Skip to main content
Log in

Breast-fed infants achieve a higher rate of brain and whole body docosahexaenoate accumulation than formula-fed infants not consuming dietary docosahexaenoate

  • Commentary
  • Published:
Lipids

Abstract

Docosahexaenoate (DHA) has been increasingly recognized as an important fatty acid for neural and visual development during the first 6 mon of life. One important point of controversy that remains is the degree to which adequate levels of DHA can be acquired from endogenous synthesis in infants vs. what should be provided as dietary DHA. We have approached this problem by a retrospective analysis of published body composition data to estimate the actual accumulation of DHA in the human infant brain, liver, adipose tissue, remaining lean tissue, and whole body. Estimating whether infants can synthesize sufficient DHA required comparison to and extrapolation from animal data. Over the first 6 mon of life, DHA accumulates at about 10 mg/d in the whole body of breast-fed infants, with 48% of that amount appearing in the brain. To achieve that rate of accumulation, breast-fed infants need to consume a minimum of 20 mg DHA/d. Virtually all breast milk provides a DHA intake of at least 60 mg/d. Despite a store of about 1,050 mg of DHA in body fat at term birth and an intake of about 390 mg/d α-linolenate (α-LnA), the brain of formula-fed infants not consuming DHA accumulates half the DHA of the brain of breast-fed infants while the rest of the body actually loses DHA over the first 6 mon of life. No experimental data indicate that formula-fed infants not consuming DHA are able to convert the necessary 5.2% of α-LnA intake to DHA to match the DHA accumulation of breast-fed infants. We conclude that dietary DHA should likely be provided during at least the first 6 mon of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DHA:

docosahexaenoate

α-LnA:

α-linolenate

References

  1. Hamosh, M., and Salem, N. (1998) Long Chain Polyunsaturated Fatty Acids, Biol. Neonate 74, 106–120.

    Article  PubMed  CAS  Google Scholar 

  2. Farquharson, J., Cockburn, F., Patrick, W.A., Jamieson, E.C., and Logan, R.W. (1992) Infant Cerebral Cortex Phospholipid Fatty Acid Composition and Diet, Lancet 340, 810–813.

    Article  PubMed  CAS  Google Scholar 

  3. Makrides, M., Neumann, M.A., Byard, R.W., Simmer, K., and Gibson, R.A. (1994) Fatty Acid Composition of Brain, Retina and Erythrocytes in Breast- and Formula-Fed Infants, Am. J. Clin. Nutr. 60, 189–194.

    PubMed  CAS  Google Scholar 

  4. Crawford, M.A. (1993) The Role of Essential Fatty Acids in Neural Development: Implications for Perinatal Nutrition, Am. J. Clin. Nutr. 57 (suppl.), 703S-710S.

    PubMed  CAS  Google Scholar 

  5. Agostoni, C., Trojan, S., Bellu, R., Riva, E., and Giovannini, M. (1995) Neurodevelopmental Quotient of Healthy Term Infants at 4 Months and Feeding Practice: The Role of Long-Chain Polyunsaturated Fatty Acids, Pediatr. Res. 38, 262–266.

    PubMed  CAS  Google Scholar 

  6. Makrides, M., Neumann, M., Simmer, K., Pater, J., and Gibson, R.A. (1995) Are Long Chain Polyunsaturated Fatty Acids Essential Nutrients in Infancy? Lancet 345, 1463–1468.

    Article  PubMed  CAS  Google Scholar 

  7. Birch, E.E., Hoffman, D.R., Uauy, R., Birch, D.G., and Prestidge, C. (1998) Visual Acuity and the Essentiality of Docosahexaenoic Acid and Arachidonic Acid in the Diet of Term Infants, Pediatr. Res. 44, 201–209.

    PubMed  CAS  Google Scholar 

  8. Willatts, P., Forsyth, J.S., DiModugno, M.K., Varma, S., and Colvin, M. (1998) Influence of Long-chain Polyunsaturated Fatty Acids on Infant Cognitive Function, Lipids 33, 973–980.

    PubMed  CAS  Google Scholar 

  9. Lucas, A., Stafford, M., Morley, R., Abbott, R., Stephenson, T., MacFayden, U., Elias-Jones, A., and Clements, H. (1999) Efficacy and Safety of Long Chain Polyunsaturated Fatty Acid Supplementation of Infant Formula Milk. A Randomized Trial, Lancet 354, 1948–1954.

    Article  PubMed  CAS  Google Scholar 

  10. Innis, S.M., Nelson, C.M., Lwanga, D., Rioux, F.M., and Waslen, P. (1996) Feeding Formula Without Arachidonic Acid and Docosahexaenoic Acid Has No Effect on Preferential Looking Acuity or Recognition Memory in Healthy Full-Term Infants at 9 Months of Age, Am. J. Clin. Nutr. 64, 40–46.

