Skip to main content
Log in

Multifunctional Queen Pheromone and Maintenance of Reproductive Harmony in Termite Colonies

  • Review Article
  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Pheromones are likely involved in all social activities of social insects including foraging, sexual behavior, defense, nestmate recognition, and caste regulation. Regulation of the number of fertile queens requires communication between reproductive and non-reproductive individuals. Queen-produced pheromones have long been believed to be the main factor inhibiting the differentiation of new reproductive individuals. However, since the discovery more than 50 years ago of the queen honeybee substance that inhibits the queen-rearing behavior of workers, little progress has been made in the chemical identification of inhibitory queen pheromones in other social insects. The recent identification of a termite queen pheromone and subsequent studies have elucidated the multifaceted roles of volatile pheromones, including functions such as a fertility signal, worker attractant, queen–queen communication signal, and antimicrobial agent. The proximate origin and evolutionary parsimony of the termite queen pheromone also are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, T. 1987. Evolution of life types in termites, pp. 125–148, in S. Kawano, J. H. Connell, and T. Hidaka (eds.), Evolution and Coadaptation in Biotic Communities. University of Tokyo Press, Tokyo.

    Google Scholar 

  • Arnold, G., Leconte, Y., Trouiller, J., Hervet, H., Chappe, B., and Masson, C. 1994. Inhibition of worker honeybee ovaries development by a mixture of fatty-acid esters from larvae. C. R. Acad. Sci., Ser. 3 Sci. vie 317:511–515.

    CAS  Google Scholar 

  • Bestmann, H. J., Vostrowsky, O., and Platz, H. 1977. Pheromone XII. Male sex pheromones of noctuids (Lepidoptera). Experientia 33:874–875.

    Article  PubMed  CAS  Google Scholar 

  • Blum, M. S. 1996. Semiochemical parsimony in the Arthropoda. Annu. Rev. Entomol. 41:353–374.

    Article  PubMed  CAS  Google Scholar 

  • Blum, M. S. and Brand, J. M. 1972. Social insect pheromones: their chemistry and function. Am. Zool. 12:553–576.

    CAS  Google Scholar 

  • Brent, C. S., Schal, C., and Vargo, E. L. 2005. Endocrine changes in maturing primary queens of Zootermopsis angusticollis. J. Ins. Physiol. 51:1200–1209.

    Article  CAS  Google Scholar 

  • Brian, M. and Rigby, C. 1978. The trophic eggs of Myrmica rubra L. Ins. Soc. 25:89–110.

    Article  Google Scholar 

  • BRUINSMA, O. H. 1979. An analysis of building behaviour of the termite Macrotermes subhyalinus. Ph.D. thesis, Lanbouwhogeschool te Wageningen.

  • Butler, C. G., Callow, R. K., and Johnston, N. C. 1959. Extraction and purification of ‘queen substance’ from queen bees. Nature 184:1871–1871.

    Article  CAS  Google Scholar 

  • Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, J., Theraulaz, G. and Bonabeau, E. 2003. Self-organization in Biological Systems. Princeton University Press.

  • Castle, G. B. 1934. The dampwood termites of the western United State, genus Zootermopsis (formerly Termopsis), pp. 273–310, in J. Kofoid (ed.), Termites and Termite Control. University of California Press, Berkeley, California.

    Google Scholar 

  • Cremer, S., Armitage, S. A. O., and Schmid-Hempel, P. 2007. Social immunity. Curr. Biol. 17:R693–R702.

    Article  PubMed  CAS  Google Scholar 

  • Cuvillier-Hot, V., Cobb, M., Malosse, C., and Peeters, C. 2001. Sex, age and ovarian activity affect cuticular hydrocarbons in Diacamma ceylonense, a queenless ant. J. Ins. Physiol. 47:485–493.

    Article  CAS  Google Scholar 

  • Danty, E., Briand, L., Michard-Vanhée, C., Perez, V., Arnold, G., Gaudemer, O., Huet, D., Huet, J.-C., Ouali, C., Masson, C., and Pernollet, J.-C. 1999. Cloning and expression of a queen pheromone-binding protein in the honeybee: an olfactory-specific, developmentally regulated protein. J. Neurosci. 19:7468–7475.

