Skip to main content
Log in

Does Microorganism Stoichiometry Predict Microbial Food Web Interactions After a Phosphorus Pulse?

  • Original Article
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Knowledge of variations in microbial food web interactions resulting from atmospheric nutrient loads is crucial to improve our understanding of aquatic food web structure in pristine ecosystems. Three experiments mimicking atmospheric inputs at different nitrogen/phosphorus (N/P) ratios were performed in situ covering the seasonal biological succession of the pelagic zone in a high-mountain Spanish lake. In all experiments, abundance, biomass, algal cell biovolume, P-incorporation rates, P-cell quota, and N/P ratio of algae strongly responded to P-enrichment, whereas heterotrophic bacteria remained relatively unchanged. Ciliates were severely restricted when a strong algal exploitation of the available P (bloom growth or storage strategies) led to transient (mid-ice-free experiment) or chronic (late ice-free experiment) P-deficiencies in bacteria. In contrast, maximum development of ciliates was reached when bacteria remained P-rich (N/P < 20) and algae approached Redfield proportions (N/P∼16). Evidence of a higher P-incorporation rate supports the proposition that algae and bacteria shifted from a mainly commensalistic–mutualistic to a competitive relationship for the available P when bacterial P-deficiency increased, as reflected by their unbalanced N/P ratio (N/P > 20–24). Hence, the bacterial N/P ratio proved be a key factor to understand the algae–bacteria relationship and microbial food web development. This study not only demonstrates the interdependence of life history strategies, stoichiometric nutrient content, and growth but also supports the use of bacterial N/P thresholds for diagnosing ciliate development, a little-studied aspect worthy of further attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ăgren GI (2004) The C:N:P stoichiometry of autotrophs-theory and observations. Ecol Lett 7:185–191

    Article  Google Scholar 

  2. Ăgren GI, Bosatta E (1996) Theoretical ecosystem ecology, understanding element cycles. Cambridge University Press, Cambridge, UK

    Google Scholar 

  3. American Public Health Association (1992) Standard methods for the examination of water and wastewater, 18th edn. American Public Health Association, Washington, DC

    Google Scholar 

  4. Berman-Frank I, Dubinsky Z (1999) Balanced growth in aquatic plants: myth or reality? Bioscience 49:29–37

    Article  Google Scholar 

  5. Bratbak G, Thingstad F (1985) Phytoplankton-bacteria interactions: an apparent paradox? Analysis of a model system with both competition and commensalism. Mar Ecol Prog Ser 25:33–30

    Article  Google Scholar 

  6. Carlsson P, Caron DA (2001) Seasonal variation of phosphorus limitation of bacterial growth in a small lake. Limnol Oceanogr 46:108–120

    Article  CAS  Google Scholar 

  7. Caron DA, Lim EL, Sanders RW, Dennett MR, Berninger UG (2000) Response of bacterioplankton and phytoplankton to organic carbon and inorganic nutrient additions in contrasting oceanic ecosystems. Aquat Microb Ecol 22:175–184

    Article  Google Scholar 

  8. Carrillo P, Cruz-Pizarro L, Morales-Baquero R (1990) Effects of unpredictable atmospheric allochthonous inputs on the light climate of an oligotrophic lake. Verh Int Ver Limnol 24:97–105

    Google Scholar 

  9. Carrillo P, Medina-Sánchez JM, Villar-Argaiz M (2002) The interaction of phytoplankton and bacteria in a high mountain lake: importance of the spectral composition of solar radiation. Limnol Oceanogr 47:1294–1306

    Article  Google Scholar 

  10. Carrillo P, Medina-Sánchez JM, Villar-Argaiz M, Delgado-Molina JA, Bullejos FJ (2006) Complex interactions in microbial food webs: stoichiometric and functional approaches. Limnetica 25(1–2):189–204

    Google Scholar 

  11. Chrzanowski TH, Grover JP (2001) Effects of mineral nutrients on the growth of bacterio- and phytoplankton in two southern reservoirs. Limnol Oceanogr 46:1319–1330

    Article  CAS  Google Scholar 

  12. Chrzanowski TH, Kyle M, Elser JJ, Sterner RW (1996) Element ratios and growth dynamics of bacteria in an oligotrophic Canadian shield lake. Aquat Microb Ecol 11:119–125

    Article  Google Scholar 

  13. Cotner BJ, Biddanda BA (2002) Small players, large role: microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems 5:105–121

    Article  CAS  Google Scholar 

  14. Daufresne T, Loreau M (2001) Ecological stoichiometry, primary producer-decomposer interactions and ecosystem persistence. Ecology 82:3069–3082

