Skip to main content
Log in

Mechanisms of action of docosahexaenoic acid in the nervous system

  • Published:
Lipids

Abtract

This review describes (from both the animal and human literature) the biological consequences of losses in nervous system docosahexaenoate (DHA). It then concentrates on biological mechanisms that may serve to explain changes in brain and retinal function. Brief consideration is given to actions of DHA as a nonesterified fatty acid and as a docosanoid or other bioactive molecule. The role of DHA-phospholipids in regulating G-protein signaling is presented in the context of studies with rhodopsin. It is clear that the visual pigment responds to the degree of unsaturation of the membrane lipids. At the cell biological level, DHA is shown to have a protective role in a cell culture model of apoptosis in relation to its effects in increasing cellular phosphatidylserine (PS); also, the loss of DHA leads to a loss in PS. Thus, through its effects on PS, DHA may play an important role in the regulation of cell signaling and in cell proliferation. Finally, progress has been made recently in nuclear magnetic responance studies to delineate differences in molecular structure and order in biomembranes due to subtle changes in the degree of phospholipid unsaturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

arachidonic acid

DHA:

docosahexaenoic acid

DPAn-6:

docosapentaenoic acid

DROSS:

dipolar recoupling on-axis with scaling and shape preservation

HUFA:

highly unsaturated fatty acids

LCP:

long-chain polyunsaturates

α-LNA:

α-linolenate

LO:

lipoxygenase

M:

metarhodopsin

MAS:

magic angle spinning

NMR:

nuclear magnetic resonance

NOESY:

nuclear Overhauser enhancement spectroscopy

PC:

phosphatidylcholine

PDE:

phosphodiesterase

PE:

phosphatidylethanolamine

PS:

phosphatidylserine

ROS:

rod outer segment

References

  1. O'Brien, J.S., and Sampson, E.L. (1965) Fatty Acid and Aldehyde Composition of the Major Brain Lipids in Normal Gray Matter, White Matter and Myelin, J. Lipid Res. 4, 545–551.

    Google Scholar 

  2. Svennerholm, L. (1968) Distribution and Fatty Acid Composition of Phosphoglycerides in Normal Human Brain, J. Lipid Res. 9, 570–579.

    PubMed  CAS  Google Scholar 

  3. Thudichum, J.L.W. (1962) A Treatise on the Chemical Constitution of the Brain, pp. 7, 8, 87, 90, Archon Books, Hamden.

    Google Scholar 

  4. Salem, N., Jr., Kim, H.Y., and Yergey, J.A. (1986) Docosahexaenoic Acid: Membrane Function and Metabolism, in Health Effects of Polyunsaturated Fatty Acids in Seafoods (Simopoulos, A.P., Kifer, R.R., and Martin, R.E., eds.), pp. 263–317, Academic Press, New York.

    Google Scholar 

  5. Yabuuchi H., and O'Brien, J.S. (1968) Positional Distribution of Fatty Acids in Glycerophosphatides of Bovine Gray Matter, J. Lipid Res. 9, 65–67.

    PubMed  CAS  Google Scholar 

  6. Breckenridge, W.C., Gombos, G., and Morgan, I.G. (1972) The Lipid Composition of Adult Rat Brain Synaptosomal Membranes, Biochem. Biophys. Acta 266, 695–707.

    PubMed  CAS  Google Scholar 

  7. Breckenridge, W.C., Morgan, I.G., Zanetta, J.P., and Vincendon, G. (1973) Adult Rat Brain Synaptic Vesicles II, Biochim. Biophys. Acta 211, 681–686.

    Google Scholar 

  8. Salem, N., Jr., Serpentino, P., Puskin, J.S., and Abood, L.G. (1990) Preparation and Spectroscopic Characterization of Molecular Species of Brain Phosphatidylserines, Chem. Phys. Lipids 27, 289–304.

    Google Scholar 

  9. Anderson, R.E. (1970) Lipids of Ocular Tissues IV. A Comparison of the Phospholipids from the Retina of Six Mammalian Species, Exp. Eye Res. 10, 399–341.

    Google Scholar 

  10. Anderson, R.E., and Sperling, L. (1971) Lipids of Ocular Tissue VII. Positional Distribution of Fatty Acids in the Phospholipids of Bovine ROSs, Arch. Biochem. Biophys. 144, 673–677.

    PubMed  CAS  Google Scholar 

  11. Niell, A.R., and Masters, C.J. (1973) Metabolism of Fatty Acids by Ovine Spermatozoa, J. Reprod. Fertil. 34, 279.

    Google Scholar 

  12. Christie, W.W. (1978) The Composition, Structure and Function of Lipids in the Tissue of Ruminant Animals, Prog. Lipid Res. 17, 111–205.

    PubMed  CAS  Google Scholar 

  13. Gudbjarnason, S., Doell, B., and Oskarsdorttir, G. (1978) Docosahexaenoic Acid in Cardiac Metabolism and Function, Acta Biol. Med. Germ. 37, 777–784.

    PubMed  CAS  Google Scholar 

  14. Van Hoeven, R.P., Emmelot, P., Krol, J.H., and Oomen-Meulemans, E.P.M. (1975) Studies on Plasma Membranes. XXII. Fatty Acid Profiles of Lipid Classes in Plasma Membranes of Rat and Mouse Livers and Hepatomas, Biochim. Biophys. Acta 380, 1–11.

    PubMed  Google Scholar 

  15. Tinoco, J., Babcock, R., Hincenbergs, I., Medwadowski, B., and Miljanich, P. (1978) Linolenic Acid Deficiency: Changes in Fatty Acid Patterns in Female and Male Rats Raised on a Linolenic Acid-Deficient Diet for Two Generations, Lipids 13, 6–17.

    PubMed  CAS  Google Scholar 

  16. Mori, T.A., Coddle, J.P., Vandongen, R., and Beilin, L.J. (1987) New Findings in the Fatty Acid Composition of Individual Platelet Phospholipids in Man After Dietary Fish Oil Supplmentation, Lipids 22, 744–750.