    PubMed  CAS  Google Scholar 

  • Dietemann, V., Peeters, C., Liebig, J., Thivet, V., and Hölldobler, B. 2003. Cuticular hydrocarbons mediate discrimination of reproductives and nonreproductives in the ant Myrmecia gulosa. Proc. Natl. Acad. Sci. U.S.A. 100:10341–10346.

    Article  PubMed  CAS  Google Scholar 

  • Endler, A., Liebig, J., Schmitt, T., Parker, J. E., Jones, G. R., Schreier, P., and Hölldobler, B. 2004. Surface hydrocarbons of queen eggs regulate worker reproduction in a social insect. Proc. Natl. Acad. Sci. U.S.A. 101:2945–2950.

    Article  PubMed  CAS  Google Scholar 

  • Fletcher, D. J. C. and Ross, K. G. 1985. Regulation of reproduction in eusocial Hymenoptera. Annu. Rev. Entomol. 30:319–343.

    Article  Google Scholar 

  • Fussnecker, B., McKenzie, A., and Grozinger, C. 2011. cGMP modulates responses to queen mandibular pheromone in worker honey bees. J. Comp. Physiol. A 197:939–948.

    Article  CAS  Google Scholar 

  • Gilley, D. C., Degrandi-Hoffman, G., and Hooper, J. E. 2006. Volatile compounds emitted by live European honey bee (Apis mellifera L.) queens. J. Ins. Physiol. 52:520–527.

    Article  CAS  Google Scholar 

  • Greenberg, S. and Tobe, S. S. 1985. Adaptation of a radiochemical assay for juvenile hormone biosynthesis to study caste differentiation in a primitive termite. J. Ins. Physiol. 31:347–352.

    Article  CAS  Google Scholar 

  • Grozinger, C. and Robinson, G. 2007. Endocrine modulation of a pheromone-responsive gene in the honey bee brain. J. Comp. Physiol. A 193:461–470.

    Article  CAS  Google Scholar 

  • Hannonen, M., Sledge, M. F., Turillazzi, S., and Sundström, L. 2002. Queen reproduction, chemical signalling and worker behaviour in polygyne colonies of the ant Formica fusca. Anim. Behav. 64:477–485.

    Article  Google Scholar 

  • Hanus, R., Vrkoslav, V., Hrdy, I., Cvacka, J., and Sobotnik, J. 2010. Beyond cuticular hydrocarbons: evidence of proteinaceous secretion specific to termite kings and queens. Proc. Roy. Soc. Lond. B 277:995–1002.

    Article  CAS  Google Scholar 

  • Hartmann, A., D’ettorre, P., Jones, G. R., and Heinze, J. 2005. Fertility signalling: the proximate mechanism of worker policing in a clonal ant. Naturwissenschaften 92:282–286.

    Article  PubMed  CAS  Google Scholar 

  • Heinze, J., Stengl, B., and Sledge, M. 2002. Worker rank, reproductive status and cuticular hydrocarbon signature in the ant, Pachycondyla inversa. Behav. Ecol. Sociobiol. 52:59–65.

    Article  Google Scholar 

  • Heinze, J., Trunzer, B., Oliveira, P., and Hölldobler, B. 1996. Regulation of reproduction in the neotropical ponerine ant, Pachycondyla villosa. J. Ins. Behav. 9:441–450.

    Article  Google Scholar 

  • Himuro, C., Yokoi, T., and Matsuura, K. 2011. Queen-specific volatile in a higher termite Nasutitermes takasagoensis (Isoptera: Termitidae). J. Ins. Physiol. 57:962–965.

    Article  CAS  Google Scholar 

  • Holman, L., Jorgensen, C. G., Nielsen, J., and D’Ettorre, P. 2010. Identification of an ant queen pheromone regulating worker sterility. Proc. Roy. Soc. Lond. B 277:3793–3800.

