Skip to main content
Log in

Entropic elastic processes in protein mechanisms. I. Elastic structure due to an inverse temperature transition and elasticity due to internal chain dynamics

  • Review
  • Published:
Journal of Protein Chemistry Aims and scope Submit manuscript

Abstract

Numerous physical characterizations clearly demonstrate that the polypentapeptide of elastin (Val1-Pro2-Gly3-Val4-Gly5)u in water undergoes an inverse temperature transition. Increase in order occurs both intermolecularly and intramolecularly on raising the temperature from 20 to 40°C. The physical characterizations used to demonstrate the inverse temperature transition include microscopy, light scattering, circular dichroism, the nuclear Overhauser effect, temperature dependence of composition, nuclear magnetic resonance (NMR) relaxation, dielectric relaxation, and temperature dependence of elastomer length. At fixed extension of the cross-linked polypentapeptide elastomer, the development of elastomeric force is seen to correlate with increase in intramolecular order, that is, with the inverse temperature transition. Reversible thermal denaturation of the ordered polypentapeptide is observed with composition and circular dichroism studies, and thermal denaturation of the crosslinked elastomer is also observed with loss of elastomeric force and elastic modulus. Thus, elastomeric force is lost when the polypeptide chains are randomized due to heating at high temperature. Clearly, elastomeric force is due to nonrandom polypeptide structure. In spite of this, elastomeric force is demonstrated to be dominantly entropic in origin. The source of the entropic elastomeric force is demonstrated to be the result of internal chain dynamics, and the mechanism is called the librational entropy mechanism of elasticity. There is significant application to the finding that elastomeric force develops due to an inverse temperature transition. By changing the hydrophobicity of the polypeptide, the temperature range for the inverse temperature transition can be changed in a predictable way, and the temperature range for the development of elastomeric force follows. Thus, elastomers have been prepared where the development of elastomeric force is shifted over a 40°C temperature range from a midpoint temperature of 30°C for the polypentapeptide to 10°C by increasing hydrophobicity with addition of a single CH2 moiety per pentamer and to 50°C by decreasing hydrophobicity. The implications of these findings to elastic processes in protein mechanisms are (1) When elastic processes are observed in proteins, it is unnecessary, and possibly incorrect, to attempt description in terms of random chain networks and random coils; (2) rather than requiring a random chain network characterized by a random distribution of end-to-end chain lengths, entropic elastomeric force can be exhibited by a single, short peptide segment; (3) perhaps of greatest significance, whether occurring in a short peptide segment or in a fibrillar protein, it should be possible reversibly to turn elastomeric force on and off by reversibly changing the hydrophobicity of the polypeptide. Phosphorylation and dephosphorylation would be the most obvious means of changing the hydrophobicity of a polypeptide. These considerations are treated in Part 2: Simple (Passive) and Coupled (Active) Development of Elastic Forces (see Urry, 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aaron, B. B., and Gosline, J. M. (1980).Nature (Lond.) 287, 865–867.

    Article  CAS  PubMed  Google Scholar 

  • Aaron, B. B., and Gosline, J. M. (1981).Biopolymers 20, 1247–1260.

    Article  CAS  Google Scholar 

  • Andrady, A. L., and Mark, J. E. (1980).Biopolymers 19, 849–855.

    Article  CAS  Google Scholar 

  • Barnes, C., Evans, J. A., and Lewis, T. J. (1985).J. Acoust. Soc. Am. 78(1), 6–11.

    Article  CAS  PubMed  Google Scholar 

  • Buchet, R., Luan, C.-H., Prasad, K. U., Harris, R. D., and Urry, D. W. (1988).J. Phys. Chem. (in press).

  • Bungenberg de Jong, H. G. (1949). InColloid Science, Vol. 2 (Kruyt, H. R., ed.), Elsevier/North-Holland Publisher, Amsterdam, pp. 232–258.

    Google Scholar 

  • Bungenberg de Jong, H. G., and Kruyt, H. R. (1929).Proc. Kon. Ned. Akad. Wet. 32, 849–856.

    Google Scholar 

  • Bungenberg de Jong, H. G., and Kruyt, H. R. (1930).Kolloid Z. 50, 39–48.

    Article  Google Scholar 

  • Cerf, R. (1985).Biophys. J. 47, 751–756,

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho, K. C., Leung, W. P., Mok, H. Y., and Cjoy, C. L. (1985).Biochim. Biophys. Acta 830, 36–44.

    Article  CAS  PubMed  Google Scholar 

  • Cleary, E. G., and Moont, M. (1977).Adv. Exp. Med. Biol. 79, 477–490.

