Skip to main content
Log in

What is the role of α-linolenic acid for mammals?

  • Review
  • Published:
Lipids

Abstract

This review examines the data pertaining to an important and often underrated EFA, α-linolenic acid (ALA). It examines its sources, metabolism, and biological effects in various population studies, in vitro, animal, and human intervention studies. The main role of ALA was assumed to be as a precursor to the longer-chain n-3 PUFA, EPA and DHA, and particularly for supplying DHA for neural tissue. This paper reveals that the major metabolic route of ALA metabolism is β-oxidation. Furthermore, ALA accumulates in specific sites in the body of mammals (carcass, adipose, and skin), and only a small proportion of the fed ALA is converted to DHA. There is some evidence that ALA may be involved with skin and fur function. There is continuing debate regarding whether ALA has actions of its own in relation to the cardiovascular system and neural function. Cardiovascular disease and cancer are two of the major burdens of disease in the 21st century, and emerging evidence suggests that diets containing ALA are associated with reductions in total deaths and sudden cardiac death. There may be aspects of the action and, more importantly, the metabolism of ALA that need to be elucidated, and these will help us understand the biological effects of this compound better. Additionally, we must not forget that ALA is part of the whole diet and should be seen in this context, not in isolation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ALA:

α-linolenic acid

CE:

cholesterol ester

DPA:

docosapentaenoic acid

PG:

prostaglandin

References

  1. Burr, G.O., and Burr, M.M. (1930) On the Nature and Role of Fatty Acids Essential in Nutrition, J. Biol. Chem. 86, 587–621.

    CAS  Google Scholar 

  2. Cunnane, S.C., Ryan, M.A., Craig, K.S., Brookes, S., Koletzko, B., Demmelmair, H., Singer, J., and Kyle, D.J. (1995) Synthesis of Linoleate and α-Linolenate by Chain Elongation in the Rat, Lipids 30, 781–783.

    PubMed  CAS  Google Scholar 

  3. Murakami, Y., Tsuyama, M., Kobayashi, Y., Kodama, H., and Iba, K. (2000) Trienoic Fatty Acids and Plant Tolerance of High Temperature, Science 287, 476–479.

    Article  PubMed  CAS  Google Scholar 

  4. Koch, T., Krumm, T., Jung, V., Engelbert, J., and Boland, W. (1999) Differential Induction of Plant Volatile Biosynthesis in the Lima Bean by Early and Late Intermediates of the Octadecanoid-Signalling Pathway, Plant Physiol 121, 153–162.

    Article  PubMed  CAS  Google Scholar 

  5. Simopoulos, A.P. and Salem, N., Jr. (1989) n-3 Fatty Acids in Eggs from Free-Range Greek Chickens, N. Engl. J. Med. 321, 1412 (letter).

    Article  PubMed  CAS  Google Scholar 

  6. Raper, N.R., Cronin, F.J., and Exler, J. (1992) n-3 Fatty Acid Content of the U.S. Food Supply, J. Am. Coll. Nutr. 11, 304–308.

    PubMed  CAS  Google Scholar 

  7. Ayerza, R. (1995) Oil Content and Fatty Acid Composition of Chia (Salvia hispanica L.) from Five Northwestern Locations in Argentina, J. Am. Oil Chem. Soc. 72, 1079–1081.

    CAS  Google Scholar 

  8. Periera, C., Li, D., and Sinclair, A.J. (2001) The α-Linolenic Acid Content of Commonly Available Green Vegetables in Australia, Int. J. Vitam. Nutr. Res. 71, 223–228.

    Article  Google Scholar 

  9. Holman, R.T. (1968) Biological Activities of and Requirements for Polyunsaturated Fatty Acids, Prog. Chem. Fats Other Lipids 9, 611–680.

    Google Scholar 

  10. Yamamoto, S., and Smith, W.I. (2002) Molecular Biology of the Arachidonate Cascade (second edition), Prostaglandins Other Lipid Mediat. 68–69, 1 (Preface).

    Article  Google Scholar 

  11. Cunnane, S.C. (1999) The Long History of Essential Fatty Acids but Belated Knowledge About Linoleate Deficiency per se: A Paradox, J. Nutr. 129, 446.

    PubMed  CAS  Google Scholar 

  12. Burr, G.O. (1942) Significance of the Essential Fatty Acids, Fed. Proc. 1, 224–233.

    CAS  Google Scholar 

  13. Mohrhauer, H., and Holman, R.T. (1963) The Effect of Dose Level of Essential Fatty Acids Upon Fatty Acid Composition of the Rat Liver, J. Lipid Res. 4, 151–159.

    PubMed  CAS  Google Scholar 

  14. Pan, D.A., and Storlien, L.H. (1993) Dietary Lipid Profile Is a Determinant of Tissue Phospholipid Fatty Acid Composition and Rate of Weight Gain in Rats, J. Nutr. 123, 512–519.

    PubMed  CAS  Google Scholar 

  15. Tinoco, J., Williams, M.A., Hincenbergs, I., and Lyman, R.L. (1971) Evidence for Non-essentiality of Linolenic Acid in the Diet of the Rat, J. Nutr. 101, 937–943.

    PubMed  CAS  Google Scholar 

  16. Crawford, M.A., and Sinclair, A.J. (1972) The Limitations of Whole Tissue Analysis to Define Linolenic Acid Deficiency, J. Nutr. 102, 1315–1322.

    PubMed  CAS  Google Scholar 

  17. O'Brien, J.S., and Sampson, E.L. (1965) Fatty Acid and Fatty Aldehyde Composition of the Major Brain Lipids in Normal Human Gray Matter, White Matter and Myelin, J. Lipid Res. 6, 545–551.

    PubMed  Google Scholar 

  18. Crawford, M.A., and Sinclair, A.J. (1972) Nutritional Influences in the Evolution of the Mammalian Brain, in CIBA Foundation Symposium on Lipids, Malnutrition and the Developing Brain, pp. 267–287, Associated Scientific Publishers, Amsterdam.