    Article  CAS  Google Scholar 

  • Hoover, S. R., Keeling, C., Winston, M., and Slessor, K. 2003. The effect of queen pheromones on worker honey bee ovary development. Naturwissenschaften 90:477–480.

    Article  PubMed  CAS  Google Scholar 

  • Jacquin, E., Nagnan, P., and Frerot, B. 1991. Identification of hairpencil secretion from male Mamestra brassicae (L.)(Lepidoptera: Noctuidae) and electroantennogram studies. J. Chem. Ecol. 17:239–246.

    Article  CAS  Google Scholar 

  • Kambhampati, S. and Eggleton, P. 2000. Taxonomy and phylogeny of termites, pp. 1–25, in D. E. Bignell, T. Abe, and M. Higashi (eds.), Termites: Evolution, Sociality, Symbioses, Ecology. Kluwer, Dordrecht.

    Google Scholar 

  • Keller, L. and Nonacs, P. 1993. The role of queen pheromones in social insects: queen control or queen signal? Anim. Behav. 45:787–794.

    Article  Google Scholar 

  • Kindl, J. and Hrdy, I. 2005. Development of neotenics induced by a temporary absence of functional reproductives in Kalotermes flavicollis (Isoptera: Kalotermitidae). Eur. J. Entomol. 102:307–311.

    Google Scholar 

  • Korb, J., Weil, T., Hoffmann, K., Foster, K. R., and Rehli, M. 2009. A gene necessary for reproductive suppression in termites. Science 324:758.

    Article  PubMed  CAS  Google Scholar 

  • Lacey, E. S., Moreira, J. A., Millar, J. G., and Hanks, L. M. 2008. A male-produced aggregation pheromone blend consisting of alkanediols, terpenoids, and an aromatic alcohol from the cerambycid beetle Megacyllene caryae. J. Chem. Ecol. 34:408–417.

    Article  PubMed  CAS  Google Scholar 

  • le Conte, Y. and Hefetz, A. 2008. Primer pheromones in social hymenoptera. Annu. Rev. Entomol. 53:523–542.

    Article  PubMed  Google Scholar 

  • Lenz, M. 1994. Food resources, colony growth and caste development in wood-feeding termites, pp. 159–210, in J. H. Hunt and C. A. Nalepa (eds.), Nourishment and Evolution in Insect Societies. Westview Press, Boulder, Colorado.

    Google Scholar 

  • Liebig, J., Eliyahu, D., and Brent, C. S. 2009. Cuticular hydrocarbon profiles indicate reproductive status in the termite Zootermopsis nevadensis. Behav. Ecol. Sociobiol. 63:1799–1807.

    Article  Google Scholar 

  • Liebig, J., Peeters, C., Oldham, N. J., Markstädter, C., and Hölldobler, B. 2000. Are variations in cuticular hydrocarbons of queens and workers a reliable signal of fertility in the ant Harpegnathos saltator? Proc. Natl. Acad. Sci. U.S.A. 97:4124–4131.

    Article  PubMed  CAS  Google Scholar 

  • Light, S. F. 1944. Experimental studies on ectohormonal control of the development of supplementary reproductives in the termite genus Zootermopsis (formerly Termopsis). Univ. Calif. Pub. Zool. 43:413–454.

    Google Scholar 

  • Light, S. F. and Weesner, F. M. 1951. Further studies in the production of supplementary reproductives in Zootermopsis (Isoptera). J. Exp. Zool. 117:397–414.

    Article  Google Scholar 

  • Lüscher, M. 1952. Die produktion und elimination von ersatzgeschlechtstieren bei der termite Kalotermes flavicollis Fabr. Z. Vergl. Physiol. 34:123–141.

    Google Scholar 

  • Lüscher, M. 1961. Social control of polymorphism in termites. Symp. Roy. Entomol. Soc. Lond. 1:57–67.

    Google Scholar 

  • Maekawa, K., Ishitani, K., Gotoh, H., Cornette, R., and Miura, T. 2010. Juvenile Hormone titre and vitellogenin gene expression related to ovarian development in primary reproductives compared with nymphs and nymphoid reproductives of the termite Reticulitermes speratus. Physiol. Entomol. 35:52–58.