    Article  CAS  PubMed  Google Scholar 

  • Cook, W. J., Einspahr, H. M., Trapane, T. L., Urry, D. W., and Bugg, C. W. (1980).J. Am. Chem. Soc. 102, 5502–5505.

    Article  CAS  Google Scholar 

  • Dauber, P., Goodman, M., Hagler, A. T., Osguthorpe, D., Sharon, R., and Stern, P. (1981). InACS Symposium Series, No. 173.Supercomputers in Chemistry (Lykos, P., and Shavitt, I., eds.), American Chemical Society, Washington, D.C., pp. 161–191.

    Google Scholar 

  • Dorrington, K. L., and McCrum, N. G. (1977).Biopolymers 16, 1201–1222.

    Article  CAS  PubMed  Google Scholar 

  • Eyring, H. (1932).Phys. Rev. 39, 746–748.

    Article  CAS  Google Scholar 

  • Eyring, H., Henderson, D., Stover, B. J., and Eyring, E. M. (1964).Statistical Mechanics and Dynamics, John Wiley & Sons, New York, p. 90.

    Google Scholar 

  • Fleming, W. W., Sullivan, C. E., and Torchia, D. A. (1980).Biopolymers 19, 597–618.

    Article  CAS  PubMed  Google Scholar 

  • Flory, P. J. (1953).Principles of Polymer Chemistry, Cornell University Press, Ithaca, New York.

    Google Scholar 

  • Flory, P. J., Ciferri, A., and Hoeve, C. A. J. (1960).J. Polymer Sci. 45, 235–236.

    Article  CAS  Google Scholar 

  • Frank, H. S., and Evans, M. W. (1945).J. Chem. Phys. 13, 493–407.

    Article  CAS  Google Scholar 

  • Franzblau, C., and Lent, R. W. (1969). InBrookhaven Symposium in Biology: Structure, Function and Evolution in Proteins, Vol. 2, Associated Universities, Inc., Upton, N.Y., pp. 358–377.

    Google Scholar 

  • Gosline, J. M. (1978).Biopolymers 17, 677–695.

    Article  CAS  PubMed  Google Scholar 

  • Gosline, J. M. (1980). InThe Mechanical Properties of Biological Materials (Vincent, J. F. V., and Currey, J. D., eds.), Cambridge University Press, London, pp. 331–357.

    Google Scholar 

  • Gosline, J. M., and Rosenbloom, J. (1984). InExtracellular Matrix Biochemistry (Piez, K. A., and Reddi, A. H., eds.), Elsevier/North-Holland Publishers, Amsterdam, pp. 191–227.

    Google Scholar 

  • Gray, W. R., Sandberg, L. B., and Foster, J. A. (1973).Nature (Lond.) 246, 461–466.

    Article  CAS  PubMed  Google Scholar 

  • Henze, R., and Urry, D. W. (1985).J. Am. Chem. Soc. 107, 2991–2993.

    Article  CAS  Google Scholar 

  • Hoeve, C. A. J., and Flory, P. J. (1958).J. Am. Chem. Soc. 80, 6523–6526.

    Article  CAS  Google Scholar 

  • Hoeve, C. A. J., and Flory, P. J. (1974).Biopolymers 13, 677–686.

    Article  CAS  PubMed  Google Scholar 

  • Karplus, M., and McCammon, J. A. (1981).CRC Crit. Rev. Biochem. 9, 293–349.

    Article  CAS  PubMed  Google Scholar 

  • Kauzmann, W. (1959).Adv. Protein Chem. 14, 1–63.

    Article  CAS  PubMed  Google Scholar 

  • Lyerla, J. R., and Torchia, D. A. (1975).Biochemistry 13, 5175–5183.

    Article  Google Scholar 

  • Mandelkern, L. (1983).An Introduction to Macromolecules, 2nd ed., Springer-Verlag, New York.

    Book  Google Scholar 

  • Momany, F. A., Carruthers, L. M., McGuire, R. F., and Scheraga, H. A. (1974).J. Phys. Chem. 78, 1595–1620.

    Article  CAS  Google Scholar 

  • Momany, F. A., McGuire, R. F., Burgess, A. W., and Scheraga, H. A. (1975).J. Phys. Chem. 7, 2361–2381.

    Article  Google Scholar 

  • Onsager, L. (1931).Phys. Rev. 37, 405–426.

    Article  CAS  Google Scholar 

  • Partridge, S. M. (1962).Adv. Protein Chem. 17, 227–302.