    Google Scholar 

  19. Fleisler, S.J., and Anderson, R.E. (1983) Chemistry and Metabolism of Lipids in the Vertebrate Retina, Prog. Lipid Res. 22, 79–131.

    Article  Google Scholar 

  20. Wheeler, T.G., Benolken, R.M., and Anderson, R.E. (1975) Visual Membranes: Specificity of Fatty Acid Precursors for the Electrical Response to Illumination, Science 188, 1312–1314.

    Article  PubMed  CAS  Google Scholar 

  21. Sinclair, A.J. (2000) Commentary on the Workshop Statement, Prostaglandins, Leukot. Essent. Fatty Acids 63, 135–137.

    Article  CAS  Google Scholar 

  22. Chyb, S., Raghu, P., and Hardie, R.C. (1999) Polyunsaturated Fatty Acids Activate the Drosophila Light-Sensitive Channels TRP and TRPL, Nature 397, 255–259.

    Article  PubMed  CAS  Google Scholar 

  23. Salem, N., Jr., and Ward, G.R. (1993) Are Omega-3 Fatty Acids Essential Nutrients for Mammals? World Rev. Nutr. Dietet. 72, 128–147.

    Google Scholar 

  24. Greiner, R.S., Moriguchi, T., Hutton, A., Slotnick, B.M., and Salem, N., Jr. (1999) Rats with Low Levels of Brain Docosahexaenoic Acid Show Impaired Performance in Olfactory-Based and Spatial Learning Tasks, Lipids 34, S239-S243.

    PubMed  CAS  Google Scholar 

  25. Bourre, J.M., Durand, G., Erre, J.P., and Aran, J.M. (1999) Changes in Auditory Brainstem Responses in α-Linolenic Acid Deficiency as a Function of Age in Rats, Audiology 38, 13–18.

    Article  PubMed  CAS  Google Scholar 

  26. Umezawa, M., Kogishi, K., Tojo, H., Yoshimura, S., Seriu, N., Ohta, A., Takeda, T., and Hosokawa, M. (1999) High-Linoleate and High α-Linolenate Diets Affect Learning Ability and Natural Behavior in SAMR1 Mice, J. Nutr. 129, 431–437.

    PubMed  CAS  Google Scholar 

  27. Ahmad, A., Moriguchi, T., and Salem, N., Jr. (2002) Decrease in Neuron Size in Docosahexaenoic Acid-Deficient Brain, Pediatr. Neurol. 26, 210–218.

    Article  PubMed  Google Scholar 

  28. Ahmad, A., Murthy, M., Greiner, R.S., Moriguchi, T., and Salem, N., Jr. (2002) A Decrease in Cell Size Accompanies a Loss of Docosahexaenoate in the Rat Hippocampus, Nutr. Neurosci. 5, 103–113.

    Article  PubMed  CAS  Google Scholar 

  29. Ikemoto, A., Nitta, A., Furukawa, S., Ohishi, M., Nakamura, A., Fujii, Y., and Okuyama, H. (2000) Dietary n-3 Fatty Acid Deficiency Decreases Nerve Growth Factor Content in Rat Hippocampus, Neurosci. Lett. 285, 99–102.

    Article  PubMed  CAS  Google Scholar 

  30. Kurlak, L.O., and Stephenson, T.J. (1999) Plausible Explanations for Effects of Long Chain Polyunsaturated Fatty Acids (LCPUFA) on Neonates, Arch. Dis. Child Fetal Neonatal Ed. 80, 148–154.

    Article  Google Scholar 

  31. Lauritzen, L., Hansen, H.S., Jorgensen, M.H., and Michaelson, K.F. (2001) The Essentiality of Long Chain n-3 Fatty Acids in Relation to Development and Function of the Brain and Retina, Prog. Lipid Res. 40, 1–94.

    Article  PubMed  CAS  Google Scholar 

  32. Salem, N., Jr., Litman, B., Kim, H.-Y., and Gawrisch, K. (2001) Mechanisms of Action of Docosahexaenoic Acid in the Nervous System, Lipids 36, 945–959.

    Article  PubMed  CAS  Google Scholar 

  33. Litman, B.J., Niu, S.L., Polozova, A., and Mitchell, D.C. (2001) The Role of Docosahexaenoic Acid Containing Phospholipids in Modulating G Protein-Coupled Signaling Pathways: Visual Transduction, J. Mol. Neurosci. 16, 237–242.

    Article  PubMed  CAS  Google Scholar 

  34. Feller, S.E., Gawrisch, K., and MacKerell, A.D. (2002) Polyunsaturated Fatty Acids in Lipid Bilayers: Instrinsic and Environmental Contributions to Their Unique Physical Properties, J. Am. Chem. Soc. 124, 318–326.

    Article  PubMed  CAS  Google Scholar 

  35. Bowen, R.A.R., and Clandinin, M.T. (2002) Dietary Low Linolenic Acid Compared with Docosahexaenoic Acid Alter Synaptic Plasma Membrane Phospholipid Fatty Acid Composition and Sodium-Potassium ATPase Kinetics in Developing Rats, J. Neurochem. 83, 764–774.

    Article  PubMed  CAS  Google Scholar 

  36. Zimmer, L., Delion-Vancassel, S., Durand, G., Guilloteau, D., Bodard, S., Besnard, J.C., and Chalon, S. (2000) Modification of Dopamine Neurotransmission in the Nucleus Accumbens of Rats Deficient in n-3 Polyunsaturated Fatty Acids, J. Lipid Res. 41, 32–40.

    PubMed  CAS  Google Scholar 

  37. Vaidyanathan, V.V., Rao, K.V.R., and Sastry, P.S. (1994) Regulation of Diacylglycerol Kinase in Rat Brain Membranes by Docosahexaenoic Acid, Neurosci. Lett. 179, 171–174.

