Skip to main content

Advertisement

Log in

The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: a review and perspectives

  • Synthesis and Emerging Ideas
  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

C, N and P are three of the most important elements used to build living beings, and their uptake from the environment is consequently essential for all organisms. We have reviewed the available studies on water, soils and organism elemental content ratios (stoichiometry) with the aim of identifying the general links between stoichiometry and the structure and function of organisms and ecosystems, in both aquatic and terrestrial contexts. Oceans have variable C:N:P ratios in coastal areas and a narrow range approximating the Redfield ratio in deep water and inner oceanic areas. Terrestrial ecosystems have a general trend towards an increase in soil and plant N:P ratios from cool and temperate to tropical ecosystems, but with great variation within each climatic area. The C:N:P content ratio (from now on C:N:P ratio) is more constrained in organisms than in the water and soil environments they inhabit. The capacity to adjust this ratio involves several mechanisms, from leaf re-absorption in plants to the control of excretion in animals. Several differences in C:N:P ratios are observed when comparing different taxa and ecosystems. For freshwater ecosystems, the growth rate hypothesis (GRH), which has consistent experimental support, states that low N:P supply determines trophic web structures by favoring organisms with a high growth rate. For terrestrial organisms, however, evidence not yet conclusive on the relevance of the GRH. Recent studies suggest that the N:P ratio could play a role, even in the evolution of the genomes of organisms. Further research is warranted to study the stoichiometry of different trophic levels under different C:N:P environment ratios in long-term ecosystem-scale studies. Other nutrients such as K or Fe should also be taken into account. Further assessment of the GRH requires more studies on the effects of C:N:P ratios on anabolic (growth), catabolic (respiration), storage and/or defensive allocation. Combining elemental stoichiometry with metabolomics and/or genomics should improve our understanding of the coupling of different levels of biological organization, from elemental composition to the structure and evolution of ecosystems, via cellular metabolism and nutrient cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acharya K, Kyle M, Elser JJ (2004) Biological stoichiometry of Daphnia growth: an ecophysiological test of the growth rate hypothesis. Limnol Oceanogr 49:656–665

    Article  Google Scholar 

  • Acquisti C, Elser JJ, Kumar S (2009) Ecological nitrogen limitation shapes the DNA composition of plant genomes. Mol Biol Evol 26:953–956

    Article  Google Scholar 

  • Ågren GI (2004) The C:N:P stoichiometry of autotrophs—theory and observations. Ecol Lett 7:185–191

    Article  Google Scholar 

  • Ågren GI (2008) Stoichiometry and nutrition of plant growth in natural communities. Annu Rev Ecol Syst 39:153–170

    Article  Google Scholar 

  • Amatangelo KL, Vitousek PM (2008) Stoichiometry of ferns in Hawaii: implications for nutrient cycling. Oecologia 157:619–627

    Article  Google Scholar 

  • An H, Shangguan ZP (2010) Leaf stoichiometry trait and specific leaf area of dominant species in the secondary succession of the loess plateau. Pol J Ecol 58:103–113

    Google Scholar 

  • Andersen T (1997) Pelagic nutrient cycle: herbivores as sources and sinks. Springer, New York

    Google Scholar 

  • Andersen T, Hessen DO (1991) Carbon, nitrogen, and phosphorus content of freshwater zooplankton. Limnol Oceanogr 36:807–814

    Article  Google Scholar 

  • Andersen T, Elser JJ, Hessen DO (2004) Stoichiometry and population dynamics. Ecol Lett 7:884–900

    Article  Google Scholar 

  • Andersen T, Faevoring PJ, Hessen DO (2007) Growth rate versus biomass accumulation: different roles of food quality and quantity for consumers. Limnol Oceanogr 52:2128–2134

    Article  Google Scholar 

  • Anderson TR, Boersma M, Raubenheimer D (2004) Stoichiometry: linking elements to biochemicals. Ecology 85:1193–1202

    Article  Google Scholar 

  • Anderson TR, Hessen DO, Elser JJ, Urabe J (2005) Metabolic stoichiometry and the fate of excess carbon and nutrients in consumers. Am Nat 165:1–15

    Article  Google Scholar 

  • Apple JL, Wink M, Wills SE, Bishop JG (2009) Successional change in phosphorus stoichiometry explains the inverse relationship between herbivory and lupin density on Mount St. Helens. PLoS One 4:e7807

    Article  Google Scholar 

  • Baek JH, Sang YL (2007) Transcriptome analysis of phosphate starvation response in Escherichia coli. J Microbiol Biotechnol 17:244–252

    Google Scholar 

  • Bertram SM, Bowden M, Kyle M, Schade JD (2007) Extensive natural intraspecific variation in stoichiometric (C:N:P) composition in two terrestrial insect species. J Insect Sci 8:1536–2442

    Google Scholar 

  • Boersma M, Elser JJ (2006) Too much of a good thing: on stoichiometrically balanced diets and maximal growth. Ecology 87:1325–1330

    Article  Google Scholar 

  • Boersma M, Wiltshire KH (2006) Gut passage of phosphorus-limited algae through Daphnia: do they take up nutrients in the process? Arch Hydrobiol 167:489–500

    Article  Google Scholar 

  • Boersma M, Aberle N, Hantzsche FM, Schoo KL, Wiltshire K, Malzahn AM (2008) Nutritional limitation travels up the food chain. Int Rev Hydrobiol 93:479–488

    Article  Google Scholar 

  • Boersma M, Becker C, Malzahn AM, Vernooij S (2009) Food chain effects of nutrient limitation in primary producers. Mar Freshw Res 60:983–989

    Article  Google Scholar 

  • Boeye D, Verhagen B, Van Haesebroek V, Verheyen RF (1997) Nutrient limitation in species-rich lowland fens. J Veg Sci 8:415–424

    Article  Google Scholar 

  • Bott T, Meyer G, Meyer A, Young EB (2008) Nutrient limitation and morphological plasticity of the carnivorous pitcher plant Sarracenia purpurea in contrasting wetland environments. New Phytol 180:631–641

    Article  Google Scholar 

  • Bragazza L, Tahvanainen T, Kutnar L, Rydin H, Limpens J, Hajek M, Grosvernier P, Hájek T, Hajkova P, Hansen I, Iacumin P, Gerdol R (2004) Nutritional constrains in ombrotrophic Sphagnum plants under increasing atmospheric nitrogen deposition in Europe. New Phytol 163:609–616

    Article  Google Scholar 

  • Bridgham SD, Pastor J, McClaugherty CA, Richardson CJ (1995) Nutrient-use efficiency: a litterfall index: a model, and a test along a nutrient-availability gradient in North Carolina peatlands. Am Nat 145:1–21

    Article  Google Scholar 

  • Britton A, Fisher J (2007) NP stoichiometry of low-alpine heathland: usefulness for bio-monitoring and prediction of pollutant impacts. Biol Conserv 138:100–108

    Article  Google Scholar 

  • Broadley MR, Bowen HC, Cotterill HL, Hammond JP, Meacham MC, Mead A, White PJ (2004) Phylogenetic variation in the shoot mineral concentration of angiosperms. J Exp Bot 55:321–336

    Article  Google Scholar 

  • Broecker WS, Peng TH (1982) Traces in the sea. Lamont-Doherty Geological Observatory, Columbia University, Palisades

    Google Scholar 

  • Cáceres CE, Tessier AJ, Andreou A, Duffy MA (2008) Stoichiometric relationships in vernal pond plankton communities. Freshw Biol 53:1291–1302

    Google Scholar 

  • Carline KA, Jones HE, Bardgett RD (2005) Large herbivores affect the stoichiometry of nutrients in a regenerating woodland ecosystem. Oikos 110:453–460

    Article  Google Scholar 

  • Carrillo P, Villar-Argaiz M, Medina-Sánchez JM (2001) Relationship between N:P ratio and growth rate during the life cycle of calanoid copepods: an in situ measurement. J Plankton Res 23:537–547

    Article  Google Scholar 

  • Carrillo P, Villar-Argaiz M, Medina-Sánchez JM (2008) Does microorganism stoichiometry predict microbial food web interactions alter a phosphorus pulse? Microb Ecol 56:350–363

    Article  Google Scholar 

  • Castle SG, Neff JG (2009) Plant response to nutrient availability across variable bedrock geologies. Ecosystems 12:101–113

    Article  Google Scholar 

  • Cebrian J, Shurin JB, Borer ET, Cardinale BJ, Ngai JT, Smith MD, Fagan WF (2009) Producer nutritional quality controls ecosystem trophic structure. PLoS One 4:e4929

    Article  Google Scholar 

  • Cernusak LA, Winter K, Turner BL (2010) Leaf nitrogen to phosphorus ratios of tropical trees: experimental assessment to physiological and environmental controls. New Phytol 185:770–779

    Article  Google Scholar 

  • Chadwick OA, Derry LA, Vitousek PM, Huebert BJ, Hedin LO (1999) Changing sources of nutrients during four million years of ecosystem development. Nature 397:491–497

    Article  Google Scholar 

  • Chen MM, Yin HB, O’Connor P, Wang YS, Zhu YG (2010) C:N:P stoichiometry and specific growth rate of clover colonized by arbuscular mycorrhizal fungi. Plant Soil 326:21–29

    Article  Google Scholar 

  • Christian AD, Crump BG, Berg DJ (2008) Nutrient release and ecological stoichiometry of freshwater mussels (Mollusca:Unionidae) in 2 small, regionally distinct streams. J North Am Benthol Soc 27:440–450

    Article  Google Scholar 

  • Chrzanowski TH, Lukomski CN, Grover JP (2010) Elemental stoichiometry of a mixotrophic protest grown under varying resource conditions. J Eukaryot Microbiol 57:322–327

    Article  Google Scholar 

  • Cleveland CC, Liptzin D (2007) C:N:P stoichiometry in soil: is there “Redfield ratio” for the microbial biomass? Biogeochemistry 85:235–252