    PubMed  CAS  Google Scholar 

  17. Carlson, S.E., Rhodes, P.G., and Ferguson, M.G. (1986) Docosahexaenoic Acid Status of Preterm Infants at Birth and Following Feeding with Human Milk or Formula, Am. J. Clin. Nutr. 44, 798–804.

    PubMed  CAS  Google Scholar 

  18. Lammi-Keefe, C.J., and Jensen, R.G. (1984) Lipids in Human Milk: A Review. 2: Composition and Fat Soluble Vitamins, J. Pediatr. Gastroenterol. Nutr. 3, 172–198.

    PubMed  CAS  Google Scholar 

  19. Stinson, A.M., Wiegand, R.D., and Anderson, R.E. (1991) Fatty Acid and Molecular Species Compositions of Phospholipids and Diacylglycerols, Exp. Eye Res. 52, 213–218.

    PubMed  CAS  Google Scholar 

  20. Salem, N., Jr. (1989) Omega-3 Fatty Acids: Molecular and Biochemical Aspects, in Current Topics in Nutrition and Disease: New Protective Roles for Selected Nutrients (Spiller, G.A., and Scala, J., eds.), Vol. 22, pp. 109–228, Alan R. Liss, New York.

    Google Scholar 

  21. Tinoco, J. (1982) Dietary Requirements and Functions of Alpha-Linolenic Acid in Aniamls, Prog. Lipid Res. 21, 1–45.

    PubMed  CAS  Google Scholar 

  22. Okuyama, H., Kobayashi, T., and Watanabe, S. (1997) Dietary Fatty Acids—The n−6/n−3 Balance and Chronic Elderly Diseases. Excess Linoleic Acid and Relative n−3 Deficiency Syndrome Seen in Japan, Prog. Lipid Res. 35, 409–457.

    Google Scholar 

  23. Hamosh, M., and Salem, N., Jr. (1998) Long-Chain Polyunsaturated Fatty Acids, Biol. Neonate 74, 106–120.

    PubMed  CAS  Google Scholar 

  24. Neuringer, M. (2000) Infant Vision and Retinal Function in Studies of Dietary Long-Chain Polyunsaturated Fatty Acids: Methods, Results and Implications, Am. J. Clin. Nutr. 71, 256S-267S.

    PubMed  CAS  Google Scholar 

  25. Farquharson, J., Cockburn, F., Patrick, W.A., Jamieson, E.C., and Logan, R.W. (1992) Infant Cerebral Cortex Phospholipid Fatty-Acid Composition and Diet, Lancet 340, 810–813.

    PubMed  CAS  Google Scholar 

  26. Makrides, M., Neumann, M.A., Byard, R.W., Simmer, K., and Gibson, R.A. (1994) Fatty Acid Composition of Brain Retina, and Erythrocytes in Breast- and Formula-Fed Infants, Am. J. Clin. Nutr. 60, 189–194.

    PubMed  CAS  Google Scholar 

  27. Jamieson, E.C., Farquharson, J., Logan, R.W., Howatson, A.G., Patrick, W.J.A., Weaver, L.T., and Cockburn, F. (1999) Infant Cerebellar Gray and White Matter Fatty Acids in Relation to Age and Diet, Lipids 34, 1065–1071.

    PubMed  CAS  Google Scholar 

  28. Wheeler, T.G., and Benolken, R.M. (1975) Visual Membranes: Specificity of Fatty Acid Precursors for the Electrical Response to Illumination, Science 188, 1312–1314.

    PubMed  CAS  Google Scholar 

  29. Lamptey, M.S., and Walker, B.L. (1976) A Possible Essential Role for Dietary Linolenic Acid in the Development of the Young Rat, J. Nutr. 106, 86–93.

    PubMed  CAS  Google Scholar 

  30. Mills, D.E., Ward, R.P., and Young, C. (1988) Effect of Prenatal and Early Postnatal Fatty Acid Supplementation on Behavior, Nutr. Res. 8, 273–286.

    CAS  Google Scholar 

  31. Yamamoto, N., Okaniwa, Y., Mori, S., Nomura, M., and Okuyama, H. (1991) Effects of a High-Linoleate and a High-Alpha-Linolenate Diet on the Learning Ability of Aged Rats, J. Gerontol. 46, B17-B22.

    PubMed  CAS  Google Scholar 

  32. Bourre, J.M., Francois, M., Youyou, A., Dumont, O., Piciotti, M., Pascal, G., and Durand, G. (1989) The Effects of Dietary Alpha-Linolenic Acid on the Composition of Nerve Membranes, Enzymatic Activity, Amplitude of Electrophysiological Parameters, Resistance to Poisons and Performance of Learning Tasks in Rats, J. Nutr. 119, 1880–1892.

    PubMed  CAS  Google Scholar 

  33. Enslen, M., Milon, H., and Molnoe, A. (1991) Effect of Low Intake of n−3 Fatty Acids During Development on Brain Phospholipid Fatty Acid Composition and Exploratory Behavior in Rats, Lipids 26, 203–208.

    PubMed  CAS  Google Scholar 

  34. Nakashima, Y., Yuasa, S., Hukamizu, Y., Okuyama, H., Ohhara, T., Kameyama, T., and Nabeshima, T. (1993) Effect of a High Linoleate and a High Alpha-Linolenate Diet on General Behavior and Drug Sensitivity in Mice, J. Lipid Res. 34, 239–247.

    PubMed  CAS  Google Scholar 

  35. Wainwright, P.E., Huang, Y.S., Bulman-Fleming, B., Mills, D.E., and McCutcheon, D. (1991) The Role of n−3 Essential Fatty Acids in Brain and Behavioral Development: A Cross-Fostering Study in the Mouse, Lipids 26, 37–45.

    PubMed  CAS  Google Scholar 

  36. Weisinger, H.S., Vingrys, A.J., and Sinclair, A.J. (1996) The Effect of Dietary n−3 Deficiency on the Electroretinogram of the Guinea Pig, Ann. Nutr. Metab., 40, 91–98.