    Article  PubMed  CAS  Google Scholar 

  38. Rojas, C.V., Greiner, R.S., Martinez, J.I., Salem, N., Jr., and Uauy, R. (2002) Long-Term n-3 Fatty Acid Deficiency Modifies Peroxisome Proliferator-Activated Receptor β mRNA Abundance in Rat Ocular Tissues, Lipids 37, 367–374.

    Article  PubMed  CAS  Google Scholar 

  39. Kitajka, K., Puskas, L.G., Zvara, A., Hackler, L., Jr., Barcelo-Coblijn, G., Yeo, Y.K., and Farkas, T. (2002) The Role of n-3 Polyunsaturated Fatty Acids in Brain: Modulation of Rat Brain Gene Expression by Dietary n-3 Fatty Acids, Proc. Natl. Acad. Sci. USA 99, 2619–2624.

    Article  PubMed  CAS  Google Scholar 

  40. De Urquiza, A.M., Liu, S., Sjoberg, M., Zetterstrom, R.H., Griffiths, W., Sjovall, J., and Perlmann, T. (2000) Docosahexaenoic Acid, a Ligand for the Retinoid X Receptor in Mouse Brain, Science 290, 2140–2144.

    Article  PubMed  Google Scholar 

  41. Garcia, M.C., Ward, G., Ma, Y.-C., Salem, N., Jr., and Kim, H.-Y. (1998) Effect of Docosahexaenoic Acid on the Synthesis of Phosphatidylserine in Rat Brain Microsomes and C6 Glioma Cells, J. Neurochem. 70, 24–30.

    Article  PubMed  CAS  Google Scholar 

  42. Akbar, M., and Kim, H.-Y. (2002) Protective Effects of Docosahexaenoic Acid in Staurosporine-Induced Apoptosis: Involvement of Phosphatidyl-3-kinase Pathway, J. Neurochem. 82, 655–665.

    Article  PubMed  CAS  Google Scholar 

  43. Ikemoto, A., Kobayashi, T., Watanabe, S., and Okuyama, H. (1997) Membrane Fatty Acid Modifications of PC12 Cells by Arachidonate or Docosahexaenoate Affect Neurite Outgrowth but Not Norepinephrine Release, Neurochem. Res. 22, 671–678.

    Article  PubMed  CAS  Google Scholar 

  44. Martin, R.E. (1998) Docosahexaenoic Acid Decreases Phospholipase A2 Activity in the Neurites/Nerve Growth Cones of PC12 Cells, J. Neurosci. Res. 54, 805–813.

    Article  PubMed  CAS  Google Scholar 

  45. Lauritzen, I., Blondeau, N., Heurteaux, C., Widmann, C., Romey, G., and Lazdunski, M. (2000) Polyunsaturated Fatty Acids Are Potent Neuroprotectors, EMBO J. 19, 1784–1793.

    Article  PubMed  CAS  Google Scholar 

  46. Mostofsky, D.I., Yehuda, S., Rabinovitz, S., and Carasso, R. (2000) The Control of Blepharospasm by Essential Fatty Acids Neuropsychobiology 41, 154–157.

    Article  PubMed  CAS  Google Scholar 

  47. Hansen, H.S., and Jensen, B. (1985) Essential Function of Linoleic Acid Esterified in Acylglucosylceramide and Acylceramide in Maintaining the Epidermal Water Permeability Barrier. Evidence from Feeding Studies with Oleate, Linoleate, Arachidonate, Columbinate and α-linolenate, Biochim. Biophys. Acta 834, 357–363.

    PubMed  CAS  Google Scholar 

  48. Ziboh, V.A., Miller, C.C., and Cho, Y. (2000) Metabolism of Polyunsaturated Fatty Acids by Skin Epidermal Enzymes: Generation of Antinflammatory and Antiproliferative Metabolites, Am. J. Clin. Nutr. 71, 361S-366S.

    PubMed  CAS  Google Scholar 

  49. Koch, T., Krumm, T., Jung, V., Engelberth, J., and Boland, W. (1999) Differential Induction of Plant Volatile Biosynthesis in the Lima Bean by Early and Late Intermediates of the Octadecanoid-Signaling Pathway, Plant Physiol. 121, 153–162.

    Article  PubMed  CAS  Google Scholar 

  50. Martin, M., Leon, J., Dammann, C., Albar, J.P., Griffiths, G., and Sanchez-Serrano, J.J. (1999) Anti-sense Depletion of Potato Leaf Omega 3 Fatty Acid Desaturase Lowers Linolenic Acid Content and Reduces Gene Activation in Response to Wounding, Eur. J. Biochem. 262, 283–290.

    Article  PubMed  CAS  Google Scholar 

  51. Imbusch, R., and Mueller, M.J. (2000) Formation of Isoprostane F2-like Compounds from α-Linolenic Acid in Plants, Free Radic. Biol. Med. 28, 720–726.

    Article  PubMed  CAS  Google Scholar 

  52. Yokoyama, M., Yamaguchi, S., Inomata, S., Komatsu, K., Yoshida, S., Iida, T., Yokokawa, Y., Yamaguchi, M., Kaihara, S., and Takimoto, A. (2000) Stress-Induced Factor in Flower Formation of Lemna Is an α-Ketol Derivative of Linolenic Acid, Plant Cell Physiolol. 41, 110–113.

    CAS  Google Scholar 

  53. Baudouin, E., Meskiene, I., and Hirt, H. (1999) Unsaturated Fatty Acids Inhibit MP2C, a Protein Phosphatase 2C Involved in the Wound-Induced MAP Kinase Pathway Regulation, Plant J. 20, 343–348.

    Article  PubMed  CAS  Google Scholar 

  54. Cunnane, S.C., Menard, C.R., Likhodii, S.S., Brenna, J.T., and Crawford, M.A. (1999) Carbon Recycling into de novo Lipogenesis Is a Major Pathway in Neonatal Metabolism of Linoleate and α-Linolenate, Prostaglandins Leukot. Essent. Fatty Acids 60, 387–392.

