Skip to main content

Advertisement

Log in

Cetuximab in combination therapy: from bench to clinic

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Cetuximab, a chimeric IgG1 monoclonal antibody directed against the ligand-binding domain of the epidermal growth factor receptor, offers a paradigm for the combination of molecularly targeted therapies with cytotoxic agents. In preclinical models, the addition of cetuximab to chemotherapy or radiation therapy enhances antitumor activity. Proposed mechanisms include reducing tumor cell proliferation, angiogenesis, and DNA repair capacity; increasing apoptosis; and inducing cell cycle arrest at treatment-sensitive points. These effects may enhance and restore tumor sensitivity to cytotoxic therapies. In clinical trials, the addition of cetuximab to chemotherapy improves outcomes of patients who had previously failed such agents, as illustrated in irinotecan-resistant and oxaliplatin-refractory metastatic colorectal cancer. As initial therapy, the addition of cetuximab to chemotherapy extends survival in colorectal cancer, lung cancer, and head and neck cancer. Combining cetuximab with radiation therapy extends survival in locally advanced head and neck cancer. As predictive biomarkers are identified, it may become possible to select patients most likely to benefit from such combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lord, R. V., Brabender, J., Gandara, D., et al. (2002). Low ERCC1 expression correlates with prolonged survival after cisplatin plus gemcitabine chemotherapy in non-small cell lung cancer. Clinical Cancer Research, 8, 2286–2291.

    PubMed  CAS  Google Scholar 

  2. Rosell, R., Taron, M., Barnadas, A., et al. (2003). Nucleotide excision repair pathways involved in cisplatin resistance in non-small-cell lung cancer. Cancer Control, 10, 297–305.

    PubMed  Google Scholar 

  3. Michor, F., Nowak, M. A., & Iwasa, Y. (2006). Evolution of resistance to cancer therapy. Current Pharmaceutical Design, 12, 261–271.

    Article  PubMed  CAS  Google Scholar 

  4. Olaussen, K. A., Dunant, A., Fouret, P., et al. (2006). DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. New England Journal of Medicine, 355, 983–991.

    Article  PubMed  CAS  Google Scholar 

  5. Handra-Luca, A., Hernandez, J., Mountzios, G., et al. (2007). Excision repair cross complementation group 1 immunohistochemical expression predicts objective response and cancer-specific survival in patients treated by cisplatin-based induction chemotherapy for locally advanced head and neck squamous cell carcinoma. Clinical Cancer Research, 13, 3855–3859.

    Article  PubMed  CAS  Google Scholar 

  6. Willett, C. G., Boucher, Y., di Tomaso, E., et al. (2004). Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nature Medicine, 10, 145–147.

    Article  PubMed  CAS  Google Scholar 

  7. Dickson, P. V., Hamner, J. B., Sims, T. L., et al. (2007). Bevacizumab-induced transient remodeling of the vasculature in neuroblastoma xenografts results in improved delivery and efficacy of systemically administered chemotherapy. Clinical Cancer Research, 13, 3942–3950.

    Article  PubMed  CAS  Google Scholar 

  8. Herbst, R. S., & Shin, D. M. (2002). Monoclonal antibodies to target epidermal growth factor receptor-positive tumors. A new paradigm for cancer therapy. Cancer, 94, 1593–1611.

    Article  PubMed  CAS  Google Scholar 

  9. Yarden, Y. (2001). The EGFR family and its ligands in human cancer: Signalling mechanisms and therapeutic opportunities. European Journal of Cancer, 37, S3–S8.

    Article  PubMed  CAS  Google Scholar 

  10. Haupt, S., Berger, M., Goldberg, Z., et al. (2003). Apoptosis—The p53 network. Journal of Cell Science, 116, 4077–4085.

    Article  PubMed  CAS  Google Scholar 

  11. Peng, X. H., Karna, P., Cao, Z., et al. (2006). Cross-talk between epidermal growth factor receptor and hypoxia-inducible factor 1a signal pathways increases resistance to apoptosis by up-regulating survivin gene expression. Journal of Biological Chemistry, 281, 25903–25914.