    Article  Google Scholar 

  • Conde-Porcuna JM, Ramos-Rodríguez E, Pérez-Martínez C (2002) Correlations between nutrient concentrations and zooplankton populations in a mesotrophic reservoir. Freshw Biol 47:1463–1473

    Article  Google Scholar 

  • Cotner JB, Makino W, Biddanda BA (2006) Temperature effects stoichiometry and biochemical composition of Escherichia coli. Microb Ecol 52:26–33

    Article  Google Scholar 

  • Craine JM, Morrow C, Stock WD (2008) Nutrient concentration ratios and co-limitation in South African grasslands. New Phytol 179:829–836

    Article  Google Scholar 

  • Cross WF, Benstead JF, Frost PC, Thomas SA (2005) Ecological stoichiometry in freshwater benthic systems: recent progress and perspectives. Freshw Biol 50:1895–1912

    Article  Google Scholar 

  • Cross WF, Wallace JB, Rosemond AD (2007) Nutrient enrichment reduces constrains on material flows in a detritus-based food web. Ecology 88:2563–2575

    Article  Google Scholar 

  • D’Annunzio R, Zeller B, Nicolas M, Dhôte JF, Saint-André L (2008) Decomposition of European beech (Fagus sylvatica) litter: combining quality theory and 15N labeling experiments. Soil Biol Biochem 40:322–333

    Article  Google Scholar 

  • Danger M, Oumarou C, Benest D, Lacroix G (2007) Bacteria can control stoichiometry and nutrient limitation of phytoplankton. Funct Ecol 21:202–210

    Article  Google Scholar 

  • Danger M, Lacroix G, Oumarou C, Benest D, Meriguet J (2008) Effects of food-web structure on periphyton stoichiometry in eutrophic lakes: a mesocosm study. Freshw Biol 53:2089–2100

    Article  Google Scholar 

  • Danger M, Lacroix G, Ka S, Ndour EH, Corbin D, Lazzaro X (2009) Food-web structure and functioning of temperature and tropical lakes: a stoichiometric viewpoint. Ann Limnol Int J Limnol 45:11–21

    Article  Google Scholar 

  • Dantas MC, Attayde JL (2007) Nitrogen and phosphorus content of some temperate and tropical freshwater fishes. J Fish Biol 70:100–108

    Article  Google Scholar 

  • Darchambeau F, Faerovig PJ, Hessen DO (2003) How Daphnia copes with excess carbon in its food. Oecologia 136:336–346

    Article  Google Scholar 

  • Darchambeau F, Thys I, Leporcq B, Hoffmann L, Descy JP (2005) Influence of zooplankton stoichiometry on nutrient sedimentation in a lake system. Limnol Oceanogr 50:905–913

    Article  Google Scholar 

  • Das K, Dang R, Shivananda TN (2006) Effect of N, P and K fertilizers on their availability in soil in relation to the Stevia plant (Stevia rebaudiana Bert.). Arch Agron Soil Sci 52:679–685

    Article  Google Scholar 

  • Davidson EA, Howarth RW (2007) Nutrients in synergy. Nature 449:1000–1001

    Article  Google Scholar 

  • Davidson EA, Reis de Carvalho CJR, Figueira AM, Ishida FY, Ometto JPHB, Nardoto GB, Saba RT, Hayashi SN, Leal EC, Vieira ICG, Martinelli LA (2007) Recuperation of nutrient cycling in Amazonian forest following agricultural abandonment. Nature 447:995–998

    Article  Google Scholar 

  • de Eyto E, Irvine K (2007) Assessing the status of shallow lakes using an additive model of biomass size spectra. Aquat Conserv Mar Freshw Ecosyst 17:724–736

    Article  Google Scholar 

  • DeMott WR (2003) Implications of element deficits for zooplankton growth. Hydrobiologia 491:177–184

    Google Scholar 

  • DeMott WR, Pape BJ (2005) Stoichiometry in an ecological context: testing for links between Daphnia P-content, growth rate and habitat preference. Oecologia 142:20–27

    Article  Google Scholar 

  • DeMott WR, Tessier AJ (2002) Stoichiometry constrains vs. algal defenses: testing mechanisms of zooplankton for limitation. Ecology 83:3426–3433

    Article  Google Scholar 

  • DeMott WR, Pape BJ, Tessier AJ (2004) Patterns and sources of variation in Daphnia phosphorus content in nature. Aquat Ecol 38:433–440

    Article  Google Scholar 

  • Denno RF, Fagan WF (2003) Might nitrogen limitation promote omnivory among carnivorous arthropods. Ecology 84:2522–2531

    Article  Google Scholar 

  • Dickman EM, Vanni MJ, Horgan MJ (2006) Interactive effects of light and nutrients on phytoplankton stoichiometry. Oecologia 149:676–689

    Article  Google Scholar 

  • Dickman EM, Newell JM, González MJ, Vanni MJ (2008) Light, nutrients, and food-chain length constrain planktonic energy transfer efficiency across multiple trophic levels. Proc Natl Acad Sci USA 105:18408–18412

    Article  Google Scholar 

  • Diehl S (2007) Paradoxes of enrichment: effects of increased light versus nutrient supply on pelagic producer-grazer systems. Am Nat 169:E173–E191

    Article  Google Scholar 

  • Dobberfuhl DR, Elser JJ (2000) Elemental stoichiometry of lower food web components in arctic and temperate lakes. J Plankton Res 22:1341–1354

    Article  Google Scholar 

  • Doering PH, Oviatt CA, Nowicki BL, Klos EG, Reed LW (1995) Phosphorus and nitrogen limitation of primary production in a simulated estuarine gradient. Mar Ecol Prog Ser 124:271–287

    Article  Google Scholar 

  • Downing JA (1997) Marine nitrogen: phosphorus stoichiometry and the global N:P cycle. Biogeochemistry 37:237–252

    Article  Google Scholar 

  • Downing JA, Osenberg GW, Sarnelle O (1999) Meta-analysis of marine nutrient-enrichment experiment: variation in the magnitude of nutrient limitation. Ecology 80:1157–1167

    Article  Google Scholar 

  • Duarte CM, Lucea A, Sondergaard M (2004) The effect of nutrient additions on the partitioning of nutrients in an experimental coastal Mediterranean system. Biogeochemistry 68:153–167

    Article  Google Scholar 

  • Eisele lKA, Schimel DS, Kaputska LA, Parton WJ (1989) Effects of available P and N and N:P ratios on non-symbiotic dinitrogen fixation in tallgrass prairie soils. Oecologia 79:471–474

    Article  Google Scholar 

  • Elser JJ (2006) Biological stoichiometry: a chemical bridge between ecosystem ecology and evolutionary biology. Am Nat 168:525–535

    Article  Google Scholar 

  • Elser JJ, George NB (1993) The stoichiometry of N and P in the pelagic zone of Castle lake, California. J Plankton Res 15:977–992

    Article  Google Scholar 

  • Elser JJ, Hamilton A (2007) Stoichiometry and the new biology: the future is now. PLoS Biol 5:1403–1405

    Article  Google Scholar 

  • Elser JJ, Urabe J (1999) The stoichiometry of consumer-driven nutrient recycling: theory, observations and consequences. Ecology 80:735–750

    Article  Google Scholar 

  • Elser JJ, Chrzanowski TH, Sterner RW, Schampel JH, Foster DK (1995) Elemental ratios and the uptake and release of nutrients by phytoplankton and bacteria in three lakes of the Canadian Shield. Microb Ecol 29:145–162

    Article  Google Scholar 

  • Elser JJ, Dobberfuhl D, Mackay NA, Schampel IH (1996) Organism size, life history and N:P stoichiometry: towards a unified view of cellular and ecosystem processes. BioScience 46:674–684

    Article  Google Scholar 

  • Elser JJ, Chzanowski TH, Sterner RW, Mills KH (1998) Stoichiometric constrains on food-web dynamics: a whole-lake experiment on the Canadian Shield. Ecosystems 1:120–136

    Article  Google Scholar 

  • Elser JJ, Sterner RW, Galford AE, Chrzanowski TH, Findalay DL, Mills KH, Paterson MJ, Stainton MP, Schindler DW (2000a) Pelagic C:N:P stoichiometry in a eutrophied lake: responses to a whole-lake food-web manipulation. Ecosystems 3:293–307

    Article  Google Scholar 

  • Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann H, Sterner RW (2000b) Nutritional constrains in terrestrial and freshwater food webs. Nature 408:578–580

    Article  Google Scholar 

  • Elser JJ, Sterner RW, Gorokhova F, Fagan WF, Markov TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LJ (2000c) Biological stoichiometry from genes to ecosystem. Ecol Lett 5:540–550

    Article  Google Scholar 

  • Elser JJ, Hayakawa K, Urabe I (2001) Nutrient limitation reduces food quality for zooplankton: Daphnia response to seston phosphorus enrichment. Ecology 82:898–903

    Google Scholar 

  • Elser JJ, Kyle AM, Cotner J, Makino W, Markov T, Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner RW (2003) Growth rate-stoichiometry couplings in diverse biota. Ecol Lett 6:936–943

    Article  Google Scholar 

  • Elser JJ, Schampel JH, García-Pichel F, Wade BD, Souza V, Eguiarte L, Escalante A, Farmer JD (2005) Effects of phosphorus enrichment and grazing snails on modern stromatolitic microbial communities. Freshw Biol 50:1808–1825

    Article  Google Scholar 

  • Elser JJ, Watts T, Bitler B, Markovw TA (2006) Ontogenetic coupling of growth rate with RNA and P contents in five species of Drosophila. Funct Ecol 20:846–856

    Article  Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Hgai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary procedures in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1147

    Article  Google Scholar 

  • Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ (2010) Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. New Phytol 186:593–608

    Article  Google Scholar 

  • Esmeijer-Liu AJ, Aerts R, Kürschner WN, Bobbink R, Lotter AF, Verhoeven JTA (2009) Nitrogen enrichment lowers Betula pendula green and yellow leaf stoichiometry irrespective of effects of elevated carbon dioxide. Plant Soil 316:311–322