    Article  PubMed  CAS  Google Scholar 

  55. Rokkones, T. (1953) A Dietary Factor Essential for Hair Growth in Rats, Intern. Z. Vitaminforsch. 25, 86–98.

    CAS  Google Scholar 

  56. Fiennes, R.N.T.W., Sinclair, A.J., and Crawford, M.A. (1973) Essential Fatty Acid Studies in Primates. Linolenic Acid Requirements of Capuchins, J. Med. Prim. 2, 155–169.

    CAS  Google Scholar 

  57. Fu, Z., and Sinclair, A.J. (2000) Novel Pathway of Metabolism of α-Linolenic Acid in the Guinea Pig, Pediatr. Res. 47, 414–417.

    PubMed  CAS  Google Scholar 

  58. Leyton, J., Drury, P.J., and Crawford, M.A. (1987) Differential Oxidation of Saturated and Unsaturated Fatty Acids in vivo in the Rat, Br. J. Nutr. 57, 383–393.

    Article  PubMed  CAS  Google Scholar 

  59. Vermunt, S.H., Mensink, R.P., Simonis, M.M., and Hornstra, G. (2000) Effects of Dietary α-Linolenic Acid on the Conversion and Oxidation of 13C-α-Linolenic Acid, Lipids 35, 137–142.

    PubMed  CAS  Google Scholar 

  60. Brenna, J.T. (2002) Efficiency of Conversion of α-Linolenic Acid to Long Chain n-3 Fatty Acids in Man, Curr. Opin. Clin. Nutr. Metab. Care 5, 127–132.

    Article  PubMed  CAS  Google Scholar 

  61. DeLany, J.P., Windhauser, M.M., Champagne, C.M., and Bray, G.A. (2000) Differential Oxidation of Individual Dietary Fatty Acids in Humans, Am. J. Clin. Nutr. 79, 905–911.

    Google Scholar 

  62. Sinclair, A.J. (1975) Incorporation of Radioactive Polyunsaturated Fatty Acids into Liver and Brain of the Developing Rat, Lipids 10, 175–184.

    PubMed  CAS  Google Scholar 

  63. Menard, C.R., Goodman, K.J., Corso, T.N., Brenna, J.T., and Cunnane, S.C. (1998) Recycling of Carbon into Lipids Synthesized de novo Is a Quantitatively Important Pathway of α-[U-13C]Linolenate Utilization in the Developing Rat Brain, J. Neurochem. 71, 2151–2180.

    Article  PubMed  CAS  Google Scholar 

  64. Edmond, J., Higa, T.A., Korsack, R.A., Bergner, E.A., and Lee, W.-N.P. (1998) Fatty Acid Transport and Utilization for the Developing Brain, J. Neurochem. 70, 1227–1234.

    Article  PubMed  CAS  Google Scholar 

  65. Voss, A.M., Reinhart, S., Sankarappa, S., and Sprecher, H. (1991) Metabolism of 22:5n-3 to 22:6n-3 in Rat Liver Is Independent of 4-Desaturase, J. Biol. Chem. 266, 19995–20000.

    PubMed  CAS  Google Scholar 

  66. Moore, S.A., Hurt, E., Yoder, E., Sprecher, H., and Spector, A.A. (1995) Docosahexaenoic Acid Synthesis in Human Skin Fibroblasts Involves Peroxisomal Retroconversion of Tetracosahexaenoic Acid, J. Lipid Res. 36, 2433–2443.

    PubMed  CAS  Google Scholar 

  67. Martinez, M., Vazquez, E., Garcia-Silva, M.T., Manzanares, J., Bertran, J.M., Castello, F., and Mougan, I. (2000) Therapeutic Effects of Docosahexaenoic Acid Ethyl Ester in Patients with Generalized Peroxisomal Disorders, Am. J. Clin. Nutr. 71, 376S-385S.

    PubMed  CAS  Google Scholar 

  68. Bowen, R.A., and Clandinin, M.T. (2000) High Dietary 18:3n-3 Increases the 18:3n-3 but Not the 22:6n-3 Content in the Whole Body, Brain, Skin, Epididymal Fat Pads, and Muscles of Suckling Rat Pups, Lipids 35, 389–394.

    Article  PubMed  CAS  Google Scholar 

  69. Poumès-Ballihaut, C., Langelier, B., Houlier, F., Alessandri, J., Durand, G., Latge, C., and Guesnet, P. (2001) Comparative Bioavailability of Dietary α-Linolenic Acid and Docosahexaenoic Acid in the Growing Rat, Lipids 36, 793–800.

    Article  PubMed  Google Scholar 

  70. Thiele, J.J., Weber, S.U., and Packer, L.L. (1999) Sebaceous Gland Secretion Is a Major Physiologic Route of Vitamin E Delivery to Skin, J. Invest. Dermatol. 113, 1006–1010.

    Article  PubMed  CAS  Google Scholar 

  71. Lloyd, D.H. (1989) Essential Fatty Acids and Skin Disease, J. Small Anim. Prac. 30, 207–212.

    Google Scholar 

  72. Ando, H., Ryu, A., Hashimoto, A., Oka, M., and Ichihashi, M. (1998) Linoleic Acid and α-Linolenic Acid Lighten Ultraviolet-Induced Hyperpigmentation of the Skin, Arch. Dermatol. Res. 290, 375–381.

    Article  PubMed  CAS  Google Scholar 

  73. Hartop, P.J., and Prottey, C. (1976) Changes in Transepidermal Water Loss and the Composition of Epidermal Lecithin After Applications of Pure Fatty Acid Triglycerides to the Skin of Essential Fatty Acid Deficient Rats, J. Dermatol. 95, 255–264.

    Article  CAS  Google Scholar 

  74. Reisbick, S., Neuringer, M., and Connor, W.E. (1992) Postnatal Deficiency of Omega-3 Fatty Acids in Monkeys: Fluid Intake and Urine Concentration, Physiol. Behav. 51, 473–479.