    Google Scholar 

  15. Downing JA, McCauley E (1992) The nitrogen:phosphorus relationship in lakes. Limnol Oceanogr 37:936–945

    CAS  Google Scholar 

  16. Duarte CM, Agustí S, Vaque D, Agawin NSR, Felipe J, Casamayor EO, Gasol JM (2005) Experimental test of bacteria–phytoplankton coupling in the Southern Ocean. Limnol Oceanogr 50(6):1844–1854

    CAS  Google Scholar 

  17. Duarte CM, Agustí S, Gasol JM, Vaqué D, Vázquez-Domínguez E (2000) Effect of nutrient supply on the biomass structure of planktonic communities. An experimental test on a Mediterranean coastal community. Mar Ecol Prog Ser 206:87–95

    Article  Google Scholar 

  18. Elser JJ, Dobberfuhl D, Mackay NA, Schampel JH (1996) Organism size, life history, and N:P stoichiometry: Toward a unified view of cellular and ecosystem processes. Bioscience 46:674–684

    Article  Google Scholar 

  19. Escudero M, Castillo S, Querol X, Avila A, Alarcón M, Viana MM, Alastuey A, Cuevas E, Rodríguez S (2005) Wet and dry African dust episodes over eastern Spain. J Geophys Res 110:D18S08

    Article  CAS  Google Scholar 

  20. Estrada M, Berdalet E, Vila M, Marrasé C (2003) Effects of pulsed nutrient enrichment on enclosed phytoplankton: ecophysiological and successional response. Aquat Microb Ecol 32:61–71

    Article  Google Scholar 

  21. Healey FP, Hendzel LL (1980) Physiological indicators of nutrient deficiency in lake phytoplankton. Can J Fish Aquat Sci 37:442–453

    Article  CAS  Google Scholar 

  22. Hessen DO, Faeovig PJ, Andersen T (2002) Light, nutrients, and P:C ratios in algae: grazer performance related to food quality and quantity. Ecology 83:1886–1898

    Google Scholar 

  23. Joint I, Henriksen P, Fonnes GA, Bourne D, Thingstad TF, Riemann B (2002) Competition for inorganic nutrients between phytoplankton and bacterioplankton in nutrient manipulated mesocosms. Aquat Microb Ecol 29:145–159

    Article  Google Scholar 

  24. Krom MD, Crees N, Brenner S, Gordon LI (1991) Phosphorus limitation of primary productivity in the eastern Mediterranean Sea. Limnol Oceanogr 36:424–432

    CAS  Google Scholar 

  25. Makino W, Cotner JB (2004) Elemental stoichiometry of a heterotrophic bacterial community in a freshwater lake: implications for growth- and resource-dependent variations. Aquat Microb Ecol 34:33–41

    Article  Google Scholar 

  26. Makino W, Cotner JB, Sterner RW, Elser JJ (2003) Are bacteria more like plants or animals? Growth rate and substrate dependence of bacterial C: N:P stoichiometry. Funct Ecol 17:121–130

    Article  Google Scholar 

  27. Matz C, Boenigk J, Arndt H, Jürgens K (2002) Role of bacterial phenotypic traits in selective feeding of the heterotrophic nanoflagellates Spumella sp. Aquat Microb Ecol 27:137–148

    Article  Google Scholar 

  28. MCQueen D, Johannes S, Post R, Stewart J, Lean D (1989) Bottom–up and top–down impacts on freshwater pelagic community structure. Ecol Monogr 59:289–309

    Article  Google Scholar 

  29. Medina-Sánchez JM, Villar-Argaiz M, Sánchez-Castillo P, Cruz-Pizarro L, Carillo P (1999) Structure changes in a planktonic food web: biotic and abiotic controls. J Limnol 58:213–222

    Google Scholar 

  30. Medina-Sánchez JM, Villar-Argaiz M, Carrillo P (2002) Modulation of the bacterial response to spectral solar radiation by algae and limiting nutrients. Freshwater Biol 47:2191–2204

    Article  Google Scholar 

  31. Medina-Sánchez JM, Villar-Argaiz M, Carrillo P (2004) Neither with nor without you: a complex algal control on bacterioplankton. Limnol Oceanogr 49:1722–1733

    Google Scholar 

  32. Medina-Sánchez JM, Villar-Argaiz M, Carrillo P (2006) Solar radiation-nutrient interaction enhances the resource and predation algal control on bacterioplankton: a short-term experimental study. Limnol Oceanogr 51:913–924