    Article  PubMed  CAS  Google Scholar 

  12. Kari, C., Chan, T. O., Rocha de Quadros, R., et al. (2003). Targeting the epidermal growth factor receptor in cancer: Apoptosis takes center stage. Cancer Research, 63, 1–5.

    PubMed  CAS  Google Scholar 

  13. Rodemann, H. P., Dittmann, K., & Toulany, M. (2007). Radiation-induced EGFR-signaling and control of DNA-damage repair. International Journal of Radiation Biology, 83, 781–791.

    Article  PubMed  CAS  Google Scholar 

  14. Sunada, H., Magun, B. E., Mendelsohn, J., et al. (1986). Monoclonal antibody against epidermal growth factor receptor is internalized without stimulating receptor phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 83, 3825–3829.

    Article  PubMed  CAS  Google Scholar 

  15. Jaramillo, M. L., Leon, Z., Grothe, S., et al. (2006). Effect of the anti-receptor ligand-blocking 225 monoclonal antibody of EGF receptor endocytosis and sorting. Experimental Cell Research, 312, 2778–2790.

    Article  PubMed  CAS  Google Scholar 

  16. Prewett, M., Rockwell, P., Rose, C., et al. (1996). Anti-tumor and cell cycle responses in KB cells treated with a chimeric anti-EGFR monoclonal antibody in combination with cisplatin. International Journal of Oncology, 9, 217–224.

    CAS  Google Scholar 

  17. Mendelson, J. (1997). Epidermal growth factor receptor inhibition by a monoclonal antibody as anticancer therapy. Clinical Cancer Research, 3, 2703–2707.

    Google Scholar 

  18. Lilenbaum, R. C. (2006). The evolving role of cetuximab in non-small cell lung cancer. Clinical Cancer Research, 12(suppl), 4432s–4435s.

    Article  PubMed  CAS  Google Scholar 

  19. Kimura, H., Sakai, K., Arao, T., et al. (2007). Antibody-dependent cellular cytotoxicity of cetuximab against tumor cells with wild-type or mutant epidermal growth factor receptor. Cancer Science, 98, 1275–1280.

    Article  PubMed  CAS  Google Scholar 

  20. Kurai, J., Chikumi, H., Hashimoto, K., et al. (2007). Antibody-dependent cellular cytotoxicity mediated by cetuximab against lung cancer cell lines. Clinical Cancer Research, 13, 1552–1561.

    Article  PubMed  CAS  Google Scholar 

  21. Chen, D. J., & Nirodi, C. S. (2007). The epidermal growth factor receptor: A role in repair of radiation-induced DNA damage. Clinical Cancer Research, 13(22 Pt 1), 6555–6560.

    Article  PubMed  CAS  Google Scholar 

  22. Giaccone, G., Herbst, R. S., Manegold, C., et al. (2004). Gefitinib in combination with gemcitabine and cisplatin in advanced non-small cell lung cancer. Journal of Clinical Oncology, 22, 777–784.

    Article  PubMed  CAS  Google Scholar 

  23. Herbst, R. S., Giaccone, G., Schiller, J. H., et al. (2004). Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: A phase III trial—INTACT 2. Journal of Clinical Oncology, 22, 785–794.

    Article  PubMed  CAS  Google Scholar 

  24. Herbst, R. S., Prager, D., Hermann, R., et al. (2005). TRIBUTE: A phase III trial of erlotinib hydrochloride (OSI-774) combined with carboplatin and paclitaxel chemotherapy in advanced non-small-cell lung cancer. Journal of Clinical Oncology, 23, 5892–5899.

    Article  PubMed  CAS  Google Scholar 

  25. Gatzemeier, U., Pluzanska, A., Szczesna, A., Kaukel, E., et al. (2007). Phase III study of erlotinib in combination with cisplatin and gemcitabine in advanced non-small-cell lung cancer: The Tarceva lung cancer investigation trial. Journal of Clinical Oncology, 25, 1545–1552.

    Article  PubMed  CAS  Google Scholar 

  26. Pirker, R., Pereira, A., Szczesna, A., von Pawel, J., et al. (2009). Cetuximab plus chemotherapy in patients with advanced non-small cell lung cancer (FLEX): An open-label randomized phase III trial. Lancet, 373, 1525–1531.

