;76:220–231

    CAS  PubMed  Google Scholar 

  34. Goh V, Halligan S, Hugill JA, Bartram CI. Measurement of colorectal cancer perfusion using MDCT: repeatability and clinical implications [abstract]. RSNA 2004;(P):435

    Google Scholar 

  35. Ng QS, Goh V, Hoskin PJ, et al. Tumour antivascular effects of combretastatin A4 phosphate (CA4P) in combination with radiotherapy measured using dynamic contrast enhanced computed tomography (DCE-CT) [abstract]. Radiother Oncol 2004;73(suppl 1):322

    Google Scholar 

  36. Jackson A, Jayson GC, Li KL, et al. Reproducibility of quantitative dynamic contrast enhanced MRI in newly presenting glioma. Br J Radiol 2003;76:153–162

    CAS  PubMed  Google Scholar 

  37. Galbraith SM, Lodge MA, Taylor NJ, et al. Reproducibility of dynamic contrast enhanced MRI in human muscle and tumors: comparison of quantitative and semi-quantitative analysis. NMR Biomed 2002;15:132–142

    Article  PubMed  Google Scholar 

  38. Willett CG, Boucher Y, Di Tomaso E, et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 2004;10:145–147

    CAS  PubMed  Google Scholar 

  39. Sahani DV, Kalva SP, Willett CG, et al. Anti-angiogenic therapy of rectal cancer: monitoring treatment response with perfusion CT in comparison to tumor interstitial pressure and microvessel density [abstract]. RSNA 2004;(P):435

    Google Scholar 

  40. Fiorella D, Heiserman J, Prenger E, Partovi S. Assessment of the reproducibility of postprocessing dynamic CT perfusion data. AJNR 2004;25:97–107

    PubMed  Google Scholar 

  41. Goh V, Halligan S, Balmer J, et al. Inter and intra-observer agreement in CT perfusion imaging of colorectal cancer [abstract]. RSNA 2003;(P):536

    Google Scholar 

  42. Jayson GC, Zweit J, Jackson A, et al. Molecular imaging and biological evaluation of HuMV833 anti-VEGF antibody: implications for trial design of antiangiogenic antibodies. J Natl Cancer Inst 2002;94:1484–1493

    CAS  PubMed  Google Scholar 

  43. Falk SJ, Ramsay JR, Ward R, et al. BW12C perturbs normal and tumour tissue oxygenation and blood flow in man. Radiother Oncol 1994;32:210–217

    Article  CAS  PubMed  Google Scholar 

  44. Rudisch AR, De Vries A, Kremser C, et al. CT assessment of microcirculation and hemodynamics in malignant rectal neoplasm: validation and initial clinical experience [abstract]. Eur Radiol 2002;12(suppl 1):114

    Google Scholar 

  45. Harvey CJ, Blomley MJ, Dawson P, et al. Functional CT imaging of the acute hyperemic response to radiation therapy of the prostate gland: early experience. J Comput Assist Tomogr 2001;25:43–49

    Article  CAS  PubMed  Google Scholar 

  46. Hermans R, Meijerink M, Van den Bogaert W, et al. Tumor perfusion rate determined non-invasively by dynamic computed tomography predicts outcome in head-and-neck cancer after radiotherapy. Int J Radiat Oncol Biol Phys 2003;57:1351–1356

    Article  PubMed  Google Scholar 

  47. Hermans R, Lambin P, Van den Bogaert W, et al. Non invasive tumour perfusion measurement by dynamic CT: preliminary results. Radiother Oncol 1997;44:159–162

    Article  CAS  PubMed  Google Scholar 

  48. Knopp MV, Brix G, Junkermann HJ, Sinn HP. MR mammography with pharmacokinetic mapping for monitoring of breast cancer treatment during neoadjuvant therapy. Magn Reson Imaging Clin North Am 1994;2:633–58

    CAS  Google Scholar 

  49. Padhani AR, Hayes C, Assersohn L, et al. Response of breast carcinoma to chemotherapy—MR permeability changes using histogram analysis [abstract]. ISMRM 2000;(P):2160

    Google Scholar 

  50. Barentsz JO, Berger-Hartog O, Witjes JA, et al. Evaluation of chemotherapy in advanced urinary bladder cancer with fast dynamic contrast-enhanced MR imaging. Radiology 1998;207:791–797

    CAS  PubMed  Google Scholar 

  51. Reddick WE, Taylor JS, Fletcher BD. Dynamic MR imaging (DCE-MRI) of microcirculation in bone sarcoma. J Magn Reson Imaging 1999;10:277–285

    Article  CAS  PubMed  Google Scholar 

  52. Van der Woude HJ, Bloem JL, Verstraete KL, et al. Osteosarcoma and Ewing’s sarcoma after neoadjuvant chemotherapy: value of dynamic MR imaging in detecting viable tumor before surgery. AJR 1995;165:593–598

    PubMed  Google Scholar 

  53. De Vries A, Griebel J, Kremser C, et al. Monitoring of tumor microcirculation during fractionated radiation therapy in patients with rectal carcinoma: preliminary results and implications for therapy. Radiology 2000;217:385–391

    PubMed  Google Scholar 

  54. DeVries AF, Griebel J, Kremser C, et al. Tumor microcirculation evaluated by dynamic contrast enhanced magnetic resonance imaging predicts therapy outcome for primary rectal carcinoma. Cancer Res 2001;61:2513–2516

    CAS  PubMed  Google Scholar 

  55. Mayr NA, Yuh WT, Arnholt JC, et al. Pixel analysis of MR perfusion imaging in predicting radiation therapy outcome in cervical cancer. J Magn Reson Imaging 2000;12:1027–33

    Article  CAS  PubMed  Google Scholar 

  56. Ah-See MW, Taylor NJ, Makris A, et al. Preliminary evaluation of multi-functional MRI to predict response to neoadjuvant chemotherapy in primary breast cancer [abstract]. ASCO 2003;(P):556

    Google Scholar 

  57. Leggett DA, Kelley BB, Bunce IH, Miles KA. Colorectal cancer: diagnostic potential of CT measurements of hepatic perfusion and implications for contrast enhancement protocols. Radiology 1997;205:716–720

    CAS  PubMed  Google Scholar 

  58. Sheafor DH, Killius JS, Paulson EK, et al. Hepatic parenchymal enhancement during triple phase helical CT: can it be used to predict which patients with breast cancer will develop hepatic metastases? Radiology 2000;214:875–880

    CAS  PubMed  Google Scholar 

  59. Dugdale PE, Miles KA, Bunce IH, et al. CT measurement of perfusion and permeability within lymphoma masses and its ability to assess grade, activity and chemotherapeutic response. J Comput Assist Tomogr 1999;23:540–547

    Article  CAS  PubMed  Google Scholar 

  60. Hawighorst H, Weikel W, Knapstein PG, et al. Angiogenic activity of cervical carcinoma: assessment by functional magnetic resonance imaging-based parameters and a histomorphological approach in correlation with disease outcome. Clin Cancer Res 1998;4:2305–2312

    CAS  PubMed  Google Scholar 

  61. Kim JH, Kim HJ, Lee KH, et al. Solitary pulmonary nodules: a comparative study evaluating contrast enhanced dynamic MR imaging and CT. J Comput Assist Tomogr 2004;28:766–775

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Goh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goh, V., Padhani, A.R. Imaging tumor angiogenesis: functional assessment using MDCT or MRI?. Abdom Imaging 31, 194–199 (2006). https://doi.org/10.1007/s00261-005-0387-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-005-0387-4

Keywords

Navigation