    Article  Google Scholar 

  • Evans-White M, Lamberti GA (2006) Stoichiometry of consumer-driven nutrient recycling across nutrient regimes in streams. Ecol Lett 9:1186–1197

    Article  Google Scholar 

  • Evans-White MA, Dodds WK, Huggins DG, Baker DS (2009) Thresholds in macroinvertebrate biodiversity and stoichiometry across water-quality gradients in Central Plains (USA) streams. J North Am Benthol Soc 28:855–868

    Article  Google Scholar 

  • Faerovic PJ, Hessen DO (2003) Allocation strategies in crustacean stoichiometry: the potential role of phosphorus in the limitation of reproduction. Freshw Biol 48:1782–1792

    Article  Google Scholar 

  • Fagan WF, Denno RF (2004) Stoichiometry of actual vs. potential predator-prey interactions: insights into nitrogen limitation for arthropod predator. Ecol Lett 7:876–883

    Article  Google Scholar 

  • Fagan WF, Siemann E, Mitter C, Denno RF, Huberty AF, Woods HA, Elser JJ (2002) Nitrogen in insects: implications for trophic complexity and species diversification. Am Nat 160:784–802

    Article  Google Scholar 

  • Falkowsky PG, Davis CS (2004) Natural proportions. Redfield ratios: the uniformity of elemental ratios in the oceans and the life they contain underpins our understanding of marine biogeochemistry. Nature 431:131

    Article  Google Scholar 

  • Feller I, Lovelock CE, Mckee KL (2007) Nutrient addition differentially affects ecological processes of Avicennia germinans in nitrogen versus phosphorus limited mangrove ecosystems. Ecosystems 10:347–359

    Article  Google Scholar 

  • Ferrao-Filho ADS, Tessier AJ, DeMott WR (2007) Sensitivity of herbivorous zooplankton to phosphorus-deficient diets: testing stoichiometry theory and the growth rate hypothesis. Limnol Oceanogr 52:407–415

    Article  Google Scholar 

  • Ferrao-Filho ADS, Fileto C, Lopes NP, Arcifa MS (2003) Effects of essential fatty acids and N and P-limited algae on the growth rate of tropical cladocerans. Freshw Biol 48:759–767

    Article  Google Scholar 

  • Ferrao-Filho ADS, DeMott WR, Tessier AJ (2005) Response of tropical cladocerans to a gradient of resource quality. Freshw Biol 50:954–964

    Article  Google Scholar 

  • Findlay DL, Vanni MJ, Paterson M, Mills KH, Kasian SEM, Findlay WJ, Salki AG (2005) Dynamics of a boreal lake ecosystem during a long-term manipulations of top predators. Ecosystems 8:603–618

    Article  Google Scholar 

  • Finlay JC, Sterner RW, Kumar S (2007) Isotopic evidence for in-lake production of accumulating nitrate in Lake Superior. Ecol Appl 17:2323–2332

    Article  Google Scholar 

  • Fitter A, Hillebrand H (2009) Microbial food web structure affects bottom-up effects and elemental stoichiometry in periphyton assemblages. Limnol Oceanogr 54:2183–2200

    Article  Google Scholar 

  • Flynn KJ, Raven JA, Rees TAV, Finkel Z, Quigg A, Beardall J (2010) Is the growth rate hypothesis applicable to microalgae? J Phycol 46:1–12

    Article  Google Scholar 

  • Frost PC, Elser JJ (2002) Growth responses of littoral mayflies to the phosphorus content of their food. Ecol Lett 5:232–240

    Article  Google Scholar 

  • Fox LE, Sager SL, Wofsy SC (1985) Factors controlling the concentrations of soluble phosphorus in the Mississippi estuary. Limnol Oceanogr 30:826–832

    Article  Google Scholar 

  • Frank DA (2008) Ungulate and topographic control of nitrogen: phosphorus stoichiometry in a temperate grassland; soils, plants and mineralization rates. Oikos 117:591–601

    Article  Google Scholar 

  • Frost PC, Ebert D, Smith VH (2008a) Bacterial infection changes the elemental composition of Daphnia magna. J Anim Ecol 77:1265–1272

    Article  Google Scholar 

  • Frost PC, Ebert D, Smith VH (2008b) Responses of a bacterial pathogen to phosphorus limitation of its aquatic invertebrate host. Ecology 89:313–318

    Article  Google Scholar 

  • Frost PC, Ebert D, Larson JH, Marcus MA, Wagner ND, Zalewski A (2010) Transgenerational effects of poor elemental food quality on Daphnia magna. Oecologia 162:865–872

    Article  Google Scholar 

  • Fu FX, Zhang Y, Leblanc K, Sañudo-Wilhelmy SA, Hutchins DA (2005) The biological and biochemical consequences of phosphate scavenging onto phytoplankton cell surfaces. Limnol Oceanogr 50:1459–1472

    Article  Google Scholar 

  • Ganeshram RS, Pedersen TF, Calvert SE, François R (2002) Reduced nitrogen fixation in the glacial ocean inferred from changes in marine nitrogen and phosphorus inventories. Nature 415:156–159

    Article  Google Scholar 

  • Geider RJ, Roche JL (2002) Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. Eur J Phycol 37:1–17

    Article  Google Scholar 

  • Gillooly JF, Allen AP, Brown JH, Elser JJ, Martínez del Rio C, Savage VM, West GB, Woodruff WH, Woods HA (2005) The metabolic basis of whole-organism RNA and phosphorus content. Proc Natl Acad Sci USA 102:11923–11927

    Article  Google Scholar 

  • Gismervik I (1997) Stoichiometry of some marine planktonic crustaceans. J Plankton Res 19:279–285

    Article  Google Scholar 

  • Gladyshev MI, Sushchik NN, Kolmakova AA, Kalachova GS, Kravchuk ES, Ivanova EA, Makhutova ON (2007) Seasonal correlations of elemental and w3 PUFA composition of seston and dominant phytoplankton species in a eutrophic Siberian Reservoir. Aquat Ecol 41:9–23

    Article  Google Scholar 

  • Goldman JC (1986) On phytoplankton growth rates and particulate C:N:P. Limnol Oceanogr 31:1358–1363

    Article  Google Scholar 

  • Goldman JG, McCarthy JJ, Peavey DG (1979) Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279:210–215

    Article  Google Scholar 

  • Gorokhova E, Dowling TE, Weider LJ, Crease TJ, Elser JJ (2002) Functional and ecological significance of rDNA intergenic spacer variation in a clonal organism under divergent selection for production rate. Proc R Soc Lond B Biol Sci 269:2373–2379

    Article  Google Scholar 

  • Greenwood DJ, Karpinets TV, Zhang K, Bosh-Serra A, Boldrini A, Karawulova L (2008) A unifying concept for the dependence of whole-crop N/P ratio on biomass: theory and experiment. Ann Bot 102:967–977

    Article  Google Scholar 

  • Griffiths D (2006) The direct contribution of fish to lake phosphorus cycles. Ecol Freshw Fish 15:86–95

    Article  Google Scholar 

  • Grossman A (2000) Acclimation of Chlamydomonas reinhardtii to its nutrient environment. Protist 151:201–224

    Article  Google Scholar 

  • Grover P (2003) The impact of variable stoichiometry on predator-prey interactions: a multinutrient approach. Am Nat 162:29–43

    Article  Google Scholar 

  • Gruber N, Sarmiento JL (1997) Global patterns of marine nitrogen fixation and denitrification. Glob Biogeochem Cycles

  • Gulati RD, DeMott WR (1997) The food quality for zooplankton: remarks on the state-of-the-art, perspectives and priorities. Freshw Biol 38:753–768

    Article  Google Scholar 

  • Güsewell S (2004) N:P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266

    Article  Google Scholar 

  • Güsewell S, Bollens U (2003) Composition of plant species mixtures grown at various N:P ratios and levels of nutrient supply. Basic Appl Ecol 4:453–466

    Article  Google Scholar 

  • Güsewell S, Gessner MO (2009) N:P ratios influence their litter decomposition and colonization by fungi and bacteria in microcosms. Funct Ecol 23:211–219

    Article  Google Scholar 

  • Güsewell S, Koerselman W (2002) Variation in nitrogen and phosphorus concentration of wetland plants. Perspect Plant Ecol Evol Syst 5:37–61

    Article  Google Scholar 

  • Güsewell S, Koerselman W, Verhoeven JTA (2003a) Biomass N:P ratios as indicators of nutrient limitation for plant populations in wetlands. Ecol Appl 13:372–384

    Article  Google Scholar 

  • Güsewell S, Bollens U, Ryser P, Klötzli F (2003b) Contrasting effects of nitrogen, phosphorus and water regime on first- and second-year growth of 16 wetland plant species. Funct Ecol 17:754–765

    Article  Google Scholar 

  • Güsewell S, Bailey KM, Roem WJ, Bedford BI (2005) Nutrient limitation and botanical diversity in wetlands: can fertilization raise species richness? Oikos 109:71–80

    Article  Google Scholar 

  • Hall SR (2004) Stoichiometry explicit competition between grazers: species replacement, coexistence and priority effects along resource supply gradients. Am Nat 164:157–172

    Article  Google Scholar 

  • Hall SH, Leibold MA, Lytle DA, Smith VH (2004) Stoichiometry and planktonic grazer composition over gradients of light, nutrients and predation risk. Ecology 85:2291–2301

    Article  Google Scholar 

  • Hall SH, Smith VH, Lytle DA, Leibold MA (2005) Constrains of primary producer N:P stoichiometry along N:P supply ratio gradients. Ecology 86:1894–1904

    Article  Google Scholar 

  • Hall SR, Leibold MA, Lytle DA, Smith VH (2007) Grazers, producers stoichiometry, and the light: nutrient hypothesis revised. Ecology 88:1142–1152