    Article  PubMed  CAS  Google Scholar 

  75. Armitage, J.A., Burns, P., Sinclair, A.J., Weisinger, H.S., Vingrys, A.J., and Weisinger, R.S. (2000) Perinatal Omega 3 Fatty Acid Deprivation Alters Thirst and Sodium Appetite in Adult Rats, Appetite 37, 258.

    Google Scholar 

  76. Weisinger, H.S., Armitage, J.A., Sinclair, A.J., Vingrys, A.J., Burns, P., and Weisinger, R.S. (2001) Peri-natal Omega 3 Fatty Acid Deficiency Affects Blood Pressure, Fluid and Metabolite Homeostasis, Nature Med. 7, 258–259.

    Article  PubMed  CAS  Google Scholar 

  77. Langley-Evans, S.C. (2000) Critical Differences Between Two Low Protein Diet Protocols in the Programming of Hypertension in the Rat, Int. J. Food Sci. Nutr., 51, 11–17.

    Article  PubMed  CAS  Google Scholar 

  78. Gerster, H. (1998) Can Adults Adequately Convert α-Linolenic Acid to Eicosapentaenoic Acid and Docosahexaenoic Acid? Internat. J. Vit. Nutr. Res. 68, 159–173.

    CAS  Google Scholar 

  79. Abedin, L., Lien, E.L., Vingrys, A.J., and Sinclair, A.J. (1999) The Effects of Dietary α-Linolenic Acid Compared with Docosahexaenoic Acid on Brain, Retina, Liver, and Heart in the Guinea Pig, Lipids 34, 475–482.

    Article  PubMed  CAS  Google Scholar 

  80. Greiner, R.C., Winter, J., Nathanielsz, P.W., and Brenna, J.T. (1997) Brain Docosahexaenoate Accretion in Fetal Baboons: Bioequivalence of Dietary α-Linolenic and Docosahexaenoic Acids, Pediatr. Res. 42, 826–834.

    PubMed  CAS  Google Scholar 

  81. Su, H.M., Bernardo, L., Mirmiran, M., Ma, X.H., Nathanielsz, P.W., and Brenna, J.J. (1999) Dietary 18∶3n-3 and 22∶6n-3 as Sources of 22∶6n-3 Accretion in Neonatal Baboon Brain and Associated Organs, Lipids 34, S347-S350.

    PubMed  CAS  Google Scholar 

  82. Woods, J., Ward, G., and Salem, N., Jr. (1996) Is Docosahexaenoic Acid Necessary in Infant Formulas? Evaluation of High Linolenate Diets in the Neonatal Rat, Pediatr. Res. 40, 687–694.

    PubMed  CAS  Google Scholar 

  83. Su, H.M., Huang, M.C., Saad, N.M., Nathanielsz, P.W., and Brenna, J.T. (2001) Fetal Baboons Convert 18∶3n-3 to 22∶6n-3 in vivo: A Stable Isotope Tracer Study, J. Lipid Res. 42, 581–586.

    PubMed  CAS  Google Scholar 

  84. Fu, Z., and Sinclair, A.J. (2000) Increased α-Linolenic Acid Intake Increases Tissue α-Linolenic Acid Content and Apparent Oxidation with Little Effect on Tissue Docosahexaenoic Acid in the Guinea Pig, Lipids 35, 395–400.

    Article  PubMed  CAS  Google Scholar 

  85. Li, D., Sinclair, A., Wilson, A., Nakkote, S., Kelly, F., Abedin, L., Mann, N., and Turner, A. (1999) Effect of Dietary α-Linolenic acid on Thrombotic Risk Factors in Vegetarian Men, Am. J. Clin. Nutr. 69, 872–882.

    PubMed  CAS  Google Scholar 

  86. Mantzioris, E., James, M.J., Gibson, R.A., and Cleland, L.G. (1994) Dietary Substitution with an α-Linolenic Acid-rich Vegetable Oil Increases Eicosapentaenoic Acid Concentrations in Tissues, Am. J. Clin. Nutr. 59, 1304–1309.

    PubMed  CAS  Google Scholar 

  87. Emken, E.A., Adlof, R.O., and Gulley, G.M. (1994) Dietary Linoleic Acid Influences the Desaturation and Acylation of Deuterium-Labelled Linoleic and α-Linolenic Acid in Young Adult Males, Biochim. Biophys. Acta 1213, 277–288.

    PubMed  CAS  Google Scholar 

  88. Pawlosky, R.J., Hibbeln, J.R., Novotny, J.A., and Salem, N., Jr. (2001) Physiological Compartmental Analysis of α-Linolenic Acid Metabolism in Adult Humans, J. Lipid Res. 42, 1257–1265.

    PubMed  CAS  Google Scholar 

  89. Burdge, G.C., and Wootton, S.A. (2002) Conversion of α-Linolenic Acid to Eicosapentaenoic, Docosapentaenoic and Docosahexaenoic Acids in Young Women, Br. J. Nutr. 88, 411–420.

    PubMed  CAS  Google Scholar 

  90. Burdge, G.C., Jones, A.E., and Wootton, S.A. (2002) Eicosapentaenoic and Docosapentaenoic Acids Are the Principal Products of α-Linolenic Acid Metabolism in Young Men, Br. J. Nutr. 88, 355–363.

    Article  PubMed  CAS  Google Scholar 

  91. Adam, O., Wolfram, G., and Zollner, N. (1986) Effect of α-Linolenic Acid in the Human Diet on Linoleic Acid Metabolism and Prostaglandin Biosynthesis, J. Lipid Res. 27, 421–426.

    PubMed  CAS  Google Scholar 

  92. Mest, H.J., Beitz, J., Heinroth, I., Block, H.U., and Forster, W. (1983) The Influence of Linseed Diet on Fatty Acid Pattern in Phospholipids and Thromboxane Formation in Platelets in Man, Klin. Wochenschr. 61, 187–191.

    Article  PubMed  CAS  Google Scholar 

  93. Ezaki, O., Takahashi, M., Shigematsu, T., Shimamura, K., Kimura, J., Ezaki, H., and Gotoh, T. (1999) Long-Term Effects of Dietary α-Linolenic Acid from Perilla Oil on Serum Fatty Acid Composition and on the Risk Factors of Coronary Heart Disease in Japanese Elderly Subjects, J. Nutr. Sci. Vitaminol. 45, 759–762.