    Google Scholar 

  33. Möller H, Geller W (1993) Maximum growth rates of aquatic ciliated protozoa: the dependence on body size and temperature reconsidered. Arch Hydrobiol 126:315–327

    Google Scholar 

  34. Morales-Baquero R, Pulido-Villena E, Reche I (2006) Atmospheric inputs of phosphorus and nitrogen to the southwest Mediterranean region: biogeochemical response of high mountain lakes. Limnol Oceanogr 51:830–837

    CAS  Google Scholar 

  35. Morris DP, Lewis WM (1988) Phytoplankton nutrient limitation in Colorado mountain lakes. Freshwater Biol 20:315–327

    Article  Google Scholar 

  36. Norland S (1993) The relationship between biomass and volume of bacteria. In: Kemp PF, Sherr BF, Sherr EB Cole JJ (eds) Handbook of methods in aquatic microbial ecology. Lewis, Boca Raton, pp 303–307

    Google Scholar 

  37. Oata Y, Nakajima H (2001) Mutualistic relationship between phytoplankton and bacteria caused by carbon excretion from phytoplankton. Ecol Res 16:288–299

    Google Scholar 

  38. Obernosterer I, Herndl GJ (1997) Phytoplankton extracellular release and bacterial growth: dependence on the inorganic N:P ratio. Mar Ecol Prog Ser 116:247–257

    Article  Google Scholar 

  39. Porter KG, Feig YS (1980) Use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Article  Google Scholar 

  40. Prospero JM, Lamb PJ (2003) African droughts and dust transport to the Caribbean: climate change implications. Science 302:1024–1027

    Article  PubMed  CAS  Google Scholar 

  41. Psenner R (1999) Living in a dusty world-airborne dust as a key factor for alpine lakes. Water Air Soil Poll 112:217–227

    Article  CAS  Google Scholar 

  42. Ptacnik R, Sommer U, Hasen T, Martens V (2004) Effects of microplankton and mixotrophy in an experimental planktonic food web. Limnol Oceanogr 49:1435–1445

    Article  Google Scholar 

  43. Pulido- Villena E, Reche I, Morales-Baquero R (2006) Significance of atmospheric inputs of calcium over the southwestern Mediterranean region: high mountain lakes as tools for detection. Global Biogeochem Cycles 20:GB2012

    Article  CAS  Google Scholar 

  44. Putt M, Stoecker DK (1989) An experimentally determined carbon: volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters. Limnol Oceanogr 34:1097–1103

    Google Scholar 

  45. Redfield AC, Ketchum BH, Richards FA (1963) The influence of organisms on the composition of seawater. In: Hill MN (ed) The sea, vol. 2. Wiley Interscience, New York

    Google Scholar 

  46. Rivkin RB, Anderson MR (1997) Inorganic nutrient limitation of oceanic bacterioplankton. Limnol Oceanogr 42:730–740

    Article  CAS  Google Scholar 

  47. Roberts EC, Priscu JC, Laybourn-Parry J (2004) Microplankton dynamics in a perennially ice-covered Antarctic lake–Lake Hoare. Freshwater Biol 49:853–869

    Article  Google Scholar 

  48. Rocha O, Duncan A (1985) The relationship between cell carbon and cell volume in freshwater algal species used in zooplankton studies. J Plankton Res 7:279–294

    Article  Google Scholar 

  49. Rothaupt KO (1997) Nutrient turnover by freshwater bacterivorous flagellates: differences between a heterotrophic and a mixotrophic chrysophyte. Aquat Microb Ecol 12:65–70

    Article  Google Scholar 

  50. Samuelsson K, Berglund J, Haecky P, Andersson A (2002) Structural changes in an aquatic food web caused by inorganic nutrient addition. Aquat Microb Ecol 29:29–39

    Article  Google Scholar 

  51. Schlesinger WH (1997) Biogeochemistry: an analysis of global change. Academic, San Diego, CA

    Google Scholar 

  52. Šimek K, Jürgens K, Nedoma J, Comerma M, Armengol J (2000) Ecological role and bacterial grazing of Halteria spp.: small freshwater oligotrichs as dominant pelagic ciliate bacterivores. Aquat Microb Ecol 22:43–56

    Article  Google Scholar 

  53. Sommer U (1985) Comparison between steady state and nonsteady state competition: Experiments with natural phytoplankton. Limnol Oceanogr 30:335–346

    CAS  Google Scholar 

  54. Statsoft (2005) Statistica for Windows. Release 7.1 edn. Statsoft, Inc., Tulsa, OK

  55. Stelzer RS, Lamberty GA (2001) Effects of N:P ratio and total nutrient concentration on stream periphyton community structure, biomass, and elemental composition. Limnol Oceanogr 46:365–367

