Skip to main content

Advertisement

Log in

Expression and purification of an anti-Foot-and-mouth disease virus single chain variable antibody fragment in tobacco plants

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Low-cost recombinant antibodies could provide a new strategy to control Foot-and-mouth disease virus (FMDV) outbreaks by passive immunization of susceptible animals. In this study, a single chain variable antibody fragment (scFv) recognizing FMDV coat protein VP1 was expressed in transgenic tobacco plants. To enhance the accumulation of scFv protein, the codon-usage of a murine hybridoma-derived scFv gene was adjusted to mimic highly expressed tobacco genes and fused to an elastin-like polypeptide (ELP) tag. This scFv–ELP fusion accumulated up to 0.8% of total soluble leaf protein in transgenic tobacco. To recover scFv–ELP protein from the leaf extract, a simple and scalable purification strategy was established. Purified scFv–ELP fusion was cleaved to separate the scFv portion. Finally, it was shown that the purified scFv proteins retained their capacity to bind the FMDV in the absence or presence of ELP fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adang MJ, Brody MS, Cardineau G et al (1993) The reconstruction and expression of a Bacillus thuringiensis cryIIIA gene in protoplasts and potato plants. Plant Mol Biol 21:1131–1145

    Article  PubMed  CAS  Google Scholar 

  • Au LC, Yang FY, Yang WJ et al (1998) Gene synthesis by a LCR-based approach: high-level production of leptin-L54 using synthetic gene in Escherichia coli. Biochem Biophys Res Commun 248:200–203

    Article  PubMed  CAS  Google Scholar 

  • Berry JD, Xuan X, Nicolas B et al (2004) Murine monoclonal antibody to Foot-and-mouth disease virus A24. Hybrid Hybridomics 23:198–199

    Article  Google Scholar 

  • Boevink P, Santa-Cruz S, Harris N et al (1996) Virus-mediated delivery of the green fluorescent protein to the endoplasmic reticulum of plant cells. Plant J 10:935–941

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Conley AJ, Joensuu JJ, Jevnikar AM et al. (2009a) Optimization of elastin-like polypeptide fusions for expression and purification of recombinant proteins in plants. Biotechnol Bioengineering (in press). doi:10.1002/bit.22278

  • Conley AJ, Mohib K, Jevnikar AM et al (2009b) Plant recombinant eryhtropoetin attenuates inflammatory kidney cell injury. Plant Biotechnol J 7:183–199

    Article  PubMed  CAS  Google Scholar 

  • Cottam EM, Wadsworth J, Shaw AE et al. (2008) Transmission pathways of Foot-and-mouth disease virus in the United Kingdom in 2007. PLoS Pathog 4. doi:10.1317/1000050

  • Cutt JR, Dixon DC, Carr JP et al (1988) Isolation and nucleotide sequence of cDNA clones for the pathogenesis-related proteins PR1a, PR1b and PR1c of Nicotiana tabacum cv. Xanthi nc induced by TMV infection. Nucleic Acids Res 16:9861

    Article  PubMed  CAS  Google Scholar 

  • Davies G (2002) The Foot and mouth disease (FMD) epidemic in the United Kingdom 2001. Comp Immunol Microbiol Infect Dis 25:331–343

    Article  PubMed  Google Scholar 

  • Doel TR (2003) FMD vaccines. Virus Res 91:81–99

    Article  PubMed  CAS  Google Scholar 

  • Doran PM (2006) Foreign protein degradation and instability in plants and plant tissue cultures. Trends Biotechnol 24:426–432

    Article  PubMed  CAS  Google Scholar 

  • Ferris NP, Powell H, Donaldson AI (1988) Use of pre-coated immunoplates and freeze-dried reagents for the diagnosis of Foot-and-mouth disease and swine vesicular disease by enzyme-linked immunosorbent assay (ELISA). J Virol Methods 19:197–206

    Article  PubMed  CAS  Google Scholar 

  • Floss DM, Sack M, Stadlmann J et al (2008) Biochemical and functional characterization of anti-HIV antibody–ELP fusion proteins from transgenic plants. Plant Biotechnol J 6:379–391

    Article  PubMed  CAS  Google Scholar 

  • Grubman MJ, Baxt B (2004) Foot-and-Mouth Disease. Clin Microbiol Rev 17:465–493

    Article  PubMed  CAS  Google Scholar 

  • Hobbs SLA, Kpodar P, DeLong CMO (1990) The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Mol Biol 15:851–864

    Article  PubMed  CAS  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS et al (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  • Horvath H, Huang J, Wong O et al (2000) The production of recombinant proteins in transgenic barley grains. PNAS 97:1914–1919