    PubMed  CAS  Google Scholar 

  94. Cho, H.P., Nakamura, M.T., and Clarke, S.D. (1999) Cloning, Expression, and Nutritional Regulation of the Mammalian Δ6-Desaturase, J. Biol. Chem. 274, 471–477.

    Article  PubMed  CAS  Google Scholar 

  95. O'Dea, K., Steel, M., Naughton, J.M., Sinclair, A.J., Hopkins, G., Angus, J., He, G.-W., Niall, M., and Martin, T.J. (1988) Butter-Enriched Diets Reduce Arterial Prostacyclin-Production in Rats, Lipids 23, 234–241.

    PubMed  Google Scholar 

  96. Salem, N., Jr., Wegher, B., Mena, P., and Uauy, R. (1996) Arachidonic and Docosahexaenoic Acids Are Biosynthesized from Their 18-Carbon Precursors in Human Infants, Proc. Natl. Acad. Sci. USA 93, 49–54.

    Article  PubMed  CAS  Google Scholar 

  97. Uauy, R., Mena, P., Wegher, B., Nieto, S., and Salem, N., Jr. (2000) Long Chain Polyunsaturated Fatty Acid Formation in Neonates: Effect of Gestational Age and Intrauterine Growth, Pediatr. Res. 47, 127–135.

    PubMed  CAS  Google Scholar 

  98. Cunnane, S.C., Francescutti, V., Brenna, J.T., and Crawford, M.A. (2000) Breast-fed Infants Achieve a Higher Rate of Brain and Whole Body Docosahexaenoate Accumulation Than Formula-Fed Infants Not Consuming Dietary Docosahexaenoate, Lipids 35, 105–111.

    Article  PubMed  CAS  Google Scholar 

  99. Balendiran, G.K., Schnutgen, F., Scapin, G., Borchers, T., Xhong, N., Lim, K., Godbout, R., Spener, F., and Sacchettini, J.C. (2000) Crystal Structure and Thermodynamic Analysis of Human Brain Fatty Acid-Binding Protein, J. Biol. Chem. 275, 27045–27054.

    PubMed  CAS  Google Scholar 

  100. Pawlosky, R., Barnes, A., and Salem, N., Jr. (1994) Essential Fatty Acid Metabolism in the Feline: Relationship Between Liver and Brain Production of Long-Chain Polyunsaturated Fatty Acids, J. Lipid Res. 35, 2032–2040.

    PubMed  CAS  Google Scholar 

  101. Cho, H.P., Nakamura, M., and Clarke, S.D. (1999) Cloning, Expression, and Fatty Acid Regulation of the Human Δ5-Desaturase, J. Biol. Chem. 274, 37335–37339.

    Article  PubMed  CAS  Google Scholar 

  102. Weisinger, H.S., Vingrys, A.J., and Sinclair, A.J. (1996) The Effect of Docosahexaenoic Acid on the Electroretinogram of the Guinea Pig, Lipids 31, 65–70.

    Article  PubMed  CAS  Google Scholar 

  103. Jeffrey, B.G., Mitchell, D.C., Gibson, R.A., and Neuringer, M. (2002) n-3 Fatty Acid Deficiency Alters Recovery of the Rod Photoresponse in Rhesus Monkeys, Invest. Ophthalmol. Vis. Sci. 43, 2806–2814.

    PubMed  Google Scholar 

  104. Jeffrey, B.G., Mitchell, D.C., Hibbeln, J.R., Gibson, R.A., Chedester, A.L., and Salem, N., Jr. (2002) Visual Acuity and Retinal Function in Infant Monkeyas Fed Long-Chain PUFA, Lipids 37, 839–848.

    Article  PubMed  CAS  Google Scholar 

  105. De Deckere, E.A.M., Korver, O., Verschuren, P.M., and Katan, M. (1998) Health Aspects of Fish and n-3 Polyunsaturated Fatty Acids from Plant and Marine Origin, Eur. J. Clin. Nutr. 52, 749–753.

    Article  PubMed  CAS  Google Scholar 

  106. Mori, T.A., Bao, D.Q., Burke, V., Puddey, I.B., and Beilin, L.J. (1999) Docosahexaenoic Acid but Not Eicosapentaenoic Acid Lowers Ambulatory Blood Pressure and Heart Rate in Humans, Hypertension 34, 253–260.

    PubMed  CAS  Google Scholar 

  107. Kang, J.X., and Leaf, A. (2000) Prevention of Fatal Cardiac Arrhythmias by Polyunsaturated Fatty Acids, Am. J. Clin. Nutr. 71, 202S-207S.

    PubMed  CAS  Google Scholar 

  108. Price, P.T., Nelso, C.M., and Clarke, S.D. (2000) Omega 3 Polyunsaturated Fatty Acid Regulation of Gene Expression, Curr. Opin. Lipidol. 11, 3–7.

    Article  PubMed  CAS  Google Scholar 

  109. Singh, R.B., Niaz, M.A., Sharma, J.P., Kumar, R., Rastogi, V., and Moshiri, M. (1997) Randomized, Double-Blind, Placebo-Controlled Trial of Marine Omega-3 Oil and Mustard Oil in Patients with Suspected Acute Myocardial Infarction: The Indian Experiment of Infarct Survival-4, Cardiovasc. Drugs Therap. 11, 485–491.

    Article  CAS  Google Scholar 

  110. De Lorgeril, M., Salen, P., Martin, J.-L., Moniaud, I., Delaye, I., and Mamelle, N. (1999) Mediterranean Diet, Traditional Risk Factors and Rate of Cardiovascular Complications After Myocardial Infarction: Final Report of the Lyon Diet Heart Study, Circulation 99, 779–785.