    Article  PubMed  CAS  Google Scholar 

  27. Crawford, J., Sandler, A. B., Hammond, L. A., et al. (2004). ABX-EGF in combination with paclitaxel and carboplatin for advanced non-small cell lung cancer (NSCLC) [Meeting Abstracts]. Journal of Clinical Oncology, 22, 7083.

    Google Scholar 

  28. Benhar, M., Engelberg, D., & Levitzki, A. (2002). Cisplatin-induced activation of the EGF receptor. Oncogene, 21, 8723–8731.

    Article  PubMed  CAS  Google Scholar 

  29. Sumitomo, M., Asano, T., Asakuma, J., Asano, T., Horiguchi, A., & Hayakawa, M. (2004). ZD1839 modulates paclitaxel response in renal cancer by blocking paclitaxel-induced activation of the epidermal growth factor receptor–extracellular signal-regulated kinase pathway. Clinical Cancer Research, 10, 794–801.

    Article  PubMed  CAS  Google Scholar 

  30. Tsang, W.-P., Kong, S.-K., & Kwok, T.-T. (2006). Epidermal growth factor induction of resistance to topoisomerase II toxins in human squamous carcinoma A431 cells. Oncology Reports, 16, 789–793.

    PubMed  CAS  Google Scholar 

  31. Huang, S.-M., Bock, J. M., & Harari, P. M. (1999). Epidermal growth factor blockade with C225 modulates proliferation, apoptosis, and radiosensitivity in squamous cell carcinomas of the head and neck. Cancer Research, 59, 1935–1940.

    PubMed  CAS  Google Scholar 

  32. Vincenzi, B., Schiavon, G., Silletta, M., Santini, D., & Tonini, G. (2008). Critical Reviews in Oncology/Hematology, 68, 93–106.

    Article  PubMed  Google Scholar 

  33. Petit, A. M. V., Rak, J., Hung, M.-C., et al. (1997). Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo. American Journal of Pathology, 151, 1523–1530.

    PubMed  CAS  Google Scholar 

  34. Perrotte, P., Matsumoto, T., Inoue, K., et al. (1999). Anti-epidermal growth factor antibody C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice. Clinical Cancer Research, 5, 257–264.

    PubMed  CAS  Google Scholar 

  35. Prewett, M. C., Hooper, A. T., Bassi, R., et al. (2002). Enhanced antitumor activity of anti-epidermal growth factor receptor monoclonal antibody IMC-C225 in combination with irinotecan (CPT-11) against human colorectal tumor xenografts. Clinical Cancer Research, 8, 994–1003.

    PubMed  CAS  Google Scholar 

  36. Balin-Gauthier, D., Delord, J. P., Rochaix, P., et al. (2006). In vivo and in vitro antitumor activity of oxaliplatin in combination with cetuximab in human colorectal tumor cell lines expressing different level of EGFR. Cancer Chemotherapy and Pharmacology, 57, 709–718.

    Article  PubMed  CAS  Google Scholar 

  37. Ciardiello, F., Bianco, R., Damiano, V., et al. (1999). Antitumor activity of sequential treatment with topotecan and anti-epidermal growth factor receptor monoclonal antibody C225. Clinical Cancer Research, 5, 909–916.

    PubMed  CAS  Google Scholar 

  38. Kim, S., Prichard, C. N., Younes, M. N., et al. (2006). Cetuximab and irinotecan interact synergistically to inhibit the growth of orthotopic anaplastic thyroid carcinoma xenografts in nude mice. Clinical Cancer Research, 12, 600–607.

    Article  PubMed  CAS  Google Scholar 

  39. Steiner, P., Joynes, C., Bassi, R., et al. (2007). Tumor growth inhibition with cetuximab and chemotherapy in non-small cell lung cancer xenografts expressing wild-type and mutated epidermal growth factor receptor. Clinical Cancer Research, 13, 1540–1551.

    Article  PubMed  CAS  Google Scholar 

  40. Inoue, K., Slaton, J. W., Perrotte, P., et al. (2000). Paclitaxel enhances the effects of the anti-epidermal growth factor receptor monoclonal antibody ImClone C225 in mice with metastatic human bladder transitional cell carcinoma. Clinical Cancer Research, 6, 4874–4884.

