Skip to main content
Log in

Inhibition of beet necrotic yellow vein virus by the expression of a single-chain variable fragment antibody in sugar beet plants

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Rhizomania caused by the Beet necrotic yellow vain virus (BNYVV) is the most damaging disease of sugar beet worldwide. Antibody-based resistance was used as an efficient strategy to generate transgenic sugar beet plants resistant to the virus through the expression of single-chain variable fragments (scFv) directed against a major coat protein of the virus, P21. Four anti-P21 scFv fusion proteins were targeted towards different subcellular compartments including the cytosol, apoplast, and mitochondrial outer membrane where P21 is probably located. Transgenic sugar beet plants showed levels of resistance correlated with the expression levels of scFv antibody when they were inoculated by rhizomania-infested soil. Although transgenic plants expressing scFv in various locations showed comparable titers of the virus, those expressing scFv targeted towards the apoplast or cytosol carrying the stabilizing KDEL tetrapeptide showed the highest rates of resistance against the virus. Further work may lead to rhizomania resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Code availability

All data and materials as well as software application or custom code support published claims and comply with field standards.

References

  • Acosta-Leal, R., Bryan, B. K., Smith, J. T., & Rush, C. M. (2010). Breakdown of host resistance by independent evolutionary lineages of beet necrotic yellow vein virus involves a parallel C/U mutation in its p25 gene. Phytopathology, 100(2), 127–133.

    Article  CAS  PubMed  Google Scholar 

  • Ayadi, M., Bouaziz, D., Nouri-Ellouz, O., Rouis, S., Drira, N., & Gargouri-Bouzid, R. (2012). Efficient resistance to potato virus Y infection conferred by cytosolic expression of anti-viral protease single-chain variable fragment antibody in transgenic potato plants. Journal of Plant Pathology, 94(3), 561–569.

    Google Scholar 

  • Bouaziz, D., Ayadi, M., Bidani, A., Rouis, S., Nouri-Ellouz, O., Jellouli, R., Drira, N., & Gargouri-Bouzid, R. (2009). A stable cytosolic expression of VH antibody fragment directed against PVY NIa protein in transgenic potato plant confers partial protection against the virus. Plant Science, 176(4), 489–496.

    Article  CAS  PubMed  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254.

    Article  CAS  PubMed  Google Scholar 

  • De Jaeger, G., Buys, E., Eeckhout, D., De Wilde, C., Jacobs, A., Kapila, J., Angenon, G., Van Montagu, M., Gerats, T., & Depicker, A. (1999). High level accumulation of single-chain variable fragments in the cytosol of transgenic Petunia hybrida. The FEBS Journal, 259(1–2), 426–434.

    Google Scholar 

  • Erhardt, M., Dunoyer, P., Guilley, H., Richards, K., Jonard, G., & Bouzoubaa, S. (2001). Beet necrotic yellow vein virus particles localize to mitochondria during infection. Virology, 286(2), 256–262.

    Article  CAS  PubMed  Google Scholar 

  • Fecker, L., Koenig, R., & Obermeier, C. (1997). Nicotiana benthamiana plants expressing beet necrotic yellowvein virus (BNYVV) coat protein-specific scFv are partiallyprotected against the establishment of the virus inthe early stages of infection and its pathogenic effectsin the late stages of infection. Archives of Virology, 142(9), 1857–1863.

    Article  CAS  PubMed  Google Scholar 

  • Fecker, L. F., Kaufmann, A., Commandeur, U., Commandeur, J., Koenig, R., & Burgermeister, W. (1996). Expression of single-chain antibody fragments (scFv) specific for beet necrotic yellow vein virus coat protein or 25 kDa protein in Escherichia coli and Nicotiana benthamiana. Plant Molecular Biology, 32(5), 979–986.

    Article  CAS  PubMed  Google Scholar 

  • Gargouri-Bouzid, R., Jaoua, L., Rouis, S., Saïdi, M. N., Bouaziz, D., & Ellouz, R. (2006). PVY-resistant transgenic potato plants expressing an anti-NIa protein scFv antibody. Molecular Biotechnology, 33(2), 133–140.

    Article  CAS  PubMed  Google Scholar 

  • Ghannam, A., Kumari, S., Muyldermans, S., & Abbady, A. Q. (2015). Camelid nanobodies with high affinity for broad bean mottle virus: A possible promising tool to immunomodulate plant resistance against viruses. Plant Molecular Biology, 87(4–5), 355–369.

    Article  CAS  PubMed  Google Scholar 

  • Hemmer, C., Djennane, S., Ackerer, L., Hleibieh, K., Marmonier, A., Gersch, S., Garcia, S., Vigne, E., Komar, V., & Perrin, M. (2018). Nanobody-mediated resistance to grapevine fanleaf virus in plants. Plant Biotechnology Journal, 16(2), 660–671.