    PubMed  Google Scholar 

  111. GISSI-Prevenzione Investigators (1999) Dietary Supplementation with n-3 Polyunsaturated Fatty Acids and Vitamin E After Myocardial Infarction: Results of the GISSI-Prevenzione Trial, The Lancet 354, 447–455.

    Article  Google Scholar 

  112. Djousse, L., Pankow, J.S., Eckfeldt, J.H., Folsom, A.R., Hopkins, P.N., Province, M.A., Hong, Y., and Ellison, R.C. (2001) Relation Between Dietary Linolenic Acid and Coronary Artery Disease in the National Heart, Lung, and Blood Institute Family Heart Study, Am. J. Clin. Nutr. 74, 612–619.

    PubMed  CAS  Google Scholar 

  113. Billman, G.E., Kang, J.X., and Leaf, A. (1999) Prevention of Sudden Cardiac Death by Dietary Pure Omega-3 Polyunsaturated Fatty Acids in Dogs, Circulation 99, 2452–2457.

    PubMed  CAS  Google Scholar 

  114. Renaud, S., and Nordoy, A. (1983) “Small Is Beautiful”: α-Linolenic Acid and Eicosapentaenoic Acid in Man, The Lancet (May 21), 1169.

  115. Dolecek, T.A. (1992) Epidemiological Evidence of Relationships Between Dietary PUFA and Mortality in the Multiple Risk Factor Intervention Trial, Proc. Soc. Exp. Biol. Med. 200, 177–182.

    PubMed  CAS  Google Scholar 

  116. Hu, F.B., Stampfer, M.J., Manson, J.E., Rimm, E.B., Wolk, A., Colditz, G.A., Hennekens, C.H., and Willett, W.C. (1999) Dietary Intake of α-Linolenic Acid and Risk of Fatal Ischemic Heart Disease Among Women, Am. J. Clin. Nutr. 69, 890–897.

    PubMed  CAS  Google Scholar 

  117. Ferretti, A., and Flanagan, V.P. (1996) Antithromboxane Activity of Dietary α-Linolenic Acid: A Pilot Study, Prostaglandins Leukot. Essent. Fatty Acids 54, 451–455.

    Article  PubMed  CAS  Google Scholar 

  118. Appel, L.J., Miller, E.R., 3rd, Seidler, A.J., and Whelton, P.K. (1993) Does Supplementation of Diet with “Marine Omega 3 Oil” Reduce Blood Pressure? A Meta-analysis of Controlled Clinical Trials, Arch. Intern. Med. 153, 1429–1438.

    Article  PubMed  CAS  Google Scholar 

  119. Nestel, P.J., Pomeroy, S.E., Sasahara, T., Yamashita, T., Liang, Y.L., Dart, A.M., Jennings, G.L., Abbey, M., and Cameron, J.D. (1997) Arterial Compliance in Obese Subjects Is Improved with Dietary Plant n-3 Fatty Acid from Flaxseed Oil Despite Increased LDL Oxidizability, Arterioscler. Thromb. Vasc. Biol. 17, 1163–1170.

    PubMed  CAS  Google Scholar 

  120. McLellan, P.L., Abewardena, M.Y., and Charnock, J.S. (1988) Dietary Marine Omega 3 Oil Prevents Ventricular Fibrillation Following Coronary Artery Occlusion and Reperfusion, Am. Heart J. 116, 709–717.

    Article  Google Scholar 

  121. Billman, G.E., Kang, J.X., and Leaf, A. (1997) Prevention of Ischemia-Induced Cardiac Sudden Death by n-3 Polyunsaturated Fatty Acids in Dogs, Lipids 32, 1161–1168.

    Article  PubMed  CAS  Google Scholar 

  122. Singh, R.B., Dubnov, G., Niaz, M.A., Ghosh, S., Singh, R., Rastogi, S.S., Manor, O., Pella, D., and Berry, E. (2002) Effect of an Indo-Mediterranean Diet on Progression of Coronary Artery Disease in High Risk Patients (Indo-Mediterranean Diet Heart Study): A Randomized Single-Blind Trial, Lancet 360, 1455–1466.

    Article  PubMed  Google Scholar 

  123. Giovannucci, E., Rimm, E.B., Colditz, G.A., Stampfer, M., Ascherio, A., Chute, C.C., and Willett, W. (1993) A Prospective Study of Dietary Fat and Risk of Prostate Cancer, J. Natl. Cancer Inst. 85, 1571–1579.

    PubMed  CAS  Google Scholar 

  124. De Stéfani, E., Deneo-Pellegrini, H., Boffetta, P., Ronco, A., and Mendilaharsu, M. (2000) α-Linolenic Acid and Risk of Prostate Cancer: A Case-Control Study in Uruguay, Cancer Epidemiol. Biomarkers Prev. 9, 335–338.

    PubMed  Google Scholar 

  125. Ramon, J.M., Ricard, B., Romea, S., Alkiza, M.E., Jacas, M., Ribes, J., and Oromi, J. (2000) Dietary Intake and Prostate Cancer Risk: A Case-Control Study in Spain, Cancer Causes Control 11, 679–685.

    Article  PubMed  CAS  Google Scholar 

  126. Gann, P.H., Hennekens, C.H., Sacks, F.M., Grodstein, F., Giovannucci, E.L., and Stampfer, M.J. (1994) Prospective Study of Plasma Fatty Acids and Risk of Prostate Cancer, J. Natl. Cancer Inst. 86, 281–286.

    PubMed  CAS  Google Scholar 

  127. Harvei, S., Bjerve, K.S., Tretli, S., Jellum, E., Robsahm, T.E., and Vatten, L. (1997) Prediagnostic Level of Fatty Acids in Serum Phospholipids: ω-3 and ω-6 Fatty Acids and the Risk of Prostate Cancer, Int. J. Cancer 71, 545–551.

    Article  PubMed  CAS  Google Scholar 

  128. Newcomer, L.M., King, I.B., Wicklund, K.G., and Stanford, J.L. (2001) The Association of Fatty Acids with Prostate Cancer, The Prostate 47, 262–268.