    PubMed  CAS  Google Scholar 

  41. Balin-Gauthier, D., Delord, J. P., Pillaire, M. J., et al. (2008). Cetuximab potentiates oxaliplatin cytotoxic effect through a defect in NER and DNA replication initiation. British Journal of Cancer, 98, 120–128.

    Article  PubMed  CAS  Google Scholar 

  42. Prewett, M., Deevi, D. S., Bassi, R., et al. (2007). Tumors established with cell lines selected for oxaliplatin resistance respond to oxaliplatin if combined with cetuximab. Clinical Cancer Research, 13, 7432–7440.

    Article  PubMed  CAS  Google Scholar 

  43. Schmidt-Ullrich, R. K., Valerie, K. C., Chan, W., et al. (1994). Altered expression of epidermal growth factor receptor and estrogen receptor in MCF-7 cells after single and repeated radiation exposures. International Journal of Radiation Oncology, Biology, Physics, 29, 813–819.

    PubMed  CAS  Google Scholar 

  44. Schmidt-Ullrich, R. K., Mikkelsen, R. B., Dent, P., et al. (1997). Radiation-induced proliferation of the human A431 squamous carcinoma cells is dependent on EGFR tyrosine phosphorylation. Oncogene, 15, 1191–1197.

    Article  PubMed  CAS  Google Scholar 

  45. Contessa, J. N., Hampton, J., Lammering, G., et al. (2002). Ionizing radiation activates Erb-B receptor dependent Akt and p70 S6 kinase signaling in carcinoma cells. Oncogene, 21, 4032–4041.

    Article  PubMed  CAS  Google Scholar 

  46. Dittmann, K., Mayer, C., Fehrenbacher, B., et al. (2005). Radiation-induced epidermal growth factor receptor nuclear import is linked to activation of DNA-dependent protein kinase. Journal of Biological Chemistry, 280, 31182–31189.

    Article  PubMed  CAS  Google Scholar 

  47. Harari, P. M., & Huang, S.-M. (2001). Head and neck cancer as a clinical model for molecular targeting of therapy: Combining EGFR blockade with radiation. International Journal of Radiation Oncology, Biology, Physics, 49, 427–433.

    Article  PubMed  CAS  Google Scholar 

  48. Huang, S.-M., & Harari, P. M. (2000). Modulation of radiation response after epidermal growth factor receptor blockade in squamous cell carcinomas: Inhibition of damage repair, cell cycle kinetics, and tumor angiogenesis. Clinical Cancer Research, 6, 2166–2174.

    PubMed  CAS  Google Scholar 

  49. Cunningham, D., Humblet, Y., Siena, S., et al. (2004). Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. New England Journal of Medicine, 351, 337–345.

    Article  PubMed  CAS  Google Scholar 

  50. Van Cutsem, E., Lang, I., D'haens, G., et al. (2008) KRAS status and efficacy in the first-line treatment of patients with metastatic colorectal cancer (mCRC) treated with FOLFIRI with or without cetuximab: The CRYSTAL experience. Journal of Clinical Oncology, 26, Abstract 2.

  51. Bokemeyer, C., Bondarenko, I., Makhson, A., et al. (2009). Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. Journal of Clinical Oncology, 27, 663–671.

    Article  PubMed  CAS  Google Scholar 

  52. Vermorken, J. B., Mesia, R., Rivera, F., et al. (2008). Platinum-based chemotherapy plus cetuximab in head and neck cancer. New England Journal of Medicine, 359, 1116–1127.

    Article  PubMed  CAS  Google Scholar 

  53. Souglakos, J., Kalykaki, A., Vamvakas, L., et al. (2007). Phase II trial of capecitabine and oxaliplatin (CAPOX) plus cetuximab in patients with metastatic colorectal cancer who progressed after oxaliplatin-based chemotherapy. Annals of Oncology, 18, 305–310.

    Article  PubMed  CAS  Google Scholar 

  54. Vermorken, J. B., Herbst, R. S., Leon, X., et al. (2008). Overview of the efficacy of cetuximab in recurrent and/or metastatic squamous cell carcinoma of the head and neck in patients who previously failed platinum-based therapies. Cancer, 112, 2710–2719.