    PubMed  CAS  Google Scholar 

  37. Weisinger, H.S., Vingrys, A.J., and Sinclair, A.J. (1996) The Effect of Docosahexaenoic Acid on the Electroretinogram of the Guinea Pig, Lipids 31, 65–70.

    PubMed  CAS  Google Scholar 

  38. Sheaff-Griener, R., Moriguchi, T., Hutton, A., Slotnik, B.M., and Salem, N., Jr. (1999) Rats with Low Levels of Brain Docosahexaenoic Acid Show Impaired Performance in Olfactory-Based and Spatial Learning Tasks, Lipids 34, S239-S243.

    Google Scholar 

  39. Moriguchi, T., Sheaff-Griener, R., and Salem, N., Jr. (2000) Behavioral Deficits Associated with Dietary Induction of Decreased Brain Docosahexaenoic Acid Concentration, J. Neurochem. 75, 2563–2573.

    PubMed  CAS  Google Scholar 

  40. Pawlosky, R.J., Denkins, Y., Ward, G., and Salem, N., Jr., (1997) Retinal and Brain Accretion of Long-Chain Polyunsaturated Fatty Acids in Developing Felines: The Effects of Corn Oil-Based Maternal Diets, Am. J. Clin. Nutr. 65, 465–472.

    PubMed  CAS  Google Scholar 

  41. Connor, W.E., and Neuringer, M. (1988) The Effect of n−3 Fatty Acid Deficiency and Repletion upon the Fatty Acid Composition and Function of the Brain and Retina, in Biological Membranes: Abbreviations in Membrane and Function Structure (Karnovsky, M.L., Leaf, A., and Bolls, L.C., eds.), pp. 275–276, Alan R. Liss, New York.

    Google Scholar 

  42. Neuringer, M., Connor, W.E., Lin, D.S., Barstad, L., and Luck, S. (1986) Biochemical and Functional Effects of Prenatal and Postnatal ω-3 Fatty Acid Deficiency on Retina and Brain in Rhesus Monkeys, Proc. Natl. Acad. Sci. USA 83, 4021–4025.

    PubMed  CAS  Google Scholar 

  43. Greiner, R., Catalan, J.N., Moriguchi, T., Slotnick, B., and Salem, N., Jr. (2000) DHA-Deficient Rats Exhibit Learning Deficits in Olfactory-Based Behavioral Tasks, paper presented at PUFA in Maternal and Child Health, a conference sponsored by the American Oil Chemists' Society, Kansas City, MO, p. 24 (abstr.).

  44. Bourre, J.M., Pascal, G., Durand, G., Masson, M., Dumont, O., and Piciotti, M. (1984) Alterations in the Fatty Acid Composition of Rat Brain Cells (neurons, astrocytes, and oligodendrocytes) and of Subcellular Fractions (myelin and synaptosomes) Induced by a Diet Devoid of n−3 Fatty Acids, J. Neurochem. 43, 342–348.

    PubMed  CAS  Google Scholar 

  45. Youyou, A., Durand, G., Pascal, G., Piciotti, M., Dumont, O., and Bourre, J.M. (1986) Recovery of Altered Fatty Acid Composition Induced by a Diet Devoid of n−3 Fatty Acids in Myelin, Synaptosomes, Mitochondria, and Microsomes of Developing Rat Brain, J. Neurochem. 46, 224–228.

    PubMed  CAS  Google Scholar 

  46. Moriguchi, T., Loewke, J., Garrison, M., Nicklay-Catalan, J., and Salem, N., Jr. (2001) Reversal of Docosahexaenoic Acid Deficiency in the Rat Brain, Retina, Liver and Serum, J. Lipid Res. 42, 1–9.

    Google Scholar 

  47. Contreras, M.A., Sheaf-Greiner, R., Chang, M.C.J., Myers, C.S., Salem, N., Jr., and Rapoport, S.I. (2000) Nutritional Deprivation of α-Linolenic Acid Decreases but Does Not Abolish Turnover and Availability of Unacylated Docosahexaenoic Acid and Docosahexaenoyl-CoA in Rat Brain, J. Neurochem. 75, 2392–2400.

    PubMed  CAS  Google Scholar 

  48. Ahmad, A., Moriguchi, T., and Salem, N., Jr. Pediatr. Neurol., in press.

  49. Connor, W.E., and Neuringer, M. (1988) The Effect of n−3 Fatty Acid Deficiency and Repletion upon the Fatty Acid Composition and Function of Brain and Retina, in Biological Membranes: Aberrations in Membrane Structure and Function (Karnovsky, M.L., Leaf, A., and Bolls, L.C., eds.), pp. 275–294, Alan R. Liss, New York.

    Google Scholar 

  50. Moriguchi, T., Loewke, J., and Salem, N., Jr. (2000) Spatial Task Performance Depends upon the Level of Brain Docosahexaenoic Acid, paper presented at PUFA in Maternal and Child Health, a conference sponsored by the American Oil Chemists' Society, Kansas City, MO, p. 29 (abstr.).

  51. Weisinger, H.S., Armitage, J.A., Sinclair, A.J., Vingrys, A.J., Burns, P.L., and Weisinger, R.S. (2001) Perinatal Omega-3 Fatty Acid Deficiency Affects Blood Pressure Later in Life, Nat. Med. 7, 258–259.

    PubMed  CAS  Google Scholar 

  52. Uauy, R.D., Birch, D.G., Birch, E.E., Tyson, J.E., and Hoffman, D.R. (1990) Effect of Dietary Omega-3 Fatty Acids on Retinal Function of Very-Low-Birth-Weight Neonates, Pediatr. Res. 28, 485–492.

    PubMed  CAS  Google Scholar 

  53. Birch, E.E., Birch, D.G., Hoffman, D.R., and Uauy, R. (1992) Dietary Essential Fatty Acid Supply and Visual Acuity Development, Invest. Ophthalmol. Vis. Sci. 32, 3242–3253.

    Google Scholar 

  54. Carlson, S.E., Werkman, S.H., Rhodes, P.G., and Tolley, E.A. (1993) Visual-Acuity Development in Healthy Preterm Infants: Effect of Marine-Oil Supplementation, Am. J. Clin. Nutr. 58, 35–42.