    Article  CAS  PubMed  Google Scholar 

  • Hisano, H., Kimoto, Y., Hayakawa, H., Takeichi, J., Domae, T., Hashimoto, R., Abe, J., Asano, S., Kanazawa, A., & Shimamoto, Y. (2004). High frequency Agrobacterium-mediated transformation and plant regeneration via direct shoot formation from leaf explants in Beta vulgaris and Beta maritima. Plant Cell Reports, 22(12), 910–918.

    Article  CAS  PubMed  Google Scholar 

  • Jafarzade, M., Ramezani Aghdam, M., Zare, B., Sabet, M., Khoshnami, M., Hedayati, F., Norouzi, P., & Malboobi, M. (2019a). Targeted expression of single-chain antibody inhibits the accumulation of beet necrotic yellow vein virus in Nicotiana benthamiana. Journal of Plant Interactions, 14(1), 137–142.

    Article  CAS  Google Scholar 

  • Jafarzade, M., Ramezani, M., Hedayati, F., Mokhtarzade, Z., Zare, B., Sabet, M., Norouzi, P., & Malboobi, M. (2019b). Antibody-mediated resistance to Rhizomania disease in sugar beet hairy roots. The Plant Pathology Journal, 35(6), 692–697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahromi, Z. M., Salmanian, A. H., Rastgoo, N., & Arbabi, M. (2009). Isolation of BNYVV coat protein-specific single chain Fv from a mouse phage library antibody. Hybridoma, 28(5), 305–313.

    Article  CAS  PubMed  Google Scholar 

  • Lennefors, B.-L., Savenkov, E. I., Bensefelt, J., Wremerth-Weich, E., van Roggen, P., Tuvesson, S., Valkonen, J. P., & Gielen, J. (2006). dsRNA-mediated resistance to beet necrotic yellow vein virus infections in sugar beet (Beta vulgaris L. ssp. vulgaris). Molecular Breeding, 18(4), 313–325.

    Article  CAS  Google Scholar 

  • Liu, H.-Y., & Lewellen, R. (2007). Distribution and molecular characterization of resistance-breaking isolates of beet necrotic yellow vein virus in the United States. Plant Disease, 91(7), 847–851.

    Article  CAS  PubMed  Google Scholar 

  • Mannerlöf, M., Lennerfors, B.-L., & Tenning, P. (1996). Reduced titer of BNYVV in transgenic sugar beets expressing the BNYVV coat protein. Euphytica, 90(3), 293–299.

    Article  Google Scholar 

  • McGrann, G. R., Grimmer, M. K., Mutasa-Göttgens, E. S., & Stevens, M. (2009). Progress towards the understanding and control of sugar beet rhizomania disease. Molecular Plant Pathology, 10(1), 129–141.

    Article  CAS  PubMed  Google Scholar 

  • Nickel, H., Kawchuk, L., Twyman, R. M., Zimmermann, S., Junghans, H., Winter, S., Fischer, R., & Prüfer, D. (2008). Plantibody-mediated inhibition of the potato leafroll virus P1 protein reduces virus accumulation. Virus Research, 136(1–2), 140–145.

    Article  CAS  PubMed  Google Scholar 

  • Ouillet, L., Guilley, H., Jonard, G., & Richards, K. (1989). In vitro synthesis of biologically active Beet necrotic yellow vein virus RNA. Virology, 172(1), 293–301.

  • Pavli, O., Prins, M., Goldbach, R., & Skaracis, G. N. (2011). Efficiency of Rz1-based rhizomania resistance and molecular studies on BNYVV isolates from sugar beet cultivation in Greece. European Journal of Plant Pathology, 130(2), 133–142.

    Article  CAS  Google Scholar 

  • Pavli, O. I., Panopoulos, N. J., Goldbach, R., & Skaracis, G. N. (2010). BNYVV-derived dsRNA confers resistance to rhizomania disease of sugar beet as evidenced by a novel transgenic hairy root approach. Transgenic Research, 19(5), 915–922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peltier, C., Hleibieh, K., Thiel, H., Klein, E., Bragard, C., & Gilmer, D. (2008). Molecular biology of the beet necrotic yellow vein virus. Plant Viruses, 2(1), 14–24.

    Google Scholar 

  • Pferdmenges, F., Korf, H., & Varrelmann, M. (2009). Identification of rhizomania-infected soil in Europe able to overcome Rz1 resistance in sugar beet and comparison with other resistance-breaking soils from different geographic origins. European Journal of Plant Pathology, 124(1), 31–43.

    Article  Google Scholar 

  • Prins, M., Lohuis, D., Schots, A., & Goldbach, R. (2005). Phage display-selected single-chain antibodies confer high levels of resistance against tomato spotted wilt virus. Journal of General Virology, 86(7), 2107–2113.