    Article  Google Scholar 

  • Hambäck PA, Gilbert J, Schneider K, Martinson HM, Kolb G, Fagan WF (2009) Effects of body size, trophic mode and larval habitat on Diptera stoichiometry: a regional comparison. Oikos 118:615–623

    Google Scholar 

  • Han W, Fang J, Guo D, Zhang Y (2005) Leaf nitrogen phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol 168:377–385

    Article  Google Scholar 

  • Harpole WS, Tilman D (2007) Grassland species loss resulting from reduced niche dimension. Nature 466:791–793

    Article  Google Scholar 

  • Harrison PJ, Yin K, Lee JHW, Gan J, Liu H (2008) Physical-biological coupling in the Pearl River Estuary. Cont Shelf Res 28:1405–1415

    Article  Google Scholar 

  • Hassett RP, Cardinale B, Stabler LB, Elser JJ (1997) Ecological stoichiometry of N and P in pelagic ecosystems: comparison of lakes and oceans with emphasis on the zooplankton-phytoplankton interaction. Limnol Oceanogr 42:648–662

    Article  Google Scholar 

  • Hättenschwiler S, Aeschlimann B, Couteaux MM, Roy J, Bonal D (2008) High variation in foliage and leaf litter chemistry among 45 tree species of a neotropical rainforest community. New Phytol 179:165–175

    Article  Google Scholar 

  • He JS, Fang J, Wang Z, Guo D, Flynn DFB, Geng Z (2006) Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia 149:115–122

    Article  Google Scholar 

  • He JS, Wang L, Flynn DFB, Wang X, Ma W, Fang J (2008) Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes. Oecologia 155:301–310

    Article  Google Scholar 

  • Hecky RE, Campbell P, Hendzel LL (1993) The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans. Limnol Oceanogr 38:709–724

    Article  Google Scholar 

  • Hedin LO, Vitousek PM, Matson PA (2003) Nutrient losses over four million years of tropical forest development. Ecology 84:2231–2255

    Article  Google Scholar 

  • Hedin LO, Brookshire ENJ, Menge DNL, Barron AR (2009) The nitrogen paradox in tropical forest ecosystems. Annu Rev Ecol Evol Syst 40:613–635

    Article  Google Scholar 

  • Hendrixson HA, Sterner RW, Kay AD (2007) Elemental stoichiometry of freshwater fishes in relation to phylogeny, allometry and ecology. J Fish Biol 70:121–140

    Article  Google Scholar 

  • Hessen DO, Faerovig PJ, Andersen T (2002) Light, nutrients, and P:C ratios in algae: grazer performance related to food quality and quantity. Ecology 83:1886–1896

    Article  Google Scholar 

  • Hessen DO, Ågren GI, Anderson TR, Elser JJ, de Ruiter PC (2004) Carbon sequestration in ecosystems: the role of stoichiometry. Ecology 85:1179–1192

    Article  Google Scholar 

  • Hessen DO, Jensen TC, Kyle M, Elser JJ (2007) RNA responses to N- and P- limitation; reciprocal regulation of stoichiometry and growth rate in Brachionus. Funct Ecol 21:956–962

    Article  Google Scholar 

  • Hessen DO, Leu E, Faerovig PJ, Falk Petersen S (2008a) Light and spectral properties as determinants of C:N:P ratios in phytoplankton. Deep Sea Res II 55:2169–2175

    Article  Google Scholar 

  • Hessen DO, Ventura M, Elser JJ (2008b) Do phosphorus requirements for RNA limit genome size in crustacean zooplankton? Genome 51:685–691

    Article  Google Scholar 

  • Higgins KA, Vanni MJ, González MJ (2006) Detritivory and the stoichiometry of nutrient cycling by a dominant fish species in lakes of varying productivity. Oikos 114:419–430

    Article  Google Scholar 

  • Hillebrand H, Kahlert M (2001) Effect of grazing and nutrient supply on periphyton biomass and nutrient stoichiometry in habitats of different productivity. Limnol Oceanogr 46:1881–1898

    Article  Google Scholar 

  • Hillebrand H, Frost P, Liess A (2008) Ecological stoichiometry of indirect grazer effects on periphyton nutrient content. Oecologia 155:619–630

    Article  Google Scholar 

  • Hillebrand H, Gamfeldt L, Jonsson R, Matthiessen B (2009) Consumer diversity indirectly changes prey nutrient content. Mar Ecol Prog Ser 380:33–41

    Article  Google Scholar 

  • Ho TY, Quigg A, Finkel ZV, Milligan AJ, Wyman K, Falkowski PG, Morel FMM (2003) The elemental composition of some marine phytoplankton. J Phycol 39:1145–1159

    Article  Google Scholar 

  • Högberg MN, Myrold DD, Giesler R, Högberg P (2006) Contrasting patterns of soil N-Cycling in model ecosystems of Fennoscandian boreal forest. Oecologia 147:96–107

    Article  Google Scholar 

  • Holl CM, Montoya JP (2008) Diazotrophic growth of the marine cyanobacterium Trichodesmium IMS101 in continuous culture: effects of growth rate on N2-fixation rate, biomass, and C:N:P stoichiometry. J Phycol 44:929–957

    Article  Google Scholar 

  • Hong YG, Yin B, Zheng TL (2011) Diversity and abundance of anammox bacterial community in the deep-ocean surface sediment from equatorial Pacific. Appl Microbiol Biotechnol 89:1233–1241

    Article  Google Scholar 

  • Hopkinson CS, Vallino JJ (2005) Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433:142–145

    Article  Google Scholar 

  • Howarth RW, Marino R, Cole JJ (1988) Nitrogen fixation in freshwater, estuarine and marine ecosystems. 2. Biogeochemical controls. Limnol Oceanogr 33:688–701

    Article  Google Scholar 

  • Interlandi SJ, Kilham SS (2001) Limiting resources and the regulation of diversity in phytoplankton communities. Ecology 82:1270–1282

    Article  Google Scholar 

  • Jaenike J, Markow T (2003) Comparative elemental stoichiometry of ecologically diverse Drosophila. Funct Ecol 17:115–120

    Article  Google Scholar 

  • Jäger CG, Diehl S, Matatuschek C, Klausmeier CA, Stibor H (2008) Transient dynamics of pelagic producer-grazer systems in a gradient of nutrients and mixing depths. Ecology 89:1272–1286

    Article  Google Scholar 

  • Jensen T, Anderson TR, Daufresne M, Hessen DO (2006) Does excess carbon affect respiration of the rotifer Brachionus calyciflorus Pallas? Freshw Biol 51:2320–2333

    Article  Google Scholar 

  • Jeyasingh PD, Weider LJ (2005) Phosphorus availability mediates plasticity in life-history traits and predator-prey interactions in Daphnia. Ecol Lett 8:1021–1028

    Article  Google Scholar 

  • Jeyasingh PD, Weider LJ (2007) Fundamental links between genes and elements: evolutionary implications of ecological stoichiometry. Mol Biol 16:4649–4661

    Google Scholar 

  • Jeyasingh PD, Weider LJ, Sterner RW (2009) Genetically-based trade-off in response to stoichiometry food quality influence competition in a keystone aquatic herbivore. Ecol Lett 12:1–9

    Article  Google Scholar 

  • Jeyasingh PD, Ragavendran A, Paland S, López JA, Sterner RW, Colbourne JK (2011) How do consumers deal with stoichiometric constrains? Lessons from functional genomics using Daphnia pulex? Mol Ecol (in press)

  • Jonas JL, Joern A (2008) Host-plant quality alters grass/forb consumption by a mixed-feeding insect herbivore, Melanoplus bivittatus (Orthoptera: Arcrididae). Ecol Entomol 33:546–554

    Article  Google Scholar 

  • Kagata H, Katayama N (2006) Does nitrogen limitation promote intraguild predation in an aphidophagous ladybird? Entomol Exp Appl 119:239–246

    Article  Google Scholar 

  • Kagata H, Ohgushi T (2006) Nitrogen homeostasis in a willow leaf beetle Plasiodera versicolora, is independent of host plant quality. Entomol Exp Appl 118:105–110

    Article  Google Scholar 

  • Kagata H, Ohgushi T (2007) Carbon-nitrogen stoichiometry in the tritrophic food chain willow, leaf bettle, and predatory ladybird beetle. Ecol Res 22:671–677

    Article  Google Scholar 

  • Karl DM, Letelier RM (2008) Nitrogen fixation-enhanced carbon sequestration in low nitrate, low chlorophyll seascapes. Mar Ecol Prog Ser 364:257–268

    Article  Google Scholar 

  • Karpinets TV, Greenwood DJ, Sams CE, Ammons JT (2006) RNA:protein ratio of the unicellular organism as a characteristic of phosphorus and nitrogen stoichiometry and of the cellular requirement of ribosomes for protein synthesis. BMC Biol 4:30

    Article  Google Scholar 

  • Kaspari M, Yanoviak SP (2008) Biogeography of litter depth in tropical forest: evaluating the phosphorus growth rate hypothesis. Funct Ecol 22:919–923

    Article  Google Scholar 

  • Kaspari M, Yanoviak SP (2009) Biogeochemistry and the structure of tropical brown food webs. Ecology 90:3342–3351

    Article  Google Scholar 

  • Kay AD, Rostampour S, Sterner RW (2006) Ant stoichiometry: elemental homeostasis in stage-structures colonies. Funct Ecol 20:1037–1044

    Article  Google Scholar 

  • Kenesi G, Shalk HM, Kovacs AW, Herodek S, Présing M (2009) Effects of nitrogen forms on growth, cell composition and N2 fixation of Cylindrospermopsis raciborskii in phosphorus-limited chemostat cultures. Hydrobiologia 623:191–202

    Article  Google Scholar 

  • Kerkhoff AJ, Enquist BJ (2006) Ecosystem allometry: the scaling of nutrient stocks and primary productivity across plant communities. Ecol Lett 9:419–427