    Article  PubMed  CAS  Google Scholar 

  • Jenny RJ, Mann KG, Lundblad RL (2003) A critical review of the methods for cleavage of fusion proteins with thrombin and factor Xa. Prot Exp Purif 31:1–11

    Article  CAS  Google Scholar 

  • Joensuu JJ, Niklander-Teeri V, Brandle JE (2008) Transgenic plants for animal health: plant-made vaccine antigens for animal infectious disease control. Phytochem Rev 7:553–577

    Article  CAS  Google Scholar 

  • Kang T, Loc N, Jang M et al (2004) Modification of the cholera toxin B subunit coding sequence to enhance expression in plants. Mol Breed 13:143–153

    Article  CAS  Google Scholar 

  • Kapila J, De Rycke R, Van Montagu M et al (1997) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101–108

    Article  CAS  Google Scholar 

  • Kay R, Chan A, Daly M et al (1987) Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 236:1299–1302

    Article  PubMed  CAS  Google Scholar 

  • Krysan PJ, Young JC, Jester PJ et al (2002) Characterization of T-DNA insertion sites in Arabidopsis thaliana and the implications for saturation mutagenesis. OMICS 6:163–174

    Article  PubMed  CAS  Google Scholar 

  • Kusnadi AR, Nikolov ZL, Howard JA et al (1997) Production of recombinant proteins in transgenic plants: practical considerations. Biotechnol Bioeng 56:473–484

    Article  PubMed  CAS  Google Scholar 

  • Lichty JJ, Malecki JL, Agnew HD et al (2005) Comparison of affinity tags for protein purification. Protein Expr Purif 41:98–105

    Article  PubMed  CAS  Google Scholar 

  • Lin M, Rose-John S, Grötzinger J et al (2006) Functional expression of a biologically active fragment of soluble gp130 as an ELP-fusion protein in transgenic plants: purification via inverse transition cycling. Biochem J 398:577–583

    Article  PubMed  CAS  Google Scholar 

  • Lonsdale DM, Moisan LJ, Harvey AJ (1998) The effect of altered codon usage on luciferase activity in tobacco, maize and wheat. Plant Cell Rep 17:396–399

    Article  CAS  Google Scholar 

  • Ma JKC, Drake PMW, Chargelegue D et al (2005) Antibody processing and engineering in plants, and new strategies for vaccine production. Vaccine 23:1814–1818

    Article  PubMed  CAS  Google Scholar 

  • Menassa R, Nguyen V, Jevnikar A et al (2001) A self-contained system for the field production of plant recombinant interleukin-10. Mol Breed 8:177–185

    Article  CAS  Google Scholar 

  • Menkhaus TJ, Bai Y, Zhang C et al (2004) Considerations for the recovery of recombinant proteins from plants. Biotechnol Prog 20:1001–1014

    Article  PubMed  CAS  Google Scholar 

  • Meyer DE, Chilkoti A (1999) Purification of recombinant proteins by fusion with thermally-responsive polypeptides. Nat Biotechnol 17:1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Miki BLA, McHugh SG, Labbe H (1999) Transgenic tobacco: gene expression and applications. In: Bajaj YPS et al (eds) Biotechnology in agriculture and forestry: transgenic medicinal plants. Springer, Berlin, pp 336–354

    Google Scholar 

  • Parks TD, Leuther KK, Howard ED et al (1994) Release of proteins and peptides from fusion proteins using a recombinant plant virus proteinase. Anal Biochem 216:413–417

    Article  PubMed  CAS  Google Scholar 

  • Patel J, Zhu H, Menassa R et al (2007) Elastin-like polypeptide fusions enhance the accumulation of recombinant proteins in tobacco leaves. Transgenic Res 16:239–249

    Article  PubMed  CAS  Google Scholar 

  • Peden JF (1999) Analysis of codon usage. Ph.D Thesis, University of Nottingham, England

  • Perlak FJ, Fuchs RL, Dean DA et al (1991) Modification of the coding sequence enhances plant expression of insect control protein genes. PNAS 88:3324–3328

    Article  PubMed  CAS  Google Scholar 

  • Rouillard JM, Lee W, Truan G et al (2004) Gene2Oligo: oligonucleotide design for in vitro gene synthesis. Nucleic Acids Res 32:176–180

    Article  Google Scholar 

  • Rouwendal GJ, Mendes O, Wolbert EJ et al (1997) Enhanced expression in tobacco of the gene encoding green fluorescent protein by modification of its codon usage. Plant Mol Biol 33:989–999

    Article  PubMed  CAS  Google Scholar 

  • Rymerson R, Menassa R, Brandle JE (2002) Tobacco, a platform for the production of recombinant proteins. In: Erickson L, Brandle J, Rymerson RT (eds) Molecular farming of plants and animals for human and veterinary medicine. Kluwer, Amsterdam, pp 1–32