    Article  PubMed  CAS  Google Scholar 

  129. Andersson, S.O., Wolk, A., Bergstrom, R., Giovannucci, E., Lindgren, C., Baron, J., and Adami, H.O. (1996) Energy, Nutrition Intake and Prostate Cancer Risk: A Population-Based Case-Control Study in Sweden, Int. J. Cancer 68, 716–722.

    Article  PubMed  CAS  Google Scholar 

  130. Alberg, A.J., Kafonek, S., Huang, H.Y., Hoffman, S.C., Comstock, G.W., and Helzlsouer, K.J. (1996) Fatty Acid Levels and the Subsequent Development of Prostate Cancer, Proc. Am. Assoc. Cancer Res. 37, 281.

    Google Scholar 

  131. Godley, P.A., Campbell, M.K., Gallagher, P., Martinson, F.E., Mohler, J.L., and Sandler, R.S. (1996) Biomarkers of Essential Fatty Acid Consumption and Risk of Prostatic Carcinoma, Cancer Epidemiol. Biomarkers Prev. 5, 889–895.

    PubMed  CAS  Google Scholar 

  132. Schuurman, A.G., van den Brandt, P.A., Dorant, E., Brants, H.A.M., and Goldbohm, R.A. (1999) Association of Energy and Fat Intake with Prostate Carcinoma Risk: Results from the Netherlands Cohort Study, Cancer 86, 1019–1027.

    Article  PubMed  CAS  Google Scholar 

  133. Freeman, V.L., Meydani, M., Yong, S., Pyle, J., Flanigan, R.C., Waters, B., and Wojcik, E.M. (2000) Prostatic Levels of Fatty Acids and the Histopathology of Localized Prostate Cancer, J. Urology 164, 2168–2172.

    Article  CAS  Google Scholar 

  134. Cave, W.T., Jr. (1991) Dietary n-3 (ω-3) Polyunsaturated Fatty Acid Effects on Animal Tumorigenesis, FASEB J. 5, 2160–2166.

    PubMed  CAS  Google Scholar 

  135. Liang, T., and Liao, S. (1992) Inhibition of Steroid 5α-Reductase by Specific Aliphatic Unsaturated Fatty Acids, Biochem. J. 285, 557–562.

    PubMed  CAS  Google Scholar 

  136. Marshall, L.A., Szczesniewski, A., and Johnston, P.V. (1983) Dietary α-Linolenic Acid and Prostaglandin Synthesis: A Time Course Study, Am. J. Clin. Nutr. 38, 895–900.

    PubMed  CAS  Google Scholar 

  137. Klein, V., Chajes, V., Germain, E., Schulgen, G., Pinault, M., Malvy, D., Lefrancq, T., Fignon, A., Le Floch, O., Lhuillery, C., and Bougnoux, P. (2000) Low α-Linolenic Acid Content of Adipose Breast Tissue Is Associated with an Increased Risk of Breast Cancer, Eur. J. Cancer 36, 335–340.

    Article  PubMed  CAS  Google Scholar 

  138. Maillard, V., Bougnoux, P., Ferrari, P., Jourdain, M.L., Pinault, M., Lavillonniere, F., Body, G., Le Floch, O., and Chajes, V. (2002) n-3 and n-6 Fatty Acids in Breast Adipose Tissue and Relative Risk of Breast Cancer in a Case-Control Study in Tours, France, Int. J. Cancer 98, 78–93.

    Article  PubMed  CAS  Google Scholar 

  139. Cognault, S., Jourdan, M.L., Germain, E., Pitavy, R., Morel, E., Durand, G., Bougnoux, P. and Lhuillery, C. (2000) Effect of an α-Linolenic Acid-Rich Diet on Rat Mammary Tumor Growth Depends on the Dietary Oxidative Status, Nutr. Cancer 36, 33–41.

    Article  PubMed  CAS  Google Scholar 

  140. Holman, R.T., Johnson, S.B., and Hatch, T.F. (1982) A Case of Human Linolenic Acid Deficiency Involving Neurological Abnormalities, Am. J. Clin. Nutr. 35, 617–623.

    PubMed  CAS  Google Scholar 

  141. Bjerve, K.S., Thoresen, L., and Borsting, S. (1998) Linseed and Cod Liver Oil Induce Rapid Growth in a 7-Year-Old Girl with n-3 Fatty Acid Deficiency, JPEN J. Parenter. Enteral Nutr. 12, 521–525.

    Article  Google Scholar 

  142. NHMRC: Report of Working Party (1992) The Role of Polyunsaturated Fatty Acids in the Australian Diet, Australian Government Publishing Service, Canberra.

    Google Scholar 

  143. Simopoulos, A.P., Leaf, A., and Salem, N. (2000) Workshop Statement on the Essentiality of and Recommended Intakes for Omega 6 and Omega 3 Fatty Acids, Prostaglandins Leukot. Essent. Fatty Acids 63, 119–121.

    Article  PubMed  CAS  Google Scholar 

  144. Lands, W.E.M., Libelt, B., Morris, A., Kramer, N.C., Prewitt, T.E., Bowen, P., Schmeisser, D., and Davidson, M.H. (1992) Maintenance of Lower Proportions of (n-6) Eicosanoid Precursors in Phospholipids of Human Plasma in Response to Added Dietary (n-3) Fatty Acids, Biochim. Biophys. Acta 1180, 147–162.

    PubMed  CAS  Google Scholar 

  145. Blank, C., Neumann, M.A., Makrides, M., and Gibson, R.A. (2002) Optimizing DHA Levels in Piglets by Lowering the Linoleic Acid to α-Linolenic Acid Ratio, J. Lipid Res. 43, 1537–1543.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Sinclair.

About this article

Cite this article

Sinclair, A.J., Attar-Bashi, N.M. & Li, D. What is the role of α-linolenic acid for mammals?. Lipids 37, 1113–1123 (2002). https://doi.org/10.1007/s11745-002-1008-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-002-1008-x

Keywords

Navigation