    Article  CAS  Google Scholar 

  • Maisonnasse, A., Lenoir, J. C., Beslay, D., Crauser, D., and le Conte, Y. 2010. E-beta-ocimene, a volatile brood pheromone involved in social regulation in the honey bee colony (Apis mellifera). PLos ONE 5:e13531. doi:10.1371/journal.pone.0013531.

    Article  PubMed  Google Scholar 

  • Matsuura, K. 2006. Termite-egg mimicry by a sclerotium-forming fungus. Proc. Roy. Soc. Lond. B 273:1203–1209.

    Article  Google Scholar 

  • Matsuura, K. 2010. Sexual and asexual reproduction in termites, pp. 255–277, in D. E. Bignell, Y. Roisin, and N. Lo (eds.), Biology of Termites: A Modern Synthesis. Springer, Dordrecht.

    Chapter  Google Scholar 

  • Matsuura, K. and Yashiro, T. 2009. The cuckoo fungus ‘termite ball’ mimicking termite eggs: a novel insect-fungal association, pp. 242–255, in J. K. Misra and S. K. Deshmukh (eds.), Fungi from Different Environments. Science Publishers, Enfield, New Hampshire.

    Chapter  Google Scholar 

  • Matsuura, K. and Yashiro, T. 2010. Parallel evolution of termite-egg mimicry by sclerotium-forming fungi in distant termite groups. Biol. J. Linn. Soc. 100:531–537.

    Article  Google Scholar 

  • Matsuura, K. and Kobayashi, N. 2010. Termite queens adjust egg size according to colony development. Behav. Ecol. 21:1018–1023.

    Article  Google Scholar 

  • Matsuura, K. and Yamamoto, Y. 2011. Workers do not mediate the inhibitory power of queens in a termite, Reticulitermes speratus (Isoptera, Rhinotermitidae). Ins. Soc. 58:513–518.

    Article  Google Scholar 

  • Matsuura, K., Tanaka, C., and Nishida, T. 2000. Symbiosis of a termite and a sclerotium-forming fungus: Sclerotia mimic termite eggs. Ecol. Res. 15:405–414.

    Article  Google Scholar 

  • Matsuura, K., Tamura, T., Kobayashi, N., Yashiro, T., and Tatsumi, S. 2007. The antibacterial protein lysozyme identified as the termite egg recognition pheromone. PLos ONE 2:e813. doi:10.1371/journal.pone.0000813.

    Article  PubMed  Google Scholar 

  • Matsuura, K., Vargo, E. L., Kawatsu, K., Labadie, P. E., Nakano, H., Yashiro, T., and Tsuji, K. 2009a. Queen succession through asexual reproduction in termites. Science 323:1687.

    Article  CAS  Google Scholar 

  • Matsuura, K., Yashiro, T., Shimizu, K., Tatsumi, S., and Tamura, T. 2009b. Cuckoo fungus mimics termite eggs by producing the cellulose-digesting enzyme beta-glucosidase. Curr. Biol. 19:30–36.

    Article  CAS  Google Scholar 

  • Matsuura, K., Himuro, C., Yokoi, T., Yamamoto, Y., Vargo, E. L., and Keller, L. 2010. Identification of a pheromone regulating caste differentiation in termites. Proc. Natl. Acad. Sci. U.S.A. 107:12963–12968.

    Article  PubMed  CAS  Google Scholar 

  • Miura, T., Koshikawa, S., and Matsumoto, T. 2003. Winged presoldiers induced by a juvenile hormone analog in Zootermopsis nevadensis: Implications for plasticity and evolution of caste differentiation in termites. J. Morphol. 257:22–32.

    Article  PubMed  CAS  Google Scholar 

  • Miura, T. and Matsumoto, T. 1996. Ergatoid reproductives in Nasutitermes takasagoensis (Isoptera: Termitidae). Sociobiology 27:223–238.