    Article  CAS  Google Scholar 

  • Pethig, R. (1979). InDielectric and Electronic Properties of Biological Materials, John Wiley & Sons, New York, pp. 100–149.

    Google Scholar 

  • Petruska, J. A., and Sandberg, L. B. (1968).Biochem. Biophys. Res. Commun. 33, 222–228.

    Article  CAS  PubMed  Google Scholar 

  • Queslel, J. P., and Mark, J. E. (1986). InEncyclopedia of Polymer Science and Engineering, Vol. 5, 2nd ed., John Wiley & Sons, pp. 365–408.

  • Sandberg, L. B., Gray, W. R., and Franzblau, C. (1977).Adv. Exp. Med. Biol. 79, 259–261.

    Article  Google Scholar 

  • Sandberg, L. B., Soskel, N. T., and Leslie, J. B. (1981).N. Engl. J. Med. 304, 566–579.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, F., Müller-Landau, F., and Mayer, A. (1969).Biopolymers 8, 537–544.

    Article  CAS  PubMed  Google Scholar 

  • Swaminathan, S., Harrison, S. W., and Beveridge, D. L. (1978).J. Am. Chem. Soc. 100, 5705.

    Article  CAS  Google Scholar 

  • Tanford, C. (1973).The Hydrophobic Effect: Formation of Micelles and Biological Membranes, John Wiley & Sons, New York.

    Google Scholar 

  • Thomas, G. J., Jr., Prescott, B., and Urry, D. W. (1987).Biopolymers 26, 921–934.

    Article  CAS  PubMed  Google Scholar 

  • Torchia, D. A., Batchelder, L. S., Fleming, W. W., Jelinski, L. W., Sarkar, S. K., and Sullivan, C. E. (1983). InMobility and Function in Proteins and Nucleic Acids (Porter, R., O'Connor, M., and Whelan, J., eds.), Pitman Publishers, London, pp. 98–115.

    Google Scholar 

  • Torchia, D. A., and Piez, K. A. (1973).J. Mol. Biol. 76, 419–424.

    Article  CAS  PubMed  Google Scholar 

  • Urry, D. W. (1972).Proc. Natl. Acad. Sci. USA 69, 1610–1614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urry, D. W. (1974). InArterial Mesenchyme and Arteriosclerosis (Wagner, W. D., and Clarkson, T. B., eds.), Plenum Publishing Corporation, New York,Adv. Exp. Med. Biol. 43, pp. 211–243.

    Google Scholar 

  • Urry, D. W. (1982).Methods Enzymol. 82, 673–716.

    Article  CAS  PubMed  Google Scholar 

  • Urry, D. W. (1983).Ultrastruct. Pathol. 4, 227–251.

    Article  CAS  PubMed  Google Scholar 

  • Urry, D. W. (1984).J. Protein Chem. 3, 403–436.

    Article  CAS  Google Scholar 

  • Urry, D. W. (1985). InBiomolecular Stereodynamics. Vol. III (Sarma, R. H., and Sarma, M. H., eds.), Adenine Press, Guilderland, New York, pp. 173–196.

    Google Scholar 

  • Urry, D. W. (1987).Advances in the Molecular Biology of Connective Tissue Fibrous Proteins, Professor S. M. Partridge Festschrift Volume, (L. Gotte, ed.), Scottish Academic Press, Edinburgh, pp. 25–50.

    Google Scholar 

  • Urry, D. W. (1988).J. Protein Chem. 7, 81–114.

    Article  CAS  PubMed  Google Scholar 

  • Urry, D. W., and Long, M. M. (1976).CRC Crit. Rev. Biochem. 4, 1–45.

    Article  CAS  PubMed  Google Scholar 

  • Urry, D. W., and Prasad, K. U. (1985). InBiocompatibility of Tissue Analogues (Williams, D. F., ed.), CRC Press, Boca Raton, Florida, pp. 89–116.

    Google Scholar 

  • Urry, D. W., and Venkatachalam, C. M. (1983).Int. J. Quant. Chem. Quant. Biol. Symp. 10, 81–93.

    CAS  Google Scholar 

  • Urry, D. W., Okamoto, K., Harris, R. D., Hendrix, C. F. and Long, M. M. (1976).Biochemistry 15, 4083–4089.

    Article  CAS  PubMed  Google Scholar 

  • Urry, D. W., Khaled, M. A., Rapaka, R. S., and Okamoto, K. (1977).Biochem. Biophys. Res. Commun. 79, 700–706.