    Article  PubMed  CAS  Google Scholar 

  55. León, X., Hitt, R., Constenia, M., et al. (2005). A retrospective analysis of the outcome of patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck refractory to a platinum-based chemotherapy. Clinical Oncology (Royal College of Radiologists), 17, 418–424.

    Google Scholar 

  56. Lynch, T. J., Patel, T., Dreisbach, L., et al. (2007). A randomized multicenter phase III study of cetuximab (Erbitux®) in combination with taxane/carboplatin versus taxane/carboplatin alone as first-line treatment for patients with advanced/metastatic non-small cell lung cancer (NSCLC): B3-03. Journal of Thoracic Oncology, 2(suppl 4), S340–S341.

    Article  Google Scholar 

  57. Lynch, T. J., Patel, T., Dreisbach, L., et al. (2008). Overall survival (OS) results from the phase III trial BMS 099: Cetuximab+taxane/carboplatin as 1st-line treatment for advanced NSCLC. Journal of Thoracic Oncology, 3, S305.

    Article  Google Scholar 

  58. Bonner, J. A., Harari, P. M., Giralt, J., et al. (2006). Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. New England Journal of Medicine, 354, 567–578.

    Article  PubMed  CAS  Google Scholar 

  59. Caudell, J. J., Sawrie, S. M., Spencer, S. A., et al. (2008). Locoregionally advanced head and neck cancer treated with primary radiotherapy: A comparison of the addition of cetuximab or chemotherapy and the impact of protocol treatment. International Journal of Radiation Oncology, Biology, Physics, 71, 676–681.

    PubMed  CAS  Google Scholar 

  60. Blumenschein, G. R., Paulus, R., Curran, W. J., et al. (2008). A phase II study of cetuximab (C225) in combination with chemoradiation (CRT) in patients (pts) with stage IIIA/B non-small cell lung cancer (NSCLC): A report of the 2 year and median survival (MS) for the RTOG 0324 trial. Journal of Clinical Oncology, 26(May 20 suppl), 7516.

    Google Scholar 

  61. Tabernero, J., Pfeiffer, P., & Cervantes, A. (2008). Administration of cetuximab every 2 weeks in the treatment of metastatic colorectal cancer: An effective, more convenient alternative to weekly administration? The Oncologist, 13, 113–119.

    Article  PubMed  CAS  Google Scholar 

  62. Martín-Martorell, P., Roselló, S., Rodríguez-Braun, E., et al. (2008). Biweekly cetuximab and irinotecan in advanced colorectal cancer patients progressing after at least one previous line of chemotherapy: Results of a phase II single institution trial. British Journal of Cancer, 99, 455–458.

    Article  PubMed  CAS  Google Scholar 

  63. Pfeiffer, P., Nielsen, D., Bjerregaard, J., et al. (2008). Biweekly cetuximab and irinotecan as third-line therapy in patients with advanced colorectal cancer after failure to irinotecan, oxaliplatin, and 5-fluorouracil. Annals of Oncology, 19, 1141–1145.

    Article  PubMed  CAS  Google Scholar 

  64. Raben, D., Helfrich, B., Chan, D. C., et al. (2005). The effects of cetuximab alone and in combination with radiation and/or chemotherapy in lung cancer. Clinical Cancer Research, 11, 795–805.

    PubMed  CAS  Google Scholar 

  65. Chung, K. Y., Shia, J., Kemeny, N. E., et al. (2005). Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. Journal of Clinical Oncology, 23, 1803–1810.

    Article  PubMed  CAS  Google Scholar 

  66. Thienelt, C. D., Bunn, P. A., Jr., Hanna, N., et al. (2005). Multicenter phase I/II study of cetuximab with paclitaxel and carboplatin in untreated patients with stage IV non-small-cell lung cancer. Journal of Clinical Oncology, 23, 8786–8793.

    Article  PubMed  Google Scholar 

  67. Robert, F., Blumenschein, G., Herbst, R. S., et al. (2005). Phase I/IIa study of cetuximab with gemcitabine plus carboplatin in patients with chemotherapy-naive advanced non-small-cell lung cancer. Journal of Clinical Oncology, 23, 9089–9096.