    Article  Google Scholar 

  • Kerkhoff AJ, Enquist BJ, Elser JJ, Fagan WF (2005) Plant allometry, stoichiometry and the temperature-dependence of primary productivity. Glob Ecol Biogeogr 14:585–598

    Article  Google Scholar 

  • Kerkhoff AJ, Fagan WF, Elser JJ, Enquist BJ (2006) Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. Am Nat 168:E103–E122

    Article  Google Scholar 

  • Klassen M, Nolet BA (2008) Stoichiometry of endothermy: shifting the quest from nitrogen to carbon. Ecol Lett 11:785–792

    Article  Google Scholar 

  • Klausmeier CA, Litchman E, Daufresne T, Levin SA (2004) Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429:171–174

    Article  Google Scholar 

  • Klausmeier CA, Litchman E, Daufresne T, Levin SA (2008) Phytoplankton stoichiometry. Ecol Res 23:479–485

    Article  Google Scholar 

  • Knecht MF, Göransson A (2004) Terrestrial plants require nutrients in similar proportions. Tree Physiol 24:447–460

    Article  Google Scholar 

  • Koerselman W, Meuleman AFM (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33:1441–1450

    Article  Google Scholar 

  • Koeve W, Kähler P (2010) Heterotrophic denitrification vs. autotrophic anammox—quantifying collateral effects on the ocean carbon cycle. Biogeosciences 7:2327–2337

    Article  Google Scholar 

  • Körtzinger A, Koeve W, Kähler P, Mintrop L (2001) C:N ratios in the mixed layer during the productive season in the northeast Atlantic Ocean. Deep Sea Res I 48:661–688

    Article  Google Scholar 

  • Ladanai S, Ågren GI, Olsson BA (2010) Relationships between tree and soil properties in Picea abies and Pinus sylvestris forests in Sweden. Ecosystems 13:302–316

    Article  Google Scholar 

  • Lavrentyev PJ, Bootsma HA, Johengen TH, Cavaletto JF, Gardner WS (1998) Microbial plankton response to resource limitation: insights from the community structure and seston stoichiometry in Florida Bay, USA. Mar Ecol Prog Ser 165:45–57

    Article  Google Scholar 

  • Lawniczak AE, Güsewell S, Verhoeven JTA (2009) Effect of N:K supply ratios on the performance of three grass species from herbaceous wetlands. Basic Appl Ecol 10:715–725

    Article  Google Scholar 

  • Lenton TM, Klausmeier CA (2007) Biotic stoichiometric controls on the deep ocean N:P ratio. Biogeosciences 4:353–367

    Article  Google Scholar 

  • Lenton TM, Watson AI (2000) Redfoeld revisited: 1. Regulation of nitrate, phosphate and oxygen in the ocean. Glob Biogeochem Cycles 14:225–248

    Article  Google Scholar 

  • Leonardos N, Geider RJ (2004a) Effects of nitrate:phosphate supply ratio and irradiance on the C:N:P stoichiometry of Chaetoceros muelleri. Eur J Phycol 39:173–180

    Article  Google Scholar 

  • Leonardos N, Geider RJ (2004b) Responses of elemental and biochemical composition of Chaetoceros muelleri to growth under varying light and nitrate:phosphate supply ratios and their influence on critical N:P. Limnol Oceanogr 49:2105–2114

    Article  Google Scholar 

  • Leu E, Falk-Petersen S, Hessen DO (2007) Ultraviolet radiation negatively affects growth but not food quality of arctic diatoms. Limnol Oceanogr 52:787–797

    Article  Google Scholar 

  • Li Y, Li D, Tang J, Wang Y, Liu Z, He S (2010) Long-term changes in the Changjiang estuary plankton community related to anthropogenic eutrophication. Aquat Ecosyst Health Manag 13:66–72

    Article  Google Scholar 

  • Liess A, Olsson J, Quevedo M, Eklov P, Vrede T, Hillebrand H (2006) Food web complexity affects stoichiometric and trophic interactions. Oikos 114:117–125

    Article  Google Scholar 

  • Liess A, Lange K, Schulz F, Piggott JJ, Matthaei CD, Townsend CR (2009) Light, nutrients and grazing interact to determine diatom species richness via changes to productivity, nutrient state and grazer activity. J Ecol 97:326–336

    Article  Google Scholar 

  • Loladze I, Elser JJ (2011) The origins of the Redfield nitrogen-to-phosphorus ratio are in a homoeostatic protein-to-rRNA ratio. Ecol Lett 14:244–250

    Article  Google Scholar 

  • Loladze I, Kuang Y, Elser JJ (2000) Stoichiometry in producer-grazer systems: linking energy flow with element cycling. Bull Math Biol 62:1137–1162

    Article  Google Scholar 

  • Loneragan JF, Grove TS, Robson AD, Snowball K (1979) Phosphorus as a factor in zinc-phosphorus interactions in plants. Soil Sci Soc Am J 43:966–972

    Article  Google Scholar 

  • Loneragan JF, Grunes DL, Welch RM, Aduayi EA, Tengah A, Lazar VA, Cary EE (1981) Phosphorus accumulation and toxicity in leaves in relation to zinc supply. Soil Sci Soc Am J 46:345–352

    Article  Google Scholar 

  • Lovelock CE, Feller IC, Ball MC, Ellis J, Sorell B (2007) Testing the growth rate vs. geochemical hypothesis for latitudinal variation in plant nutrients. Ecol Lett 10:1154–1163

    Article  Google Scholar 

  • Main TM, Dobberfhul DR, Elser JJ (1997) N:P stoichiometry and ontogeny of crustacean zooplankton: a test of the growth rate hypothesis. Limnol Oceanogr 42:1474–1478

    Article  Google Scholar 

  • Mairapetyan SK, Tedavosyan AH, Alexanyan SS, Stepanyan BT (1999) Optimization of the N:P:K ratio in the nutrient medium of some soilless aromatic and medicinal plants. Acta Hortic 32:29–32

    Google Scholar 

  • Makarewicz JC, Bertram P, Lewis TW (1998) Changes in phytoplankton size-class abundance and species composition coinciding with changes in water chemistry and zooplankton community structure of Lake Michigan, 1983 to 1992. J Gt Lakes Res 24:637–657

    Google Scholar 

  • Makino W, Cotner JB (2004) Elemental stoichiometry of a heterotrophic bacterial community in a freshwater lake: implications for growth- and resource-dependent variations. Aquat Microb Ecol 34:33–41

    Article  Google Scholar 

  • Makino W, Urabe J, Elser JJ, Yoshimizu C (2002) Evidence of phosphorus-limited individual and population growth of Daphnia in a Canadian Shield lake. Oikos 96:197–205

    Article  Google Scholar 

  • Makino W, Corner JB, Sterner RW, Elser JJ (2003) Are bacterial more like plants or animals? Growth rate and resource dependence of bacterial C:N:P stoichiometry. Funct Ecol 17:121–130

    Article  Google Scholar 

  • Manzoni S, Porporato A (2009) Soil carbon and nitrogen mineralization: theory and models across scales. Soil Biol Biochem 41:1355–1379

    Article  Google Scholar 

  • Manzoni S, Jackson RB, Troymow JA, Porporato A (2008) The global stoichiometry of litter nitrogen mineralization. Science 321:684–686

    Article  Google Scholar 

  • Margaris NS, Adamandiadou S, Siafaca L, Diamantopoulos J (1984) Nitrogen and phosphorus content in plant species of Mediterranean ecosystems in Greece. Vegetatio 55:29–35

    Article  Google Scholar 

  • Markow TA, Raphael B, Dobberfuhl D, Breitmeyer CM, Elser JJ, Pfeiler E (1999) Elemental stoichiometry of Drosophila and their host. Funct Ecol 13:78–84

    Article  Google Scholar 

  • Martinson HM, Schneider K, Gilbert J, Hines JE, Hambäck PA, Fagan WF (2008) Detritivory: stoichiometry of a neglected trophic level. Ecol Res 23:487–491

    Article  Google Scholar 

  • Matsumura M, Trafelet-Smith GM, Gratton C, Finke DL, Fagan WF, Denno RF (2004) Does intraguild predation enhance predator performance? A stoichiometric perspective. Ecology 85:2601–2615

    Article  Google Scholar 

  • Matzek V, Vitousek PM (2009) N:P stoichiometry and protein : RNA ratios in vascular plants: an evaluation of the growth-rate hypothesis. Ecol Lett 12:765–771

    Article  Google Scholar 

  • McGlynn TP, Salinas DJ, Dunn RR, Wood TE, Lawrence D, Clark DA (2007) Phosphorus limits tropical rain forest litter fauna. Biotropica 39:50–53

    Article  Google Scholar 

  • McGroddy ME, Daufresne T, Hedin LO (2004) Scaling of C/N/P stoichiometry in forest worldwide: implications of terrestrial Redfield-type ratios. Ecology 85:2390–2401

    Article  Google Scholar 

  • McIntyre PB, Jones LE, Flecker AS, Vanni MJ (2007) Fish extinctions alter nutrient recycling in tropical freshwaters. Proc Natl Acad Sci USA 104:4461–4466

    Article  Google Scholar 

  • Mei ZP, Legendre JE, Tremblay Miller LA, Gratton C, Lovejoy P, Yager PL, Gosselin M (2005) Carbon to nitrogen (C:N) stoichiometry of the spring-summer phytoplankton bloom in the North Water Polynya (NOW). Deep Sea Res I 52:2301–2314

    Article  Google Scholar 

  • Méndez M, Karlsson PS (2005) Nutrient stoichiometry in Pinguicula vulgaris nutrient availability, plant size, and reproductive status. Ecology 86:982–991

    Article  Google Scholar 

  • Miller O, Straile D (2010) How cope with a superior enemy? Plant defence strategies in response to annual herbivore outbreaks. J Ecol 98:900–907

    Article  Google Scholar 

  • Mills MM, Arrigo KR (2010) Magnitude of oceanic nitrogen fixation influenced by the nutrient uptake ratio of phytoplankton. Nat Geosci 3:412–416