    Google Scholar 

  • Sawant SV, Singh PK, Gupta SK et al (1999) Conserved nucleotide sequences in highly expressed genes in plants. J Genet 78:123–131

    Article  CAS  Google Scholar 

  • Sawant S, Singh PK, Madanala R et al (2001) Designing of an artificial expression cassette for the high-level expression of transgenes in plants. Theor Appl Genet 102:635–644

    Article  CAS  Google Scholar 

  • Scheller J, Henggeler D, Viviani A et al (2004) Purification of spider silk-elastin from transgenic plants and application for human chondrocyte proliferation. Transgenic Res 13:51–57

    Article  PubMed  CAS  Google Scholar 

  • Scheller J, Leps M, Conrad U (2006) Forcing single-chain variable fragment production in tobacco seeds by fusion to elastin-like polypeptides. Plant Biotechnol J 4:243–249

    Article  PubMed  CAS  Google Scholar 

  • Schouten A, Roosien J, van Engelen JA et al (1996) The C-terminal KDEL sequence increases the expression level of a single-chain antibody designed to be targeted to both the cytosol and the secretory pathway in transgenic tobacco. Plant Mol Biol 30:781–793

    Article  PubMed  CAS  Google Scholar 

  • Shamji MF, Betre H, Kraus VB et al (2007) Development and characterization of a fusion protein between thermally responsive elastin-like polypeptide and interleukin-1 receptor antagonist: sustained release of a local antiinflammatory therapeutic. Arthritis Rheum 56:3650–3661

    Article  PubMed  CAS  Google Scholar 

  • Shimazu M, Mulchandani A, Chen W (2003) Thermally triggered purification and immobilization of elastin–OPH fusions. Biotechnol Bioeng 81:74–79

    Article  PubMed  CAS  Google Scholar 

  • Streatfield SJ (2007) Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol J 5:2–15

    Article  PubMed  CAS  Google Scholar 

  • Terpe K (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 60:523–533

    PubMed  CAS  Google Scholar 

  • Trabbic-Carlson K, Liu L, Kim B et al (2004) Expression and purification of recombinant proteins from Escherichia coli: comparison of an elastin-like polypeptide fusion with an oligohistidine fusion. Protein Sci 13:3274–3284

    Article  PubMed  CAS  Google Scholar 

  • Twyman RM, Stoger E, Schillberg S et al (2003) Molecular farming in plants: host systems and expression technology. Trends Biotechnol 21:570–578

    Article  PubMed  CAS  Google Scholar 

  • Urry DW (1988) Entropic elastic processes in protein mechanisms. I. Elastic structure due to an inverse temperature transition and elasticity due to internal chain dynamics. J Protein Chem 7:1–34

    Article  PubMed  CAS  Google Scholar 

  • Urry DW (1997) Physical chemistry of biological free energy transduction as demonstrated by elastic protein-based polymers. J Phys Chem B 101:11007–11028

    Article  CAS  Google Scholar 

  • Voinnet O, Rivas S, Mestre P et al (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33:949–956

    Article  PubMed  CAS  Google Scholar 

  • Waugh DS (2005) Making the most of affinity tags. Trends Biotechnol 23:316–320

    Article  PubMed  CAS  Google Scholar 

  • Yang PC, Chu RM, Chung WB et al (1999) Epidemiological characteristics and financial costs of the 1997 Foot-and-mouth disease epidemic in Taiwan. Vet Rec 145:731–734

    PubMed  CAS  Google Scholar 

  • Yang Y, Li R, Qi M (2000) In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant J 22:543–551

    Article  PubMed  CAS  Google Scholar 

  • Yang M, Berhane Y, Salo T et al (2008) Development and application of monoclonal antibodies against avian influenza virus nucleoprotein. J Virol Methods 147:265–274

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Jamie McNeil, Lisa Starr, and the staff at the National Centre for Foreign Animal Disease for technical assistance. Alex Molnar is acknowledged for his assistance with the preparation of the figures. This research was supported by Agriculture and Agri-Food Canada’s Matching Investment Initiative program. The Academy of Finland is acknowledged for providing a fellowship for J.J.J., and the Natural Sciences and Engineering Research Council (NSERC) is thanked for providing financial support to A.J.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Menassa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 29 kb)

Supplementary material 2 (DOC 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joensuu, J.J., Brown, K.D., Conley, A.J. et al. Expression and purification of an anti-Foot-and-mouth disease virus single chain variable antibody fragment in tobacco plants. Transgenic Res 18, 685–696 (2009). https://doi.org/10.1007/s11248-009-9257-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-009-9257-0

Keywords

Navigation