    PubMed  CAS  Google Scholar 

  55. Carlson, S.E., Werkman, S.H., and Tolley, E.A. (1996) Effect of Long-Chain n−3 Fatty Acid Supplementation on Visual Acuity and Growth of Preterm Infants With and Without Bronchopulmonary Dysplasia, Am. J. Clin. Nutr. 63, 687–697.

    PubMed  CAS  Google Scholar 

  56. Werkman, S.H., and Carlson, S.E. (1996) A Randomized Trial of Visual Attention of Preterm Infants Fed Docosahexaenoic Acid Until Nine Months, Lipids 31, 91–97.

    PubMed  CAS  Google Scholar 

  57. Carlson, S.E., and Werkman, S.H. (1996) A Randomized Trial of Visual Attention of Preterm Infants Fed Docosahexaenoic Acid Until Two Months, Lipids 31, 85–90.

    PubMed  CAS  Google Scholar 

  58. Faldella, G., Govoni, M., Alessandroni, R., Marchiani, E., Salvioli, G.P., Biagi, P.L., and Spanò, C. (1996) Visual Evoked Potentials and Dietary Long Chain Polyunsaturated Fatty Acids in Preterm Infants, Arch. Dis. Child. Fetal Neonatal 75, F108-F112.

    CAS  Google Scholar 

  59. Bougle, D., Denise, P., Vimard, F., Nouvelot, A., Penneillo, M.J., and Guillois, B. (1999) Early Neurological and Neuropsychological Development of the Preterm Infant and Polyunsaturated Fatty Acids Supply, Clin. Neurophysiol. 110, 1363–1370.

    PubMed  CAS  Google Scholar 

  60. San Giovanni, J.P., Parra-Cabrera, S., Colditz, G.A., Berkey, C.S., and Dwyer, J.T. (2000) Meta-Analysis of Dietary Essential Fatty Acids and Long Chain Polyunsaturated Fatty Acids as They Relate to Visual Resolution Acuity in Healthy Preterm Infants, Pediatrics 6, 1292–1298.

    Google Scholar 

  61. Makrides, M., Neumann, M., Simmer, K., Pater, J., and Gibson, R.A. (1995) Are Long-Chain Polyunsaturated Fatty Acids Essential Nutrients in Infancy?, Lancet 345, 1463–1468.

    PubMed  CAS  Google Scholar 

  62. Agostoni, C., Trojan, S., Bellù, R., Riva, E., and Giovannini, M. (1995) Neurodevelopmental Quotient of Healthy Term Infants at 4 Months and Feeding Practice: The Role of Long-Chain Polyunsaturated Fatty Acids, Pediatr. Res. 38, 262–266.

    PubMed  CAS  Google Scholar 

  63. Carlson, S.E., Ford, A.J., Werkman, S.H., Peeples, J.M., and Koo, W.W.K. (1996) Visual Acuity and Fatty Acid Status of Term Infants Fed Human Milk and Formulas With and Without Docosahexaenoate and Arachidonate from Egg Yolk Lecithin, Pediatr. Res. 39, 882–888.

    PubMed  CAS  Google Scholar 

  64. Agostoni, C., Trojan, S., Bellù, R., Riva, E., Bruzzese, M.G., and Giovannini, M. (1997) Developmental Quotient at 24 Months and Fatty Acid Composition of Diet in Early Infancy: A Follow-Up Study, Arch. Dis. Child. 76, 421–424.

    PubMed  CAS  Google Scholar 

  65. Auestad, N., Montalto, M.B., Hall, R.T., Fitzgerald, K.M., Wheeler, R.E., Connor, W.E., Neuringer, M., Connor, S.L., Taylor, J.A., and Hartmann, E.E. (1997) Visual Acuity, Erythrocyte Fatty Acid Composition, and Growth in Term Infants Fed Formulas with Long Chain Polyunsaturated Fatty Acids for One Year, Pediatr. Res. 41, 1–10.

    PubMed  CAS  Google Scholar 

  66. Hornby Jorgensen, M., Holmer, G., Lund, P., Hernell, O. and Michaelsen, K.F. (1998) Effect of Formula Supplemented with Docosahexaenoic Acid and Gamma-Linolenic Acid on Fatty Acid Status and Visual Acuity in Term Infants, J. Pediatr. Gastroenterol. Nutr. 26, 412–421.

    Google Scholar 

  67. Birch, E.E., Hoffman, D.R., Uauy, R., Birch, D.G., and Prestidge, C. (1998) Visual Acuity and the Essentiality of Docosahexaenoic Acid and Arachidonic Acid in the Diet of Term Infants, Pediatr. Res. 44, 201–209.

    PubMed  CAS  Google Scholar 

  68. Willatts, P., Forsyth, J.S., DiModugno, M.K., Varma, S., and Colvin, M. (1998) Effect of Long-Chain Polyunsaturated Fatty Acids in Infant Formula on Problem Solving at 10 Months of Age, Lancet 352, 688–691.

    PubMed  CAS  Google Scholar 

  69. Scott, D.T., Janowsky, J.S., Carroll, R.E., Taylor, J.A., Auestad, N., and Montalto, M.B. (1998) Formula Supplementation with Long-Chain Polyunsaturated Fatty Acids: Are There Developmental Benefits?, Pediatrics 102, E59.

    PubMed  CAS  Google Scholar 

  70. Lucas, A., Stafford, M., Morley, R., Abbott, R., Stephenson, T., MacFadyen, U., Elias-Jones, A., and Clements, H. (1999) Efficacy and Safety of Long-Chain Polyunsaturated Fatty Acid Supplementation of Infant-Formula Milk: A Randomised Trial, Lancet 354, 1948–1954.

    PubMed  CAS  Google Scholar 

  71. Birch, E.E., Garfield, S., Hoffman, D.R., Uauy, R., and Birch, D.G. (2000) A Randomized Controlled Trial of Early Dietary Supply of Long-Chain Polyunsaturated Fatty Acids and Mental Development in Term Infants, Dev. Med. Child. Neurol. 42, 174–181.