    Google Scholar 

  • Mohammedi, A., Paris, A., Crauser, D., and le Conte, Y. 1998. Effect of aliphatic esters on ovary development of queenless bees (Apis mellifera L.). Naturwissenschaften 85:455–458.

    Article  CAS  Google Scholar 

  • Mori, K. 1998. Chirality and insect pheromones. Chirality 10:578–586.

    Article  CAS  Google Scholar 

  • Mori, K. 2007. Significance of chirality in pheromone science. Bioorg. Med. Chem. 15:7505–7523.

    Article  PubMed  CAS  Google Scholar 

  • Myles, T. G. 1999. Review of secondary reproduction in termites (Insecta: Isoptera) with comments on its role in termite ecology and social evolution. Sociobiology 33:1–91.

    Google Scholar 

  • Oldroyd, B. O., Wossler, T. W., and Ratnieks, F. R. 2001. Regulation of ovary activation in worker honey-bees (Apis mellifera): larval signal production and adult response thresholds differ between anarchistic and wild-type bees. Behav. Ecol. Sociobiol. 50:366–370.

    Article  Google Scholar 

  • Oster, G. F. and Wilson, E. O. 1978. Caste and Ecology in the Social Insects. Princeton University Press.

  • Pankiw, T. and Garza, C. 2007. Africanized and European honey bee worker ovarian follicle development response to racial brood pheromone extracts. Apidologie 38:156–163.

    Article  CAS  Google Scholar 

  • Peeters, C. and Liebig, J. 2009. Fertility signaling as a general mechanism of regulating reproductive division of labor in ants, pp. 220–242, in J. Gadau and J. Fewell (eds.), Organization of Insect Societies: From Genome to Socio-complexity. Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Peeters, C., Monnin, T., and Malosse, C. 1999. Cuticular hydrocarbons correlated with reproductive status in a queenless ant. Proc. Roy. Soc. Lond. B 266:1323–1327.

    Article  CAS  Google Scholar 

  • Pickens, A. L. 1932. Observations on the genus Reticulitermes Holmgren. Pan-Pac. Entomol. 3:178–180.

    Google Scholar 

  • Roisin, Y. 1994. Intragroup conflicts and the evolution of sterile castes in termites. Am. Nat. 143:751–765.

    Article  Google Scholar 

  • Rosengaus, R. and Traniello, J. 2001. Disease susceptibility and the adaptive nature of colony demography in the dampwood termite Zootermopsis angusticollis. Behav. Ecol. Sociobiol. 50:546–556.

    Article  Google Scholar 

  • Sannasi, A. and Sundara Rajulu, G. 1967. Occurrence of antimicrobial substance in the exudate of physogastric queen termites, Termes redemanni Wasmann. Curr. Sci 16:436–437.

    Google Scholar 

  • Scharf, M. E., Ratliff, C. R., Wu-Scharf, D., Zhou, X., Pittendrigh, B. R., and Bennett, G. W. 2005. Effects of juvenile hormone III on Reticulitermes flavipes: changes in hemolymph protein composition and gene expression. Ins. Biochem. Mol. Biol. 35:207–215.

    Article  CAS  Google Scholar 

  • Sledge, M. F., Boscaro, F., and Turillazzi, S. 2001. Cuticular hydrocarbons and reproductive status in the social wasp Polistes dominulus. Behav. Ecol. Sociobiol. 49:401–409.

    Article  Google Scholar 

  • Springhetti, A. 1972. I reali nella differenziazione delle caste di Kalotermes flavicollis (Fabr.) (Isoptera). Boll. Zool. 39:83–87.

    Article  Google Scholar 

  • Stuart, A. M. 1979. The determination and regulation of the neotenic reproductive caste in the lower termites (Isoptera): with special reference to the genus Zootermopsis (Hagen). Sociobiology 4:223–237.

    Google Scholar 

  • Thorne, B. L. 1996. Termite terminology. Sociobiology 28:253–263.