    PubMed  CAS  Google Scholar 

  11. Auestad, N., Montalto, M.B., Hall, R.T., Fitzgerald, K.M., Wheeler, R.E., Connor, W.E., Neuringer, M., Connor, S.L., Taylor, J.A., and Hartmann, E.E. (1997) Visual Acuity, Erythrocyte Fatty Acid Composition, and Growth in Term Infants Fed Formulas with Long Chain Polyunsaturated Fatty Acids for One Year, Pediatr. Res. 41, 1–10.

    PubMed  CAS  Google Scholar 

  12. Carlson, S.E., Werkman, S., and Tolley, E. (1996) Effect of Long Chain n−3 Supplementation on Visual Acuity and Growth in Preterm Infants With and Without Bronchopulmonary Dysplasia, Am. J. Clin. Nutr. 63, 687–697.

    PubMed  CAS  Google Scholar 

  13. Morley, R. (1998) Nutrition and Cognitive Development, Nutrition 14, 752–754.

    Article  PubMed  CAS  Google Scholar 

  14. Innis, S.M. (1992) Plasma and Red Blood Cell Fatty Acid Values as Indexes of Essential Fatty Acids in the Developing Organs of Infants Fed with Milk or Formulas, J. Pediatr. 120, S78–86.

    Google Scholar 

  15. Cunnane, S.C., and Anderson, M.J. (1997) The Majority of Dietary Linoleate in Growing Rats Is β-Oxidized or Stored in Visceral Fat, J. Nutr. 127, 146–151.

    PubMed  CAS  Google Scholar 

  16. Martinez, M. (1992) Abnormal Profiles of Polyunsaturated Fatty Acids in the Brain Liver, Kidney and Retina of Patients with Peroxisomal Disorders, Brain Res. 583, 171.

    Article  PubMed  CAS  Google Scholar 

  17. Farquharson, J., Cockburn, F., Patrick, W.A., Jamieson, E.C., and Logan, R.W. (1993) Effect of Diet on Infant Subcutaneous Tissue Triglyceride Fatty Acids, Arch. Dis. Child. 69, 589–593.

    PubMed  CAS  Google Scholar 

  18. Baker, G.L. (1969) Human Adipose Tissue Composition and Age, Am. J. Clin. Nutr. 22, 829–835.

    PubMed  CAS  Google Scholar 

  19. Bannister, J.L. (1996) Linoleate Balance in Obese Humans Undergoing Weight Loss, M.Sc. Thesis, University of Toronto, p. 61.

  20. Morgan, C., Davies, L., Corcoran, F., Stammers, J., Colley, J., Spencer, S.A., and Hull, D. (1998) Fatty Acid Balance in Term Infants Fed Formula Milk Containing Long Chain Fatty Polyunsaturated Fatty Acids, Acta Paediatr. 87, 136–142.

    Article  PubMed  CAS  Google Scholar 

  21. Sheaff-Greiner, R.C., Zhang, Q., Goodman, K.J., Guissani, D.A., Nathanielsz, P.W., and Brenna, J.T. (1996) Linoleate, α-Linolenate and Docosahexaenoate Recycling into Saturated and Monounsaturated Fatty Acids Is a Major Pathway in Pregnant or Lactating Adults and Fetal or Infant Rhesus Monkeys, J. Lipid Res. 137, 243–254.

    Google Scholar 

  22. Menard, C.R., Goodman, K.J., Corso, T., Brenna, J.T., and Cunnane, S.C. (1998) Recycling of Carbon into Lipids Synthesized de novo Is a Quantitatively Important Pathway of [U-13C]-α-Linolenate Utilization in the Developing Rat Brain, J. Neurochem. 71, 2151–2158.

    Article  PubMed  CAS  Google Scholar 

  23. Cunnane, S.C., Belza, K., Anderson, M.J., and Ryan, M.A. (1998) Substantial Carbon Recycling from Linoleate into Products of de novo Lipogenesis Occurs in Rat Liver Even Under Conditions of Extreme Linoleate Deficiency, J. Lipid Res. 39, 2271–2276.

    PubMed  CAS  Google Scholar 

  24. Demmelmair, H., Baumheuer, M., Koletzko, B., Dokoupil, K., and Kratl, G. (1996) Metabolism of U-13C-Labelled Linoleic Acid in Lactating Women, J. Lipid Res. 39, 1389–1396.

    Google Scholar 

  25. Montandon, C.M., Wills, C., Garza, C., Edith, E.O., and Nichols, B.L. (1986) Formula Intake of 1- and 4-month Old Infants, J. Pediatr. Gastroenterol. Nutr. 5, 434–438.

    Article  PubMed  CAS  Google Scholar 

  26. Carnielli, V.P., Wattimena, D.J.L., Luijendijk, I.H.T., Boerlage, A., Degenhart, H.J., and Sauer, P.J.J. (1996) The Very Low Birth Weight Premature Infant Is Capable of Synthesizing Arachidonic and Docosahexaenoic Acid from Linoleic and α-Linolenic Acids, Pediatr. Res. 40, 169–171.