    Article  Google Scholar 

  • Mitra A, Flynn KJ (2005) Predator-prey interactions: is “ecological stoichiometry” sufficient when good food goes bad? J Plankton Res 27:393–399

    Article  Google Scholar 

  • Morcuende R, Bari R, Gibon Y, Zheng W, Pant BD, Bläsing O, Usadel B, Czechowski T, Udvardi KM, Stitt M, Scheible WR (2007) Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant Cell Environ 30:85–112

    Article  Google Scholar 

  • Mulder C, Elser JJ (2009) Soil acidity, ecological stoichiometry and allometric scaling in grassland food webs. Glob Change Biol. doi:10.1111/j.1365-2486.2009.01899.x

  • Mulder C, Den Hollander HA, Vonk JA, Rossberg AG, Jagers op Akkerhius GAJM, Yeates GW (2009) Soil resource supply influences faunal size-specific distributions in natural food webs. Naturwissenschaften 96:813–826

    Article  Google Scholar 

  • Neff JC, Reynolds R, Sanford RL, Fernández D, Lamothe P (2006) Controls of bedrock geochemistry on soil and plant nutrients in southern Utah. Ecosystems 9:879–893

    Article  Google Scholar 

  • Nelson WA, McCauley N, Wroma FJ (2001) Multiple dynamics in a single predator-prey system: experimental effects of food quality. Proc R Soc Lond 268:1223–1230

    Article  Google Scholar 

  • Ngai JT, Jefferies RL (2004) Nutrient limitation of plant growth and forage quality in arctic coastal marshes. J Ecol 92:1001–1010

    Article  Google Scholar 

  • Niinemets Ü, Kull K (2005) Leaf structure vs. nutrient relationships vary with soil conditions in temperate shrubs and trees. Acta Oecol 24:209–219

    Article  Google Scholar 

  • Niklas KJ (1994) Size-dependent variations in plant growth rates and the 3/4 power rule. Am J Bot 81:134–144

    Article  Google Scholar 

  • Niklas KJ (2006) Plant allometry, leaf nitrogen and phosphorus stoichiometry and interspecific trends in animal growth rates. Ann Bot 97:155–163

    Article  Google Scholar 

  • Niklas NJ, Cobb ED (2005) N, P, and C stoichiometry of Eranthus hyemalis (Ranunculaceae) and the allometry of plant growth. Am J Bot 92:1256–1263

    Article  Google Scholar 

  • Niklas KJ, Owens T, Reich PB, Cobb ED (2005) Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecol Lett 8:636–642

    Article  Google Scholar 

  • Nilsen P, Abrahamsen G (2003) Scots pine and Norway spruce stands responses to annual N, P and Mg fertilization. For Ecol Manag 174:221–232

    Article  Google Scholar 

  • Olde Venterink H, Güsewell S (2010) Competitive interactions between two meadows grasses under nitrogen and phosphorus limitation. Funct Ecol 24:877–886

    Article  Google Scholar 

  • Olde Venterink H, van der Vliet RE, Wassen MJ (2001) Nutrient limitation along a productivity gradient in wet meadows. Plant Soil 234:171–179

    Article  Google Scholar 

  • Olde Venterink H, Wassen MJ, Verkroost WM, de Ruiter PC (2003) Species richness-productivity patterns differ between N-, P-, and K-limited wetlands. Ecology 84:2191–2199

    Article  Google Scholar 

  • Ordoñez JC, van Bodegom PM, Witte JPM, Wright IJ, Reich PB, Aerts R (2009) A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob Ecol Biogeogr 18:137–149

    Article  Google Scholar 

  • Orians GH, Milewski AV (2007) Ecology of Australia: the effects of nutrient-poor soils and intense fires. Biol Rev 82:393–423

    Article  Google Scholar 

  • Paoli GD (2006) Divergent leaf traits among congeneric tropical trees with contrasting habitat associations on Borneo. J Trop Ecol 22:397–408

    Article  Google Scholar 

  • Park S, Brett MT, Müller-Navarra DC, Goldman CR (2002) Essential fatty acid content and the phosphorus to carbon ratio in cultured algae as indicators of food quality for Daphnia. Freshw Biol 47:1377–1390

    Article  Google Scholar 

  • Peñuelas J, Estiarte M (1998) Can elevated CO2 affect secondary metabolism and ecosystem functioning? Trends Ecol Evol 13:20–24

    Article  Google Scholar 

  • Peñuelas J, Sardans J (2009a) Elementary factors. Nature 460:803–804

    Article  Google Scholar 

  • Peñuelas J, Sardans J (2009b) Ecological metabolomics. Chem Ecol 25:305–309

    Article  Google Scholar 

  • Peñuelas J, Sardans J, Ogaya R, Estiarte M (2008) Nutrient stoichiometric relations and biogeochemical niche in coexisting plant species: effect of simulated climate change. Pol J Ecol 56:613–622

    Google Scholar 

  • Peñuelas J, Sardans J, Llusia J, Owen S, Carnicer J, Giambeluca TW, Rezende EL, Waite M, Niinemets Ü (2010) Faster returns on ‘leaf economics’ and different biogeochemical niche in invasive compared with native plant species. Glob Change Biol 16:2171–2185

    Article  Google Scholar 

  • Perring MP, Hedin LO, Levin SA, McGroddy M, de Mazancourt C (2008) Increased plant growth from nitrogen addition should conserve phosphorus in terrestrial ecosystems. Proc Natl Acad Sci USA 12:1971–1978

    Article  Google Scholar 

  • Persson J, Vrede T, Holmgren S (2008) Responses in zooplankton populations to food quality and quantity changes after whole lake nutrient enrichment of an oligotrophic sub-alpine reservoir. Aquat Sci 70:142–155

    Article  Google Scholar 

  • Persson J, Fink P, Goto A, Hood JM, Jonas J, Kato S (2010) To be or not to be what you eat: regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos 119:741–751

    Article  Google Scholar 

  • Phoenix GK, Booth RE, Leake JR, Read DJ, Grime RJ, Lee JA (2004) Simulated pollutant nitrogen deposition increases P demand and enhances root-surface phosphatise activities of three plant functional types in a calcareous grassland. New Phytol 161:279–289

    Article  Google Scholar 

  • Pilati A, Vanni MJ (2007) Ontogeny, diet chifts, and nutrient stoichiometry in fish. Oikos 116:1661–1674

    Article  Google Scholar 

  • Plath K, Boersma M (2001) Mineral limitation of zooplankton: stoichiometric constrains and optimal foraging. Ecology 82:1260–1269

    Article  Google Scholar 

  • Powers JS, Tiffin P (2010) Plant functional type classifications in tropical dry forest in Costa Rica: leaf habit versus taxonomic approaches. Funct Ecol 24:927–936

    Article  Google Scholar 

  • Qin P, Mayer CM, Schulz KL, Ji X, Ritchie ME (2007) Ecological stoichiometry in benthic food webs: effect of light and nutrients on periphyton food quantity and quality in lakes. Limnol Oceanogr 52:1728–1734

    Article  Google Scholar 

  • Quan TM, Falkowski PG (2008) Redox control of N:P ratios in aquatic ecosystems. Geobiology 7:124–139

    Article  Google Scholar 

  • Ratnam J, Sankaran M, Hanan NP, Grant RC, Zambatis N (2008) Nutrient resorption pattern of plant functional groups in a tropical savanna: variation and functional significance. Oecologia 157:141–151

    Article  Google Scholar 

  • Raubenheimer D, Simpson SJ (2004) Organismal stoichiometry: quantifying non-independence among food components. Ecology 85:1203–1216

    Article  Google Scholar 

  • Raubenheimer D, Simpson SJ, Mayntz D (2009) Nutrient, ecology and nutritional ecology: toward an integrated framework. Funct Ecol 23:4–16

    Article  Google Scholar 

  • Redfield AC (1934) On the proportions of organic derivatives in seawater and relation to the composition of the plankton. In: Daniel RI (ed) James Johnstone memorial volume. Liverpool University Press, Liverpool, pp 176–192

    Google Scholar 

  • Redfield AC, Ketchum BH, Richards FA (1963) The influence of organisms on the composition of sea-water. In: Hill MN (ed) The sea, vol 2. Wiley, New York, pp 26–77

    Google Scholar 

  • Reef R, Ball MC, Feller IC, Lovelock CE (2010) Relationships among RNA:DNA ratio, growth and elemental stoichiometry in mangrove trees. Funct Ecol 24:1064–1072

    Article  Google Scholar 

  • Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci USA 101:11001–11106

    Article  Google Scholar 

  • Reich PB, Oleksyn J, Wright IJ, Niklas KJ, Hedin I, Elser JJ (2010) Consistent 2/3-power leaf nitrogen to phosphorus scaling among major plant groups and biomes. Proc R Soc Lond B Biol Sci 277:877–883

    Article  Google Scholar 

  • Richardson CJ, Ferrel GM, Vaithiyanathan P (1999) Nutrient effects on stand structure, resorption efficiency, and secondary compounds in everglades sawgrass. Ecology 80:2182–2192

    Article  Google Scholar 

  • Richardson SJ, Allen RB, Doherty JE (2008) Shifts in leaf N:P ratio during reabsorption reflect soil P in temperate forest. Funct Ecol 22:738–745

    Article  Google Scholar 

  • Robroek BJM, Adema EB, Venterink HO, Leonardson L, Wassen MJ (2009) How nitrogen and sulphur addition, and a single drought affect root phosphatase activity in Phalaris arundinacea. Sci Total Environ 407:2342–2348

    Article  Google Scholar 

  • Roem WJ, Berendse F (2000) Soil acidity and nutrient supply as possible factors determining changes in plant species diversity in grassland and heathland communities. Biol Conserv 92:151–161

    Article  Google Scholar 

  • Rooney N, McCann K, Gellmer G, Moore JC (2006) Structural asymmetry and the stability of diverse food webs. Nature 442:265–269