    PubMed  CAS  Google Scholar 

  72. Makrides, M., Neumann, M.A., Simmer, K., and Gibson, R.A. (2000) A Critical Appraisal of the Role of Dietary Long-Chain Polyunsaturated Fatty Acids on Neural Indices of Term Infants: A Randomized, Controlled Trial, Pediatrics 105, 32–38.

    PubMed  CAS  Google Scholar 

  73. O'Connor, D., Hall, R., Adamkin, D., Auestad, N., Castillo, M., Connor, W.E., Connor, S.L., Fitzgerald, K., Groh-Wargo, S., Hartmann, E.E., et al. (2001) Growth and Development in Preterm Infants Fed Long-Chain Polyunsaturated Fatty Acids: A Prospective Randomized Control Trial, Pediatrics 108, 359–371.

    PubMed  Google Scholar 

  74. San Giovanni, J.P., Berkey, C.S., Dwyer, J.T., and Colditz, G.A. (2000) Dietary Essential Fatty Acids, Long-Chain Polyunsaturated Fatty Acids, and Visual Resolution Acuity in Healthy Fullterm Infants: A Systematic Review, Early Hum. Dev., 57, 165–188.

    CAS  Google Scholar 

  75. Jensen, R.G. (1999) Lipids in Human Milk, Lipids 34, 1243–1272.

    PubMed  CAS  Google Scholar 

  76. Eaton, S.B., Eaton, S.B., Sinclair, A.J., Cordain, L., and Mann, N.J. (1998) Dietary Intake of Long-Chain Polyunsaturated Fatty Acids During the Paleolithic, World Rev. Nutr. Diet. 83, 12–23.

    PubMed  CAS  Google Scholar 

  77. Vanderhoof, J., Gross, S., Hegyi, T., Clandinin, T., Porcelli P., DeCristofaro, J., Rhodes, T., Tsang, R., Shattuck, K., Cowett, R., et al. (1999) Evaluation of Long-Chain Polyunsaturated Fatty Acid Supplemented Formula on Growth, Tolerance and Plasma Lipids in Preterm Infants up to 48 Weeks Postconceptional Age, J. Pediatr. 29, 318–326.

    CAS  Google Scholar 

  78. Galli, C., Trzeciak, H.I., and Paoletti, R. (1971) Effects of Dietary Fatty Acids on the Fatty Acid Composition of Brain Ethanolamine Phosphoglyceride: Reciprocal Replacement of n−6 and n−3 Polyunsaturated Fatty Acids, Biochim. Biophys. Acta 248, 449.

    CAS  Google Scholar 

  79. Mai, J., Goswami, S.K., Bruckner, G., and Kinsella, J.E. (1981) A New Prostaglandin, C22-PGF4α Synthesized from Docosahexaenoic Acid (C22∶6n3) by Trout Gill, Prostaglandins 21, 691–698.

    PubMed  CAS  Google Scholar 

  80. Kim, H.Y., Sawazaki, S., and Salem, N., Jr. (1991) Lipoxygenation in Rat Brain?, Biochem. Biophys. Res. Commun. 174, 729–734.

    PubMed  CAS  Google Scholar 

  81. Kim, H.Y., Karanian, J.W., Shingu, T., and Salem, N., Jr. (1990) Stereochemical Analysis of Hydroxylated Docosahexaenoates Produced by Human Platelets and Rat Brain Homogenate, Prostaglandins 40, 473–490.

    PubMed  CAS  Google Scholar 

  82. Sawazaki, S., Salem, N., Jr., and Kim, H.Y. (1994) Lipoxygenation of Docosahexaenoic Acid by the Rat Pineal Body, J. Neurochem. 62, 2437–2447.

    PubMed  CAS  Google Scholar 

  83. Karanian, J.W., Kim, H.Y., and Salem, N., Jr. (1996) The Structure-Activity Relationship of Lipoxygenase Products of Long-Chain Polyunsaturated Fatty Acids: Effects on Human Platelet Aggregation, Lipids 31, S305-S308.

    PubMed  CAS  Google Scholar 

  84. German, B., Bruckner, G., and Kinsella, J. (1983) Evidence Against a PGF4α Prostaglandin Structure in Trout Tissue—A Correction, Prostaglandins 26, 207–210.

    PubMed  CAS  Google Scholar 

  85. Aveldano, M.I., and Sprecher, H. (1983) Synthesis of Hydroxy Fatty Acids from 4,7,10,13,16,19-[1-14C]Docosahexaenoic Acid by Human Platelets, J. Biol. Chem. 258,9339–9343.

    PubMed  CAS  Google Scholar 

  86. Bazan, N.G., Birkle, D.L., and Reddy, T.S. (1984) Docosahexaenoic Acid (22∶6, n−3) Is Metabolized to Lipoxygenase Reaction Products in the Retina, Biochem. Biophys. Res. Commun. 125, 741–747.

    PubMed  CAS  Google Scholar 

  87. Moore, S.A., Giordano, M.J., Kim, H.Y., Salem, N., Jr., and Spector, A.A. (1991) Brain Microvessel 12-Hydroxyeicosatetraenoic Acid Is the (S) Enantiomer and Is Lipoxygenase Derived, J. Neurochem. 57, 922–929.

    PubMed  CAS  Google Scholar 

  88. Zhang, H., Akbar, M., and Kim, H.Y. (1999) Melatonin: An Endogenous Negative Modulator of 12-Lipoxygenase in the Rat Pineal Gland, Biochem. J. 344, 487–493.

    PubMed  CAS  Google Scholar 

  89. Li, B., Zhang, H., Akbar, M., and Kim, H.Y. (2000) Negative Regulation of Cytosolic Phospholipase A2 by Melatonin in the Rat Pineal Gland, Biochem. J. 351, 709–716.

    PubMed  CAS  Google Scholar 

  90. Zhang, H., Hamilton, J.H., Salem, N., Jr., and Kim, H.Y. (1998) n−3 Fatty Acid Deficiency in the Rat Pineal Gland: Effects on Phospholipid Molecular Species Composition and Endogenous 12-HETE and Melatonin Levels, J. Lipid Res. 39, 1397–1403.