    Google Scholar 

  • Thorne, B. L., Traniello, J. F. A., Adams, E. S., and Bulmer, M. 1999. Reproductive dynamics and colony structure of subterranean termites of the genus Reticulitermes (Isoptera Rhinotermitidae): a review of the evidence from behavioral, ecological, and genetic studies. Ethol. Ecol. Evol. 11:149–169.

    Article  Google Scholar 

  • Traniello, J. F. A., Rosengaus, R. B., and Savoie, K. 2002. The development of immunity in a social insect: Evidence for the group facilitation of disease resistance. Proc. Natl. Acad. Sci. U.S.A. 99:6838–6842.

    Article  PubMed  CAS  Google Scholar 

  • Trouiller, J., Arnold, G., Le Conte, Y., Masson, C., and Chappe, B. 1991. Temporal pheromonal and kairomonal secretion in the brood of honeybees. Naturwissenschaften 78:368–370.

  • Tschinkel, W. R. 1988. Social control of egg-laying rate in queens of the fire ant, Solenopsis invicta. Physiol. Entomol. 13:327–350.

    Article  Google Scholar 

  • Turillazzi, S., Dapporto, L., Pansolli, C., Boulay, R., Dani, F. R., Moneti, G., and Pieraccini, G. 2006. Habitually used hibernation sites of paper wasps are marked with venom and cuticular peptides. Curr. Biol. 16:R530–R531.

    Article  PubMed  CAS  Google Scholar 

  • Vargo, E. L. 1992. Mutual pheromonal inhibition among queens in polygyne colonies of the fire ant Solenopsis invicta. Behav. Ecol. Sociobiol. 31:205–210.

    Article  Google Scholar 

  • Vargo, E. L. 1999. Reproductive development and ontogeny of queen pheromone production in the fire ant Solenopsis invicta. Physiol. Entomol. 24:370–376.

    Article  Google Scholar 

  • Vargo, E. L. and Husseneder, C. 2009. Biology of subterranean termites: insights from molecular studies of Reticulitermes and Coptotermes. Annu. Rev. Entomol. 54:379–403.

    Article  PubMed  CAS  Google Scholar 

  • Weil, T., Hoffmann, K., Kroiss, J., Strohm, E., and Korb, J. 2009. Scent of a queen: cuticular hydrocarbons specific for female reproductives in lower termites. Naturwissenschaften 96:315–319.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, E. O. 1965. Chemical communication in the social insects. Science 149:1064–1071.

    Article  PubMed  CAS  Google Scholar 

  • Wood, W. F., Palmer, T. M., and Stanton, M. L. 2002. A comparison of volatiles in mandibular glands from three Crematogaster ant symbionts of the whistling thorn acacia. Biochem. Sys. Ecol. 30:217–222.

    Article  CAS  Google Scholar 

  • Yamamoto, Y., Kobayashi, T. and Matsuura, K. 2011. The lack of chiral specificity in a termite queen pheromone. Physiol. Entomol.: doi:10.1111/j.1365-3032.2011.00806.x

  • Yamamoto, Y. and Matsuura, K. 2011. Queen pheromone regulates egg production in a termite. Biol. Lett. 7:727–729.

    Article  PubMed  Google Scholar 

  • Yashiro, T. and Matsuura, K. 2007. Distribution and phylogenetic analysis of termite egg-mimicking fungi “termite balls” in Reticulitermes termites. Ann. Entomol. Soc. Am. 100:532–538.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank Drs E. L. Vargo, L. Keller, K. Tsuji, C. Himuro, and T. Yokoi for support and helpful discussions. I also thank Y. Yamamoto, T. Yashiro, W. Suehiro, and T. Matsunaga for technical assistance. This work was supported by the Japan Society for the Promotion of Science (no.09001407) to K.M., the Programme for Promotion of Basic and Applied Researches for Innovations in Bio-oriented Industry to K.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Matsuura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuura, K. Multifunctional Queen Pheromone and Maintenance of Reproductive Harmony in Termite Colonies. J Chem Ecol 38, 746–754 (2012). https://doi.org/10.1007/s10886-012-0137-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-012-0137-3

Keywords

Navigation