    Article  Google Scholar 

  • Rothlisberger JD, Baker MA, Frost PC (2008) Effects of periphyton stoichiometry on mayfly excretion rates and nutrient ratios. J North Am Benthol Soc 27:497–508

    Article  Google Scholar 

  • Ruiz-Fernández AC, Frignani M, Tesi T, Bojórquez-Leyva H, Bellucci LG, Páez-Osuna F (2007) Recent sedimentary history of organic matter and nutrient accumulation in the Ohuira Lagoon, northwestern Mexico. Arch Environ Contam Toxicol 53:159–167

    Article  Google Scholar 

  • Ryser P, Lambers H (1995) Root and leaf attributes accounting for the performance of fast- and slow-growing grasses at different nutrient supply. Plant Soil 170:251–265

    Article  Google Scholar 

  • Sadras VO (2006) The N:P stoichiometry of cereal, grain legume and oilseed crops. Field Crop Res 95:13–29

    Article  Google Scholar 

  • Saikia SK, Nandi S (2010) C and P in aquatic food chain: a review on C:P stoichiometry and PUFA regulation. Knowl Manag Aquat Ecosyst 398:03

    Article  Google Scholar 

  • Sañudo-Wilhelmy SA, Kustka AB, Gobler CJ, Hutchins DA, Yang M, Lwiza K, Burns J, Capone D, Raven JA, Carpenter EJ (2001) Phosphorus limitation of nitrogen fixation by Trichodesmium in the central Atlantic ocean. Nature 411:66–69

    Article  Google Scholar 

  • Sañudo-Wilhelmy SA, Tovar-Sánchez A, Fu FX, Capone DG, Carpenter EJ, Hutchins DA (2004) The impact of surface-adsorbed phosphorus on phytoplankton Redfield stoichiometry. Nature 432:897–901

    Article  Google Scholar 

  • Sardans J, Peñuelas J (2007) Drought changes phosphorus and potassium accumulation patterns in an evergreen Mediterranean forest. Funct Ecol 21:191–201

    Article  Google Scholar 

  • Sardans J, Peñuelas J, Estiarte M, Prieto P (2008) Warming and drought alter C and N concentration, allocation and accumulation in a Mediterranean shrubland. Glob Change Biol 14:2304–2316

    Article  Google Scholar 

  • Sasaki T, Yoshihara Y, Jamsran U, Ohkuro T (2010) Ecological stoichiometry explains larger-scale facilitation processes by shrubs on species coexistence among understory plants. Ecol Eng 36:1070–1075

    Article  Google Scholar 

  • Saura-Mas S, Lloret F (2009) Linking post-fire regenerative strategy and leaf nutrient content in Mediterranean woody plants. Prespect Plant Ecol Evol Syst 11:219–229

    Article  Google Scholar 

  • Schade JD, Kyle M, Hobbie SE, Fagan WF, Elser JJ (2003) Stoichiometric tracking of soil nutrients by a desert insect herbivore. Ecol Lett 6:96–101

    Article  Google Scholar 

  • Schatz GS, McCauley E (2007) Foraging behavior by Daphnia in stoichiometric gradients of food quality. Oecologia 153:1021–1030

    Article  Google Scholar 

  • Schindler DE, Eby LA (1997) Stoichiometry of fishes and their prey: implications for nutrient recycling. Ecology 78:1816–1831

    Article  Google Scholar 

  • Schneider K, Kay AD, Fagan WF (2010) Adaptation to a limiting environment: the phosphorus content of a terrestrial cave arthropods. Ecol Res 25:565–577

    Article  Google Scholar 

  • Schoo KL, Aberle N, Malzahn AM, Boersma M (2010) Does the nutrient stoichiometry of primary producers affect the secondary consumer Pleurobrachia pileus? Aquat Ecol 44:233–242

    Article  Google Scholar 

  • Seidendorf B, Meier N, Petrusek A, Boeresma M, Streit B, Schwenk K (2010) Sensitivity of Daphnia species to phosphorus-deficient diets. Oecologia 162:349–357

    Article  Google Scholar 

  • Seastedt TR, Vaccaro L (2001) Plant species richness, productivity, and nitrogen and phosphorus limitations across a snowpack gradient in alpine tundra, Colorado, USA. Arct Antarct Alpine Res 33:100–106

    Article  Google Scholar 

  • Shaver GR, Melillo JM (1984) Nutrient budgets of marsh plants: efficiency concepts and relation to availability. Ecology 65:1491–1510

    Article  Google Scholar 

  • Shimizu Y, Urabe J (2008) Regulation of phosphorus stoichiometry and growth rate of consumers: theoretical and experimental analyses with Daphnia. Oecologia 155:21–31

    Article  Google Scholar 

  • Singer GA, Battin TJ (2007) Anthropogenic subsides alter stream consumer-resource stoichiometry, biodiversity, and food chains. Ecol Appl 17:376–389

    Article  Google Scholar 

  • Sinsabaugh RL, Hill BH, Follstad Shah JJ (2009) Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462:795–798

    Article  Google Scholar 

  • Slomp CP, Van Cappellen P (2004) Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. J Hydrol 295:64–86

    Article  Google Scholar 

  • Small GE, Pringle CM (2010) Deviation from strict homeostasis across multiple trophic levels in an invertebrate consumer assemblage exposed to high chronic phosphorus enrichment in a Neotropical stream. Oecologia 162:581–590

    Article  Google Scholar 

  • Smith VH (1983) Low nitrogen to phosphorus ratios favour dominance by blue-green algae in Lake Phytoplankton. Science 221:669–671

    Article  Google Scholar 

  • Smith VH (1992) Effects of nitrogen:phosphorus supply ratios on nitrogen fixation in agricultural and pastoral ecosystems. Biogeochemistry 18:19–35

    Article  Google Scholar 

  • Spears BM, Carvalho L, Perkins R, Paterson DM (2008) Effects of light on sediment nutrient flux and water column nutrient stoichiometry in a shallow lake. Water Res 42:977–985

    Article  Google Scholar 

  • Stelzer RS, Lamberti GA (2002) Ecological stoichiometry in running waters: periphyton chemical composition and snail growth. Ecology 83:1039–1051

    Article  Google Scholar 

  • Sterner RW (1995) Elemental stoichiometry of species in ecosystems. In: Linking species and ecosystems. pp 240–252

  • Sterner RW (2011) C:N:P stoichiometry in Lake Superior: freshwater sea as end member. Inland Waters (in press)

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton

    Google Scholar 

  • Sterner RW, George N (2000) Carbon, nitrogen, and phosphorus stoichiometry of cyprinid fishes. Ecology 81:127–140

    Article  Google Scholar 

  • Sterner RW, Hessen DO (1994) Algal nutrient limitation and the nutrition of aquatic herbivores. Annu Rev Ecol Evol Syst 25:1–29

    Article  Google Scholar 

  • Sterner RW, Elser JJ, Hessen DO (1992) Stoichiometric relationships among producers, consumers and nutrient cycling in pelagic consumers. Biogeochemistry 17:49–67

    Article  Google Scholar 

  • Sterner RW, Elser JJ, Fee EJ, Guildford SJ, Chrzanowski TH (1997) The light/nutrient ratio in lakes. The balance of energy and materials affect ecosystem structure and process. Am Nat 150:663–684

    Article  Google Scholar 

  • Sterner RW, Classen J, Lampert W, Weisse T (1998) Carbon:phosphorus stoichiometry and food chain production. Ecol Lett 1:146–150

    Article  Google Scholar 

  • Sterner RW, Anagnostou E, Brovold S, Bullerjahn GS, Finlay JC, Kumar S, McKay RML, Sherrell RM (2007) Increasing stoichiometric imbalance in North America’s largest lake: nitrification in Lake Superior. Geophys Res Lett 34:L10406

    Article  Google Scholar 

  • Sterner RW, Andersen T, Elser JJ, Hessen DO, Hood JM, McCauley E, Urabe J (2008) Scale-dependent carbon:nitrogen:phosphorus seston stoichiometry in marine and freshwater. Limnol Oceanogr 5:1169–1180

    Article  Google Scholar 

  • Striebel M, Behl S, Stibor H (2009) The coupling of biodiversity and productivity in phytoplankton communities: consequences for biomass stoichiometry. Ecology 90:2025–2031

    Article  Google Scholar 

  • Strojsova M, Nedoma J, Sed’a J, Vrba J (2008) Diet quality impact on growth, reproduction and digestive activity in Brachionus calyciflorus. J Plankton Res 39:1123–1131

    Article  Google Scholar 

  • Tanner DK, Brazner JC, Brady VJ (2000) Factors influencing carbon, nitrogen, and phosphorus content of fish from a Lake Superior coastal wetland. Can J Fish Aquat Sci 57:1243–1251

    Article  Google Scholar 

  • Tessier JT, Raynal DJ (2003) Use of nitrogen to phosphorus ratios in plant tissues as an indicator of nutrient limitation and nitrogen saturation. J Appl Ecol 40:523–534

    Article  Google Scholar 

  • Teubner K, Crosbie ND, Donabaum K, Kabas W, Kirschner AKT, Pfister G, Salbrechter M, Dokulil MT (2003) Enhanced phosphorus accumulation efficiency by the pelagic community at reduced phosphorus supply: a lake experiment from bacteria to metazoan zooplankton. Limnol Oceanogr 48:1141–1149

    Article  Google Scholar 

  • Tibbets TM, Molles MC Jr (2005) C:N:P stoichiometry of dominant riparian trees and arthropods along the Middle Rio Grande. Freshw Biol 50:1882–1894

    Article  Google Scholar 

  • Timmermans KR, van der Wagt B (2010) Variability in cell size, nutrient depletion, and growth rates of the southern ocean diatom Fragilariopsis kerguelensis (Bacillariophyceae) after prolonged iron limitation. J Phycol 46:497–506