    PubMed  CAS  Google Scholar 

  91. Poling, J.S., Karanian, J.W., Salem, N., Jr., and Vicini, S. (1995) Time- and Voltage-Dependent Block of Delayed Rectifier Potasium Channels by Docosahexaenoic Acid, Mol. Pharmacol. 47, 381–390.

    PubMed  CAS  Google Scholar 

  92. Poling, J.S., Vicini, S., Rogawski, M.A., and Salem, N., Jr. (1996) Docosahexaenoic Acid Block of Neuronal Voltage-Gated K+ Channels: Subunit Selective Antagonism by Zinc, Neuropharmacology 35, 969–982.

    PubMed  CAS  Google Scholar 

  93. Poling, J.S., Rogawski, M.A., Salem, N., Jr., and Vicini, S. (1996) Anandamide, an Endogenous Cannabinoid, Inhibits Shaker-Related Voltage-Gated K+ Channels, Neuropharmacology 35, 983–991.

    PubMed  CAS  Google Scholar 

  94. Xiao, Y.F., Kang, J.X., Morgan, J.P., and Leaf, A. (1995) Blocking Effects of Polyunsaturated Fatty Acids on Na+ Channels of Neonatal Rat Ventricular Myocytes, Proc. Natl. Acad. Sci. USA 92, 11000–11004.

    PubMed  CAS  Google Scholar 

  95. Kang, J.X., and Leaf, A. (1996) The Cardiac Antiarrhymthic Effects of Polyunsaturated Fatty Acids, Lipids 31, S41-S44.

    PubMed  CAS  Google Scholar 

  96. Vreugdenhil, M., Bruehl, C., Voskuyl, R.A., Kang, J.X., Leaf, A., and Wadman, W.J. (1996) Polyunsaturated Fatty Acids Modulate Sodium and Calcium Currents in CA1 Neurons, Proc. Natl. Acad. Sci. USA 93, 12559–12563.

    PubMed  CAS  Google Scholar 

  97. Hallaq, H., Smith, T.W., and Leaf, A. (1992) Modulation of Dihydropyridine Channels in Heart Cells by Fish Oil Fatty Acids, Proc. Natl. Acad. Sci. USA 89, 1760–1764.

    PubMed  CAS  Google Scholar 

  98. Young, C., Gean, P.-W., Chiou, L.-C., and Shen, Y.-Z. (2000) Docosahexaenoic Acid Inhibits Synaptic Transmission and Epileptiform Activity in the Rat Hippocampus, Synapse 37, 90–94.

    PubMed  CAS  Google Scholar 

  99. Young, C., Gean, P.-W., Wu, S-P., Lin, C.-H., and Shen, Y.-Z. (1998) Cancellation of Low Frequency Stimulation-Induced Long-Term Depression by Docosahexaenoic Acid in the Rat Hippocampus, Neurosci. Lett. 247, 198–200.

    PubMed  CAS  Google Scholar 

  100. Itokazu, N., Ikegaya, Y., Nishikawa, M., and Matsuki, N. (2000) Bidirectional Actions of Docosahexaenoic Acid on Hippocampal Neurotransmissions in vivo, Brain Res. 862, 211–216.

    PubMed  CAS  Google Scholar 

  101. Nishikawa, M., Kimura, S., and Akaike, N. (1994) Facilatory Effect of Docosahexaenoic Acid on N-Methyl-d-Aspartate Responses in Pyramidal Neurons of Rat Cerebral Cortex, J. Physiol. 475, 83–93.

    PubMed  CAS  Google Scholar 

  102. Salem, N., Jr., and Niebylski, C.D. (1992) An Evaluation of Alternative Hypotheses Involved in the Biological Function of Docosahexaenoic Acid in the Nervous System, in Essential Fatty Acids and Eicosanoids (Sinclair, A., and Gibson, R., eds.), pp. 84–86, American Oil Chemists' Society, Champaign.

    Google Scholar 

  103. Salem, N. Jr., and Niebylki, C.D. (1995) The Nervous System Has an Absolute Molecular Species Requirement for Proper Function, Mol. Membr. Biol. 12, 131–134.

    PubMed  CAS  Google Scholar 

  104. Mitchell, D.C., Gawrisch, K., Litman, B.J., and Salem, N., Jr. (1998) Why Is Docosahexaenoic Acid Essential for Nervous System Function? Biochem. Soc. Trans. 26, 365–370.

    PubMed  CAS  Google Scholar 

  105. Litman, B.J., and Mitchell, D.C. (1996) Rhodopsin Structure and Function, in Biomembranes (Lee, A.G. ed.), Vol. 2A, pp. 1–32, Jai Press, Greenwich.

    Google Scholar 

  106. Litman, B.J., Niu, S.L., Polozova, A., and Mitchell, D.C. (2001) The Role of Docosahexaenoic Acid Containing Phospholipids in Modulating G Protein-Coupled Signaling Pathways: Visual Transduction, J. Mol. Neurosci. 16, 237–242.

    PubMed  CAS  Google Scholar 

  107. Litman, B.J., and Mitchell, D.C. (1996) A Role for Phospholipid Polyunsaturation in Modulating Membrane Protein Function, Lipids 31, S193-S197.

    PubMed  CAS  Google Scholar 

  108. Polozova, A., and Litman, B.J. (2000) Cholesterol Dependent Recruitment of Di22∶6-PC by a G Protein-Coupled Receptor into Lateral Domains, Biophys. J. 79, 2632–2643.

    PubMed  CAS  Google Scholar 

  109. Kim, H.Y., Edsall, L., and Ma, Y.C. (1996) Specificity of Polyunsaturated Fatty Acid Release from Rat Brain Synaptosomes, Lipids 31, S229-S233.

    PubMed  CAS  Google Scholar 

  110. Kim, H.Y., and Edsall, L. (1999) The Role of Docosahexaenoic Acid (DHA) in Neuronal Signaling, Lipids 34, S249-S250.