    PubMed  CAS  Google Scholar 

  27. Salem, N., Jr., Wegher, B., Mena, P., and Uauy, R. (1996) Arachidonic and Docosahexaenoic Acids Are Biosynthesized from Their 18 Carbon Precursors in Human Infants, Proc. Natl. Acad. Sci. USA 93, 49–54.

    Article  PubMed  CAS  Google Scholar 

  28. Sauerwald, T.V., Hachey, D.L., and Jensen, C. (1997) Intermediates in Endogenous Synthesis of 22∶6n−3 and 20∶4n−6 by Term and Preterm Infants, Pediatr. Res. 41, 183.

    PubMed  CAS  Google Scholar 

  29. Su, H.-M., Bernardo, L., Mirmiran, M., Ma, X.H., Corso, T.N., Nathanielsz, P.W., and Brenna, J.T. (1999) Bioequivalence of Dietary α-Linolenic and Docosahexaenoic Acids as Sources of Docosahexaenoate Accretion in Brain and Associated Organs of Neonatal Baboons, Pediatr. Res. 45, 1–7.

    Google Scholar 

  30. Brenner, R.R. (1974) The Oxidative Desaturation of Unsaturated Fatty Acids in Animals, Mol. Cell. Biochem. 3, 41–52.

    Article  PubMed  CAS  Google Scholar 

  31. Holman, R.T. (1971) Essential Fatty Acid Deficiency, Progr. Chem. Fats Other Lipids 9, 275–348.

    Article  Google Scholar 

  32. Cunnane, S.C., Yang, J., and Chen, Z.-Y. (1993) Low Zinc Intake Increases Apparent Oxidation of Linoleic and α-Linolenic Acids in the Pregnant Rat, Can. J. Physiol. Pharmacol. 71, 1246–1252.

    Google Scholar 

  33. Clandinin, M.T., Chappell, J.E., Leong, S., Heim, T., Swyer, P.R., and Chance, G.W. (1980) Intrauterine Fatty Acid Accretion Rates in Human Brain: Implications for Fatty Acid Requirements, Early Hum. Develop. 4, 121–129.

    Article  CAS  Google Scholar 

  34. Glezer, I. (1968) Weight, Volume and Linear Dimensions of the Brain, in The Human Brain in Figures and Tables: A Quantitative Handbook (Blinkov, S.M., and Glezer, I. eds.), pp. 123–136, Plenum, New York.

    Google Scholar 

  35. Glezer, I. (1968) Table 120, in The Human Brain in Figures and Tables: A Quantitative Handbook (Blinkov, S.M., and Glezer, I., eds.), p. 336, Plenum, New York.

    Google Scholar 

  36. Clandinin, M.T., Chappell, J.E., Heim, T., Swyer, P.R., and Chance, G.W. (1981) Fatty Acid Accretion in Fetal and Neonatal Liver: Implications for Fatty Acid Requirements, Early Hum. Develop. 5, 7–14.

    Article  CAS  Google Scholar 

  37. Coppeletta, J.M., and Wolbach, S.B. (1933) Body Length and Organ Weights of Infants and Children, Am. J. Pathol. 9, 55–70.

    Google Scholar 

  38. Farquharson, J., Jamieson, E.C., Logan, R.W., Patrick, W.A., Howatson, A.G., and Cockburn, F. (1995) Age- and Dietary-Related Distributions of Hepatic Arachidonic and Docosahexaenoic Acid in Early Infancy, Pediatr. Res. 38, 361–365.

    PubMed  CAS  Google Scholar 

  39. de Bruin, N.C., van Velthoven, K.A.M., de Ridder, M., Stijnen, T., Juttmann, R.E., Degenhart, H.J., and Visser, H.K.A. (1996) Standards for Total Body Fat and Fat-free Mass in Infants, Arch. Dis. Child. 74, 386–399.

    Article  PubMed  Google Scholar 

  40. Widdowson, E.M. (1974) Changes in Body Proportion and Composition During Growth, in Scientific Foundations of Pediatrics (Davies, J.A., and Dobbing, J., eds.), pp. 153–163, William Heinemann Medical Books, London.

    Google Scholar 

  41. Soriguer Escofet, F.J.C., Esteva de Antonio, I., Tinahones, F.J., and Pareja, A. (1996) Adipose Tissue Fatty Acids and Size and Number of Fat Cells from Birth to 9 Years of Age—a Cross-sectional Study in 96 Boys, Metabolism 45, 1395–1401.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C. Cunnane.

About this article

Cite this article

Cunnane, S.C., Francescutti, V., Brenna, J.T. et al. Breast-fed infants achieve a higher rate of brain and whole body docosahexaenoate accumulation than formula-fed infants not consuming dietary docosahexaenoate. Lipids 35, 105–111 (2000). https://doi.org/10.1007/s11745-000-0501-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-000-0501-6

Keywords

Navigation