    Article  Google Scholar 

  • Torres LE, Vanni MJ (2007) Stoichiometry of nutrient excretion by fish: interspecific variation in a hypereutrophic lake. Oikos 116:259–270

    Article  Google Scholar 

  • Townsend AR, Cleveland CC, Asner GP, Bustamante MMC (2007) Controls over foliar N:P ratios in tropical rainforest. Ecology 88:107–118

    Article  Google Scholar 

  • Townsend SA, Schult JH, Douclas MM, Skinner S (2008) Does the Redfield ratio infer nutrient limitation in the macroalgae Spirogyra fluviatilis? Freshw Biol 53:509–520

    Article  Google Scholar 

  • Tripathi SK, Kushwara CP, Singh KP (2008) Tropical forest and savanna ecosystems show differential impact of N and P additions on soil organic matter and aggregate structure. Glob Change Biol 14:2572–2581

    Google Scholar 

  • Tyrrell T (1999) The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400:525–531

    Article  Google Scholar 

  • Urabe J (1995) Direct and indirect effects of zooplankton on seston stoichiometry. Ecoscience 2:286–296

    Google Scholar 

  • Urabe J, Sterner RW (1996) Regulation of herbivore growth by the balance of light and nutrients. Proc Natl Acad Sci USA 93:8465–8469

    Article  Google Scholar 

  • Urabe J, Clasen J, Sterner RW (1997) Phosphorus limitation of Daphnia growth: is it real? Limnol Oceanogr 42:1436–1443

    Article  Google Scholar 

  • Urabe J, Elser JJ, Kyle M, Yoshida T, Sekino T, Kawabata Z (2002a) Herbivorous animals can mitigate unfavourable ratios of energy and material supplies by enhancing nutrient cycling. Ecol Lett 5:177–185

    Article  Google Scholar 

  • Urabe J, Kyle M, Makino W, Yoshida T, Andersen T, Elser JJ (2002b) Reduced light increases herbivore production due to stoichiometry effects of light/nutrient balance. Ecology 83:619–627

    Article  Google Scholar 

  • Van de Weg M, Meir P, Grace J, Atkin OK (2009) Altitudinal variation in leaf mass per unit area, leaf tissue density and foliar nitrogen and phosphorus content along an Amazon-Andes gradient in Peru. Plant Ecol Divers 2:243–254

    Article  Google Scholar 

  • Van der Stap I, Vos M, Verschoor AM, Helmsing NR, Mooij WM (2007) Induced defenses in herbivores and plants differentially modulate a trophic cascade. Ecology 88:2474–2481

    Article  Google Scholar 

  • Van Duren IC, Pegtel DM (2000) Nutrient limitations in wet, drained and rewetted fen meadows: evaluation of methods and results. Plant Soil 220:35–47

    Article  Google Scholar 

  • Van Geest GJ, Spierenburg P, Van Donk E, Hessen DO (2007) Daphnia growth rates in Arctic ponds: limitation by nutrients or carbon? Polar Biol 30:235–242

    Google Scholar 

  • Vanni MJ, Layne CD, Arnott SE (1997) “Top-down” trophic interactions in lakes: effects of fish on nutrient dynamics. Ecology 78:1–20

    Google Scholar 

  • Vanni MJ, Flecker AS, Hood JM, Headwood JL (2002) Stoichiometry of nutrient recycling by vertebrates in a tropical stream: linking species identity and ecosystem process. Ecol Lett 5:285–293

    Article  Google Scholar 

  • Ventura M, Catalan J (2005) Reproduction as one of the main causes of temporal variability in the elemental composition of zooplankton. Limnol Oceanogr 50:2043–2056

    Article  Google Scholar 

  • Verhoeven JTA, Koerselman W, Meuleman AFM (1998) Nitrogen- or phosphorus-limited growth in herbaceous, wet vegetation: relations with atmospheric inputs and management regimes. Trees 11:494–497

    Google Scholar 

  • Villar-Argaiz M, Medina-Sánchez JM, Carrillo P (2002) Linking life history strategies and ontogeny in crustacean zooplankton: implications for homeostasis. Ecology 83:1899–1914

    Article  Google Scholar 

  • Visanuvimol L, Bertram SM (2010) Dietary phosphorus availability influences female cricket lifetime reproductive effort. Ecol Entomol 35:386–395

    Article  Google Scholar 

  • Viso AC, Marty GC (1993) Fatty acids from 28 marine microalgae. Phytochemistry 34:1521–1533

    Article  Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and sea: how can it occur? Biogeochemistry 13:87–115

    Article  Google Scholar 

  • Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010) Terrestrial phosphorus limitation: mechanisms, implications and nitrogen-phosphorus interactions. Ecol Appl 20:5–15

    Article  Google Scholar 

  • Vrede T, Andersen T, Hessen DO (1999) Phosphorus distribution in three crustacean zooplankton species. Limnol Oceanogr 44:225–229

    Article  Google Scholar 

  • Vrede T, Dobberfuhl DR, Kooijman S, Elser JJ (2004) Fundamental connections among organism C:N:P stoichiometry, macromolecular composition, and growth. Ecology 85:1217–1229

    Article  Google Scholar 

  • Vrede T, Ballantyne A, Mille-Lindblom C, Algesten G, Gudasz C, Lindahl S, Brunberg AK (2009) Effects of N:P loading ratios on phytoplankton community composition, primary production and N fixation in a eutrophic lake. Freshw Biol 54:331–344

    Article  Google Scholar 

  • Wakefield AE, Gotelli NJ, Witman SE, Ellison AM (2005) Prey addition alters nutrient stoichiometry of the carnivorous plant. Ecology 86:1737–1743

    Article  Google Scholar 

  • Wall LG, Hellsten A, Huss-Danell K (2000) Nitrogen, phosphorus, and the ratio between them affect nodulation in Alnus incana and Trifolium pretense. Symbiosis 29:91–105

    Google Scholar 

  • Walker TW, Syers JK (1976) The fate of phosphorus during pedogenesis. Geoderma 15:1–19

    Article  Google Scholar 

  • Ward BB, Devol AH, Rich JJ, Chang BX, Bulow SE, Naik H, Pratihary A, Jayakumar A (2009) Denitrification as the dominant nitrogen loss process in the Arabian Sea. Nature 461:78–81

    Article  Google Scholar 

  • Watts T, Woods A, Hargand S, Elser JJ, Markov TA (2006) Biological stoichiometry of growth in Drosophila melanogaster. J Insect Physiol 52:187–193

    Article  Google Scholar 

  • Weber TS, Deutsch C (2010) Ocean nutrient ratios governed by plankton biogeography. Nature 467:550–554

    Article  Google Scholar 

  • Weider LJ, Glenn KL, Kyle M, Elser JJ (2004) Associations among ribosomal rDNA intergenic spacer length, growth rate and C:N:P stoichiometry in the genus Daphnia. Limnol Oceanogr 49:1417–1423

    Article  Google Scholar 

  • Weider LJ, Elser JJ, Crease TJ, Mateos M, Cotner JB, Markow TA (2005) The functional significance of ribosomal rDNA variation: impacts on evolutionary ecology of organisms. Annu Rev Ecol Evol Syst 36:219–242

    Article  Google Scholar 

  • Weider LJ, Jeyasingh PD, Looper KG (2008) Stoichiometry differences in food quality: impacts on genetic diversity and the coexistence of aquatic herbivores in a Daphnia hybrid complex. Oecologia 158:47–55

    Article  Google Scholar 

  • Willby NJ, Pulford ID, Flowers TH (2001) Tissue nutrient signatures predict herbaceous-wetland community responses to nutrient availability. New Phytol 152:463–481

    Article  Google Scholar 

  • Woods HA, Makino W, Cotner JB, Hobbie SE, Harrison JF, Acharya K, Elser JJ (2003) Temperature and the chemical composition of poikilothermic organisms. Funct Ecol 17:237–245

    Article  Google Scholar 

  • Woods HA, Fagan WF, Elser JJ, Harrison JH (2004) Allometric and phylogenetic variation in insect phosphorus content. Funct Ecol 18:103–109

    Article  Google Scholar 

  • Wright IJ, Westoby M (2003) Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species. Funct Ecol 17:10–19

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  Google Scholar 

  • Wright IJ, Reich PB, Cornelissen HC, Falster DS, Garnier E, Hikosaka K, Lamont BB, Lee W, Oleksyn J, Osada N, Poorter H, Villar R, Warton DJ, Westoby M (2005) Assessing the generality of global leaf traits relationships. New Phytol 166:485–496

    Article  Google Scholar 

  • Wu J, Sunda W, Boyle EA, Karl DM (2000) Phosphate depletion in the western North Atlantic Ocean. Science 289:759–762

    Article  Google Scholar 

  • Yin K, Harrison PJ (2007) Influence of the Pearl River estuary and vertical mixing in Victoria Harbor on water quality in relation to eutrophication impacts in Hong Kong waters. Mar Pollut Bull 54:646–656

    Article  Google Scholar 

  • Yuan ZY, Chen HYH (2009) Global trends in senesced-leaf nitrogen and phosphorus. Glob Ecol Biogeogr 18:532–542

    Article  Google Scholar 

  • Zhang G, Han X (2010) N:P stoichiometry in Ficus racemosa and its mutualistic pollinator. J Plant Ecol 3:123–130

    Article  Google Scholar 

  • Zheng S, Shangguan Z (2007) Soil patterns of leaf nutrient traits of the plants in the loess plateau of China. Trees 21:357–370

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by European project NEU NITROEUROPE (GOCE017841), by Spanish Government projects CGL2006-04025/BOS, CGL2010-17172 and Consolider-Ingenio Montes CSD2008-00040, and by Catalan Government project SGR 2009-458.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordi Sardans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sardans, J., Rivas-Ubach, A. & Peñuelas, J. The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: a review and perspectives. Biogeochemistry 111, 1–39 (2012). https://doi.org/10.1007/s10533-011-9640-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-011-9640-9

Keywords

Navigation