    PubMed  CAS  Google Scholar 

  111. Kim, H.Y., Edsall, L., Garcia, M., and Zhang, H. (1999) The Release of Polyunsaturated Fatty Acids and Their Lipoxygenation in the Brain, Adv. Exp. Med. Biol. 447, 75–85.

    PubMed  CAS  Google Scholar 

  112. Garcia, M.C., and Kim, H.Y. (1997) Mobilization of Arachidonate and Docosahexaenoate by Stimulation of the 5-HT2a Receptor in Rat C6 Glioma Cells, Brain Res. 768, 43–48.

    PubMed  CAS  Google Scholar 

  113. Moore, S.A. (1993) Cerebral Endothelium and Astrocytes Cooperate in Supplying Docosahexaenoic Acid to Neurons, Adv. Exp. Med. Biol. 331, 229–233.

    PubMed  CAS  Google Scholar 

  114. Hitzemann, R. (1981) Developmental Changes in the Fatty Acids of Synaptic Membrane Phospholipids: Effect of Protein Malnutrition, Neurochem. Res. 6, 935–946.

    PubMed  CAS  Google Scholar 

  115. Garcia, M.C., Ward, G., Ma, Y.C., Salem, N., Jr., and Kim, H.Y. (1998) Effect of Docosahexaenoic Acid on the Synthesis of Phosphatidylserine in Rat Brain Microsomes and C6 Glioma Cells, J. Neurochem. 70, 24–30.

    PubMed  CAS  Google Scholar 

  116. Kim, H.Y., and Hamilton, J. (2000) Accumulation of Docosahexaenoic Acid in Phosphatidylserine Is Selectively Inhibited by Chronic Ethanol Exposure in C-6 Glioma Cells, Lipids 35, 187–195.

    PubMed  CAS  Google Scholar 

  117. Hamilton, J., Greiner, R., Salem, N., Jr., and Kim, H.Y. (2000) n−3 Fatty Acid Deficiency Decreases Phosphatidylserine Accumulation Selectively in Neuronal Tissues, Lipids 35, 863–869.

    PubMed  CAS  Google Scholar 

  118. Green, P., and Yavin, E. (1995) Modulation of Fetal Rat Brain and Liver Phospholipid Content by Intraamniotic Ethyl Docosahexaenoate Administration, J. Neurochem. 65, 2555–2560.

    PubMed  CAS  Google Scholar 

  119. Mosior, M., and Newton, A.C. (1998) Mechanism of the Apparent Cooperativity in the Interaction of Protein Kinase C with Phosphatidylserine, Biochemistry 37, 17271–17279.

    PubMed  CAS  Google Scholar 

  120. Ghosh, S., Strum, J.C., Sciorra, V.A., Daniel, L., and Bell, R.M. (1996) Raf-1 Kinase Possesses Distinct Binding Domains for Phosphatidylserine and Phosphatidic Acid. Phosphatidic Acid Regulates the Translocation of Raf-1 in 12-O-Tetradecanoylphorbol-13-Acetate-Stimulated Madin-Darby Canine Kidney Cells, J. Biol. Chem. 271, 8472–8480.

    PubMed  CAS  Google Scholar 

  121. Leevers, S.J., Paterson, H.F., and Marshall, C.J. (1994) Requirement for Ras in Raf Activation Is Overcome by Targeting Raf to the Plasma Membrane, Nature 369, 411–414.

    PubMed  CAS  Google Scholar 

  122. Calviello, G., Palozza, P., Piccioni, E., Maggiano, N., Frattucci, A., Franceschelli, P., and Bartoli, G.M. (1998) Dietary Supplementation with Eicosapentaenoic and Docosahexaenoic Acid Inhibits Growth of Morris Hepatocarcinoma 3924A in Rats: Effects on Proliferation and Apoptosis, Int. J. Cancer 75, 699–705.

    PubMed  CAS  Google Scholar 

  123. Diep, Q.N., Touyz, R.M., and Schiffrin, E.L. (2000) Docosahexaenoic Acid, a Peroxisomal Proliferator Activated Receptor-Alpha Ligand, Induces Apoptosis in Vascular Smooth Muscle Cells by Stimulation of p38 Mitogen-Activated Protein Kinase. Hypertension 36, 851–855.

    PubMed  CAS  Google Scholar 

  124. Albino, A.P., Juan, G., Traganos, F., Reinhart, L., Connolly, J., Rose, D.P., and Daraynkiewicz, Z. (2000) Cell Cycle Arrest and Apoptosis of Melanoma Cells by Docosahexaenoic Acid; Association with Decreased pRb Phosphorylation, Cancer Res. 60, 4139–4145.

    PubMed  CAS  Google Scholar 

  125. Minami, M., and Noguchi, M. (1996) Effects of Low-Dose Eicosapentaenoic Acid, Docosahexaenoic Acid and Dietary Fat on the Incidence, Growth and Cell Kinetics of Mammary Carcinomas in Rats, Oncology 53, 398–405.

    PubMed  CAS  Google Scholar 

  126. Tsai, W.S., Nagawa, H., Kaizaki, S., Tsuruo, T., and Muto, T., (1998) Inhibitory Effects of n−3 Polyunsaturated Fatty Acids on Sigmoid Colon Cancer Transformants, J. Gastroenterol. 33, 206–212.

    PubMed  CAS  Google Scholar 

  127. Chen, Z.Y., and Istfan, N.W. (2000) Docosahexaenoic Acid Is a Potent Inducer of Apoptosis in HT-29 Colon Cancer Cells, Prostaglandins Leukot. Essent. Fatty Acids 63, 301–308.

    PubMed  CAS  Google Scholar 

  128. Rotstein, N., Aveldano, M., Barrantes, F., Roccamo, A., and Politi, L. (1997) Apoptosis of Retinal Photoreceptors During Development in vitro: Protective Effect of Docosahexaenoic Acid, J. Neurochem. 6, 504–513.