    Article  CAS  PubMed  Google Scholar 

  • Urry, D. W., Venkatachalam, C. V., Long, M. M., and Prasad, K. U. (1982). InConformation in Biology (Srinivasan, R., and Sarma, R. H., eds.), G. N. Ramachandran Festschrift Volume, Adenine Press, Guilderland, New York, pp. 11–27.

    Google Scholar 

  • Urry, D. W., Trapane, T. L., Long, M. M., and Prasad, K. U. (1983a).J. Chem. Soc. Farad. Trans. 179, 853–868.

    Article  Google Scholar 

  • Urry, D. W., Trapane, T. L., Wood, S. A., Walker, J. T., Harris, R. D., and Prasad, K. U. (1983b).Int. J. Peptide Protein Res. 22, 164–175.

    Article  CAS  Google Scholar 

  • Urry, D. W., Henze, R., Harris, R. D., and Prasad, K. U. (1984).Biochem. Biophys. Res. Commun. 125, 1082–1088.

    Article  CAS  PubMed  Google Scholar 

  • Urry, D. W., Henze, R., Redington, P., Long, M. M., and Prasad, K. U. (1985a).Biochem. Biophys. Res. Commun. 128, 1000–1006.

    Article  CAS  PubMed  Google Scholar 

  • Urry, D. W., Prasad, K. U., Trapane, T. L., Iqbal, M. Harris, R. D., and Henze, R. (1985b).Polymer. Mater. Sci. Eng. 53, 241–245.

    CAS  Google Scholar 

  • Urry, D. W., Shaw, R. G., and Prasad, K. U. (1985c).Biochem. Biophys. Res. Commun. 130, 50–57.

    Article  CAS  PubMed  Google Scholar 

  • Urry, D. W., Trapane, T. L., Iqbal, M. Venkatachalam, C. M., and Prasad, K. U. (1985d).Biochemistry 24, 5182–5189.

    Article  CAS  PubMed  Google Scholar 

  • Urry, D. W., Trapane, T. L., and Prasad, K. U. (1985e).Biopolymers 24, 2345–2356.

    Article  CAS  PubMed  Google Scholar 

  • Urry, D. W., Venkatachalam, C. M., Wood, S. A., and Prasad, K. U. (1985f). InStructure and Motion: Membranes, Nucleis Acids and Proteins (Clementi, E., Corongiu, G., Sarma, M. H., and Sarma, R. H., eds.), Adenine Press, Guilderland, New York, pp. 185–203.

    Google Scholar 

  • Urry, D. W., Harris, R. D., Long, M. M., and Prasad, K. U. (1986a).Int. J. Peptide Protein Res. 28, 649–660.

    Article  CAS  Google Scholar 

  • Urry, D. W., Haynes, B., and Harris, R. D. (1986b).Biochem. Biophys. Res. Commun. 141, 749–755.

    Article  CAS  PubMed  Google Scholar 

  • Urry, D. W., Long, M. M., Harris, R. D., and Prasad, K. U. (1986c).Biopolymers 25, 1939–1953.

    Article  CAS  PubMed  Google Scholar 

  • Urry, D. W., Trapane, T. L., McMichens, R. B., Iqbal, M., Harris, R. D., and Prasad, K. U. (1986d).Biopolymers 25, S209-S228.

    Article  CAS  PubMed  Google Scholar 

  • Urry, D. W., Prasad, K. U., Trapane, T. L., Iqbal, M., Harris, R. D., Okamoto, K., and Henze, R. (1987a).Peptide Chem. (in press).

  • Venkatachalam, C. M., and Urry, D. W. (1981).Macromolecules 14, 1225–1229.

    Article  CAS  Google Scholar 

  • Venkatachalam, C. M., and Urry, D. W. (1986).Int. J. Quant. Chem. Quant. Biol. Symp. 12, 15–24.

    CAS  Google Scholar 

  • Volpin, D., Urry, D. W., Pasquali-Ronchetti, I., and Gotte, L. (1976).Micron 7, 193–198.

    Google Scholar 

  • Weis-Fogh, T., and Andersen, S. A. (1970).Nature (Lond.) 227, 718–721.

    Article  CAS  PubMed  Google Scholar 

  • Zana, R., and Tondre, C. (1972).J. Phys. Chem. 76, 1737–1743.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urry, D.W. Entropic elastic processes in protein mechanisms. I. Elastic structure due to an inverse temperature transition and elasticity due to internal chain dynamics. J Protein Chem 7, 1–34 (1988). https://doi.org/10.1007/BF01025411

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01025411

Key words

Navigation