    Google Scholar 

  56. Sterner RW, Elser JJ (2002) Ecological soichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, USA

    Google Scholar 

  57. Straskrabová V, Callieri C, Fott J (eds) (1999a) Pelagic food webs in mountain lakes -Mountain LAkes Research Program. J Limnol 58:77–222

    Google Scholar 

  58. Straskrabová V, Callieri C, Carrillo P, Cruz-Pizarro L, Fott J, Hartman P, Macek M, Medina-Sánchez JM, Nedoma J, Simek K (1999b) Investigations on pelagic food webs in mountain lakes—aims and methods. J Limnol 58:77–87

    Google Scholar 

  59. Tadonléké RD, Planas D, Lucotte M (2005) Microbial food webs in boreal humic lakes and reservoirs: ciliates as a major factor related to the dynamics of the most active bacteria. Microbial Ecol 49:325–341

    Article  CAS  Google Scholar 

  60. Tarapchack SJ, Moll RA (1990) Phosphorus sources for phytoplankton and bacteria in Lake Michigan. J Plankton Res 12:743–758

    Article  Google Scholar 

  61. Teira E, Pazó MJ, Serret P, Fernández E (2001) Dissolved organic carbon production by microbial population in the Atlantic Ocean. Limnol Oceanogr 46:1370–1377

    Article  CAS  Google Scholar 

  62. Urabe J, Gurung TB, Yoshida T, Sekino T, Nakanishi M, Maruo M, Nakayama E (2000) Diel changes in phagotrophy by Cryptomonas in Lake Biwa. Limnol Oceanogr 45:1558–1563

    Article  Google Scholar 

  63. Vaqué D, Blough HA, Duarte CM (1997) Dynamics of ciliate abundance, biomass and community composition in an oligotrophic coastal environment (NW Mediterranean). Aquat Microb Ecol 12:71–83

    Article  Google Scholar 

  64. Villar-Argaiz M, Medina-Sánchez JM, Carrillo P (2001) Inter- and intra-annual variability in the phytoplankton community of a high mountain lake: the influence of external (atmospheric) and internal (recycled) sources of P. Freshwater Biol 46:1017–1024

    Article  CAS  Google Scholar 

  65. Villar-Argaiz M, Medina-Sánchez JM, Carrillo P (2002) Microbial plankton response to contrasting climatic conditions: insights from community structure, productivity and fraction stoichiometry. Aquat Microb Ecol 29:253–266

    Article  Google Scholar 

  66. Vrede K (1999) Effects of inorganic nutrients and zooplankton on the growth of heterotrophic bacterioplankton-enclosure experiments in an oligotrophic clearwater lake. Aquat Microb Ecol 18:133–144

    Article  Google Scholar 

  67. Vrede K, Vrede T, Isaksson A, Karlsson A (1999) Effects of nutrients (phosphorous, nitrogen and carbon) and zooplankton on bacterioplankton and phytoplankton—seasonal study. Limnol Oceanogr 44:1616–1624

    CAS  Google Scholar 

  68. Wang L, Miller TD, Priscu JC (1992) Bacterioplankton nutrient deficiency in a eutrophic lake. Arch Hydrobiol 125:423–439

    Google Scholar 

  69. Weisse T, MacIsaac E (2000) Significance and fate of bacterial production in oligotrophic lakes in British Columbia. Can J Fish Aquat Sci 57:96–105

    Article  Google Scholar 

  70. Zubkov MV, Sleigh MA (1995) Bacterivory by starved marine heterotrophic nanoflagellates of two species which feed differently, estimated by uptake of dual radioactive-labeled bacteria. FEMS Microbiol Ecol 17:57–66

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the help of laboratory crew in routine sampling and Richard Davies for English writing assistance. We are grateful to Maria del Mar Rueda Professor of Statistical and Operative Research University of Granada for their advice on statistical analysis This study was supported by the Spanish Ministry Science and Technology Project REN2001–2840 HID (to PC) and MEC Project CGL2005-01564 (to PC) and Spanish Ministry of Environment Project (PN 2003/25) (to PC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Presentación Carrillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrillo, P., Villar-Argaiz, M. & Medina-Sánchez, J.M. Does Microorganism Stoichiometry Predict Microbial Food Web Interactions After a Phosphorus Pulse?. Microb Ecol 56, 350–363 (2008). https://doi.org/10.1007/s00248-007-9353-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-007-9353-8

Keywords

Navigation