    Article  CAS  PubMed  Google Scholar 

  • Putz, C., Merdinoglu, D., Lemaire, O., Stocky, G., Valentin, P., & Wiedemann, S. (1990). Beet necrotic yellow vein virus, causal agent of sugarbeet rhizomania. Review of Plant Pathology, 69(5), 247–254.

    Google Scholar 

  • Schirmer, A., Link, D., Cognat, V., Moury, B., Beuve, M., Meunier, A., Bragard, C., Gilmer, D., & Lemaire, O. (2005). Phylogenetic analysis of isolates of beet necrotic yellow vein virus collected worldwide. Journal of General Virology, 86(10), 2897–2911.

    Article  CAS  PubMed  Google Scholar 

  • Schouten, A., Roosien, J., de Boer, J. M., Wilmink, A., Rosso, M.-N., Bosch, D., Stiekema, W. J., Gommers, F. J., Bakker, J., & Schots, A. (1997). Improving scFv antibody expression levels in the plant cytosol. FEBS Letters, 415(2), 235–241.

    Article  CAS  PubMed  Google Scholar 

  • Schouten, A., Roosien, J., van Engelen, F. A., de Jong, G. I., Borst-Vrenssen, A. T., Zilverentant, J. F., Bosch, D., Stiekema, W. J., Gommers, F. J., & Schots, A. (1996). The C-terminal KDEL sequence increases the expression level of a single-chain antibody designed to be targeted to both the cytosol and the secretory pathway in transgenic tobacco. Plant Molecular Biology, 30(4), 781–793.

    Article  CAS  PubMed  Google Scholar 

  • Spiegel, H., Schillberg, S., Sack, M., Holzem, A., Nähring, J., Monecke, M., Liao, Y.-C., & Fischer, R. (1999). Accumulation of antibody fusion proteins in the cytoplasm and ER of plant cells. Plant Science, 149(1), 63–71.

    Article  CAS  Google Scholar 

  • Tamada, T. (2016). General features of beet necrotic yellow vein virus. In Rhizomania (pp. 55-83). Springer.

  • Tamada, T., & Asher, M. J. (2016). The Plasmodiophorid Protist Polymyxa betae. In Rhizomania (pp. 135-153). Springer.

  • Tamada, T., Kondo, H., & Chiba, S. (2016). Genetic diversity of beet necrotic yellow vein virus. In Rhizomania (pp. 109-131). Springer.

  • Valentin, C., Dunoyer, P., Vetter, G., Schalk, C., Dietrich, A., & Bouzoubaa, S. (2005). Molecular basis for mitochondrial localization of viral particles during beet necrotic yellow vein virus infection. Journal of Virology, 79(15), 9991–10002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villani, M. E., Roggero, P., Bitti, O., Benvenuto, E., & Franconi, R. (2005). Immunomodulation of cucumber mosaic virus infection by intrabodies selected in vitro from a stable single-framework phage display library. Plant Molecular Biology, 58(3), 305–316.

    Article  CAS  PubMed  Google Scholar 

  • Weigel, D., & Glazebrook, J. (2009). Dellaporta miniprep for plant DNA isolation. Cold Spring Harbor Protocols, 2009(3), pdb. prot5178.

  • Yajima, W., Verma, S. S., Shah, S., Rahman, M. H., Liang, Y., & Kav, N. N. (2010). Expression of anti-sclerotinia scFv in transgenic Brassica napus enhances tolerance against stem rot. New Biotechnology, 27(6), 816–821.

    Article  CAS  PubMed  Google Scholar 

  • Zare, B., Niazi, A., Sattari, R., Aghelpasand, H., Zamani, K., Sabet, M., Moshiri, F., Darabie, S., Daneshvar, M., & Norouzi, P. (2015). Resistance against rhizomania disease via RNA silencing in sugar beet. Plant Pathology, 64(1), 35–42.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Mehdi Arbabi for kindly providing the single-chain variable fragment against the major coat protein of BNYVV. This work was funded by the National Institute of Genetic Engineering and Biotechnology of I.R. Iran grant No. 114 T.

Funding

This study was funded by the National Institute of Genetic Engineering and Biotechnology of I.R. Iran grant No. 114 T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Malboobi.

Ethics declarations

Conflicts of interest/competing interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethics approval

Not applicable.

Research has not involved Human Participants and/or Animals.

Consent to participate

All authors have approved the manuscript and agreed with the content.

Consent for publication

All authors gave explicit consent to submit and publish.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajestani, M.J., Malboobi, M.A., Sabet, M.S. et al. Inhibition of beet necrotic yellow vein virus by the expression of a single-chain variable fragment antibody in sugar beet plants. Eur J Plant Pathol 164, 539–550 (2022). https://doi.org/10.1007/s10658-022-02578-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-022-02578-8

Keywords

Navigation