    Google Scholar 

  129. Kishida, E., Yano, M., Kasahara, M., and Masuzawa, Y. (1998) Distinctive Inhibitory Activity of Docosahexaenoic Acid Against Sphingosine-Induced Apoptosis, Biochim. Biophys. Acta 1391, 401–408.

    PubMed  CAS  Google Scholar 

  130. Yano, M., Kishida, E., Iwasaki, M., Kojo, S., and Masuzawa, Y. (2000) Docosahexaenoic Acid and Vitamin E Can Reduce Human Monocytic U937 Cell Apoptosis Induced by Tumor Necrosis Factor, J. Nutr. 130, 1095–1101.

    PubMed  CAS  Google Scholar 

  131. Kim, H.Y., Akbar, M., Lau, A., and Edsall, L. (2000) Inhibition of Neuronal Apoptosis by Docosahexaenoic Acid (DHA): Role of Phosphatidylserine in Antiapoptotic Effect, J. Biol. Chem. 275, 35215–35223.

    PubMed  CAS  Google Scholar 

  132. Kim, H.Y., Akbar, M., and Kim, K. (2001) Inhibition of Neuronal Apoptosis by Polyunsaturated Fatty Acids, J. Mol. Neurosci. 16, 223–227.

    PubMed  Google Scholar 

  133. Lin, Q., Ruuska, S.E., Shaw, N.S., Dong, D., and Noy, N. (1999) Ligand Selectivity of the Peroxisome Proliferator-Activated Receptor Alpha, Biochemistry 38, 185–190.

    PubMed  CAS  Google Scholar 

  134. de Urquiza, A.M., Liu, S., Sjoberg, M., Zetterstrom, R.H., Griffiths, W., Sjovall, J., and Perlmann, T. (2000) Docosahexaenoic Acid, a Ligand for the Retinoid X Receptor in Mouse Brain, Science 290, 2140–2144.

    PubMed  Google Scholar 

  135. Holte, L.L., and Gawrisch, K. (1997) Determining Ethanol Distribution in Phospholipid Multilayers with MAS-NOESY Spectra, Biochemistry 36, 4669–4674.

    PubMed  CAS  Google Scholar 

  136. Yau, W.M., and Gawrisch, K. (2000) Lateral Lipid Diffusion Dominates NOESY Cross-Relaxation in Membranes, J. Am. Chem. Soc. 122, 3971–3972.

    CAS  Google Scholar 

  137. Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids, John Wiley & Sons, New York.

    Google Scholar 

  138. Feller, S.E., Huster, D., and Gawrisch, K. (1999) Interpretation of NOESY Cross-Relaxation Rates from Molecular Dynamics Simulation of a Lipid Bilayer, J. Am. Chem. Soc. 121, 8963–8964.

    CAS  Google Scholar 

  139. Huster, D., Arnold, K., and Gawrisch, K. (1998) Influence of Docosahexaenoic Acid and Cholesterol on Lateral Lipid Organization in Phospholipid Mixtures, Biochemistry 37, 17299–17308.

    PubMed  CAS  Google Scholar 

  140. Huster, D., and Gawrisch, K. (1999) NOESY NMR Crosspeaks Between Lipid Headgroups and Hydrocarbon Chains: Spin Diffusion or Molecular Disorder? J. Am. Chem. Soc. 121, 1992–1993.

    CAS  Google Scholar 

  141. Huster, D., Arnold, K., and Gawrisch, K. (1999) Investigation of Lipid Organization in Biological Membranes by Two-Dimensional Nuclear Overhauser Enhancement Spectroscopy, J. Phys. Chem. B 103, 243–251.

    CAS  Google Scholar 

  142. Koenig, B.W., Strey, H.H., and Gawrisch, K. (1997) Membrane Lateral Compressibility Determined by NMR and X-Ray Diffraction: Effect of Acyl Chain Polyunsaturation, Biophys. J. 73, 1954–1966.

    PubMed  CAS  Google Scholar 

  143. Gross, J.D., Warschawski, D.E., and Griffin, R.G. (1997) Dipolar Recoupling in MAS NMR: A Probe for Segmental Order in Lipid Bilayers, J. Am. Chem. Soc. 119, 796–802.

    CAS  Google Scholar 

  144. Rabinovich, A.L., and Ripatti, P.O. (1991) On the Conformational, Physical Properties and Functions of Polyunsaturated Acyl Chains, Biochim. Biophys. Acta 1085, 53–62.

    PubMed  CAS  Google Scholar 

  145. Albrand, M., Pageaux, J.F., Lagarde, M., and Dolmazon, R. (1994) Conformational-Analysis of Isolated Docosahexaenoic Acid (22/6 n−3) and Its 14-(S) and 11-(S) Hydroxy Derivatives by Force-Field Calculations, Chem. Phys. Lipids 72, 7–17.

    CAS  Google Scholar 

  146. Davis, J.H. (1983) The Description of Membrane Lipid Conformation, Order and Dynamics by 2H-NMR, Biochim. Biophys. Acta 737, 117–171.

    PubMed  CAS  Google Scholar 

  147. Holte, L.L., Separovic, F., and Gawrisch, K. (1996) Nuclear Magnetic Resonance Investigation of Hydrocarbon Chain Packing in Bilayers of Polyunsaturated Phospholipids, Lipids 31, S199-S203.

    PubMed  CAS  Google Scholar 

  148. Applegate, K.R., and Glomset, J.A. (1991) Effect of Acyl Chain Unsaturation on the Conformation of Model Diacylglycerols: A Computer Modeling Study, J. Lipid Res. 32, 1635–1644.

    PubMed  CAS  Google Scholar 

  149. Holte, L.L., Peter, S.A., Sinwell, T.M., and Gawrisch, K. (1995) 2H Nuclear Magnetic Resonance Order Parameter Profiles Suggest a Change of Molecular Shape for Phosphatidylcholines Containing a Polyunsaturated Acyl Chain, Biophys. J. 68, 2396–2403.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman Salem Jr..

About this article

Cite this article

Salem, N., Litman, B., Kim, HY. et al. Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids 36, 945–959 (2001). https://doi.org/10.1007/s11745-001-0805-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-001-0805-6

Keywords

Navigation