    Article  PubMed  CAS  Google Scholar 

  68. Kelly, K., Herbst, R. S., Crowley, J. J., et al. (2006). Concurrent chemotherapy plus cetuximab or chemotherapy followed by cetuximab in advanced non-small cell lung cancer (NSCLC): A randomized phase II selectional trial SWOG 0342. Journal of Clinical Oncology, 24(18S), 7015.

    Google Scholar 

  69. Rosell, R., Robinet, G., Szczesna, A., et al. (2008). Randomized phase II study of cetuximab plus cisplatin/vinorelbine compared with cisplatin/vinorelbine alone as first-line therapy in EGFR-expressing advanced non-small-cell lung cancer. Annals of Oncology, 19, 362–369.

    Article  PubMed  CAS  Google Scholar 

  70. Khambata-Ford, S., Harbison, C., Hart, L., et al. (2008). K-Ras mutations (mt) and EGFR-related markers as potential predictors of cetuximab benefit in 1st line advanced NSCLC: Results from the BMS099 study [abstract]. Journal of Thoracic Oncology, 3(Suppl. 4), S304.

    Google Scholar 

  71. Karapetis, C. S., Khambata-Ford, S., Jonker, D. J., et al. (2008). K-ras mutations and benefit from cetuximab in advanced colorectal cancer. New England Journal of Medicine, 359, 1757–1765.

    Article  PubMed  CAS  Google Scholar 

  72. Khambata-Ford, S., Garrett, C. R., Meropol, N. J., et al. (2007). Expression of epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab. Journal of Clinical Oncology, 25, 3230–3237.

    Article  PubMed  CAS  Google Scholar 

  73. Yonesaka, K., Zejnullahu, K., Lindeman, N., et al. (2008). Autocrine production of amphiregulin predicts sensitivity to both gefitinib and cetuximab in EGFR wild-type cancers. Clinical Cancer Research, 14, 6963–6973.

    Article  PubMed  CAS  Google Scholar 

  74. Di Nicolantonio, F., Martini, M., Molinari, F., et al. (2008). Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. Journal of Clinical Oncology, 26, 5705–5712.

    Article  PubMed  CAS  Google Scholar 

  75. Bibeau, F., Lopez-Crapez, E., Di Fiore, F., et al. (2009). Impact of FcγRIIa-FcγRIIIa polymorphisms and KRAS mutations on the clinical outcome of patients with metastatic colorectal cancer treated with cetuximab plus irinotecan. Journal of Clinical Oncology, 27, 1122–1129.

    Article  PubMed  CAS  Google Scholar 

  76. Taylor, R. J., Chan, S. L., Wood, A., et al. (2009). FcγRIIIa polymorphisms and cetuximab induced cytotoxicity in squamous cell carcinoma of the head and neck. Cancer Immunology, Immunotherapy, 58, 997–1006.

    Article  PubMed  CAS  Google Scholar 

  77. Philip, P. A., Benedetti, J., Fenoglio-Preiser, C., et al. (2007). Phase III study of gemcitabine [G] plus cetuximab [C] versus gemcitabine in patients [pts] with locally advanced or metastatic pancreatic adenocarcinoma [PC]: SWOG S0205 study. Journal of Clinical Oncology, 25(18S), LBA4509.

    Google Scholar 

  78. Horisberger, K., Treschl, A., Mai, S., et al. (2009). Cetuximab in combination with capecitabine, irinotecan, and radiotherapy for patients with locally advanced rectal cancer: Results of a phase II MARGIT trial. International Journal of Radiation Oncology, Biology, Physics, 74, 1487–1493.

    PubMed  CAS  Google Scholar 

  79. Tol, J., Koopman, M., Cats, A., et al. (2009). Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. New England Journal of Medicine, 360, 563–572.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Editorial support was provided by Clinical Insight, Inc. Dr. Gerber receives research support from Genentech Inc. and Gloucester Pharmaceuticals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Gerber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerber, D.E., Choy, H. Cetuximab in combination therapy: from bench to clinic. Cancer Metastasis Rev 29, 171–180 (2010). https://doi.org/10.1007/s10555-010-9215-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-010-9215-6

Keywords

Navigation