Skip to main content
Log in

How Daphnia copes with excess carbon in its food

  • Ecophysiology
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Animals that maintain near homeostatic elemental ratios may get rid of excess ingested elements from their food in different ways. C regulation was studied in juveniles of Daphnia magna feeding on two Selenastrum capricornutum cultures contrasting in P content (400 and 80 C:P atomic ratios). Both cultures were labelled with 14C in order to measure Daphnia ingestion and assimilation rates. No significant difference in ingestion rates was observed between P-low and P-rich food, whereas the net assimilation of 14C was higher in the treatment with P-rich algae. Some Daphnia were also homogeneously labelled over 5 days on radioactive algae to estimate respiration rates and excretion rates of dissolved organic C (DOC). The respiration rate for Daphnia fed with high C:P algae (38.7% of body C day-1) was significantly higher than for those feeding on low C:P algae (25.3% of body C day-1). The DOC excretion rate was also higher when animals were fed on P-low algae (13.4% of body C day-1) than on P-rich algae (5.7% of body C day-1) . When corrected for respiratory losses, total assimilation of C did not differ significantly between treatments (around 60% of body C day-1). Judging from these experiments, D. magna can maintain its stoichiometric balance when feeding on unbalanced diets (high C:P) primarily by disposing of excess dietary C via respiration and excretion of DOC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3A–E.
Fig. 4A, B.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  • Andersen T, Hessen DO (1991) Carbon, nitrogen, and phosphorus content of freshwater zooplankton. Limnol Oceanogr 36:807–814

    CAS  Google Scholar 

  • Båmstedt U (1986) Chemical composition and energy content. In: Corner EDS, O'Hara (eds) The biological chemistry of marine copepods. Oxford University Press, Oxford, pp 1–58

  • Biddanda B, Ogdahl M, Cotner J (2001) Dominance of bacterial metabolism in oligotrophic relative to eutrophic waters. Limnol Oceanogr 46:730–739

    Google Scholar 

  • Billen G (1984) Heterotrophic utilization and regeneration of nitrogen. In: Hobbie JE, Williams PJleB (eds) Heterotrophic activity in the sea. Plenum Press, New York, pp 313–355

  • Cimbleris ACP, Kalff J (1998) Planktonic bacterial respiration as a function of C:N:P ratios accross temperate lakes. Hydrobiologia 384:89–100

    Article  Google Scholar 

  • Conover RJ, Francis V (1973) The use of radioactive isotopes to measure the transfer of materials in aquatic food chains. Mar Biol 18:272–283

    Google Scholar 

  • Copping AE, Lorenzen CJ (1980) Carbon budget of a marine phytoplankton-herbivore system with carbon-14 as a tracer. Limnol Oceanogr 25:873–882

    Google Scholar 

  • DeMott WR, Gulati RD, Siewertsen K (1998) Effects of phosphorus-deficient diets on the carbon and phosphorus balance of Daphnia magna. Limnol Oceanogr 43:1147–1161

    Google Scholar 

  • Elser JJ, Hassett RP (1994) A stoichiometric analysis of the zooplankton-phytoplankton interaction in marine and freshwater ecosystems. Nature 370:211–213

    Google Scholar 

  • Elser JJ, Dobberfuhl DR, MacKay NA, Schampel JH (1996) Organism size, life history, and N:P stoichiometry: towards a unified view of cellular and ecosystem processes. BioScience 46:674–684

    Google Scholar 

  • Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH, Sterner RW (2000) Nutritional constraints in terrestrial and freshwater food webs. Nature 408:578–580

    Article  CAS  PubMed  Google Scholar 

  • Gardner WS, Paffenhöfer G-A (1982) Nitrogen regeneration by the subtropical marine copepod Eucalanus pileatus. J Plankton Res 4:725–734

    CAS  Google Scholar 

  • Goldman JC, Caron DA, Dennett MR (1987) Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C:N ratio. Limnol Oceanogr 32:1239–1252

    CAS  Google Scholar 

  • Goulden CE, Place AR (1990) Fatty acid synthesis and accumulation rates in daphniids. J Exp Zool 256:168–178

    CAS  Google Scholar 

  • Groeger AW, Schram MD, Marzolf GR (1991) Influence of food quality on growth and reproduction in Daphnia. Freshwater Biol 26:11–19

    Google Scholar 

  • Harder W, Dijkhuizen L (1983) Physiological responses to nutrient limitation. Annu Rev Microbiol 37:1–23

    CAS  PubMed  Google Scholar 

  • Hessen DO (1992) Nutrient element limitation of zooplankton production. Am Nat 140:799–814

    Article  Google Scholar 

  • Hessen DO (1997) Stoichiometry in food webs—Lotka revisited. Oikos 79:195–200

    CAS  Google Scholar 

  • Hessen DO, Faafeng BA (2000) Elemental ratios in freshwater seston; implications for community structure and energy transfer in food webs. Arch Hydrobiol Adv Limnol 55:349–363

    CAS  Google Scholar 

  • Hessen DO, Faerøvig PJ, Andersen T (2002) Light, nutrients, and P:C ratios in algae: grazer performance related to food quality and food quantity. Ecology 83:1886–1898

    Google Scholar 

  • Hopkinson CS, Sherr B, Wiebe WJ (1989) Size-fractionated metabolism of coastal microbial plankton. Mar Ecol Prog Ser 51:155–166

    Google Scholar 

  • Hygum BH, Petersen JW, Søndergaard M (1997) Dissolved organic carbon released by zooplankton grazing activity—a high-quality substrate pool for bacteria. J Plankton Res 19:97–111

    CAS  Google Scholar 

  • Jumars PA, Penry DL, Baross JA, Perry MJ, Frost BW (1989) Closing the microbial loop: dissolved carbon pathway to heterotrophic bacteria from incomplete ingestion, digestion and absorption in animals. Deep-Sea Res PT A 36:483–495

    Google Scholar 

  • Kilham SS, Kreeger DA, Lynn SG, Goulden CE, Herrera L (1998) COMBO: a defined freshwater culture medium for algae and zooplankton. Hydrobiologia 377:147–159

    Article  CAS  Google Scholar 

  • Lampert W (1975) A tracer study on the carbon turnover of Daphnia pulex. Verh Int Verein Limnol 19:2913–2921

    Google Scholar 

  • Lampert W (1977) Studies on the carbon balance of Daphnia pulex as related to environmental conditions. I. Methodological problems of the use of 14C for the measurement of carbon assimilation. Arch Hydrobiol [Suppl] 48:287-309

    Google Scholar 

  • Lampert W (1978) Release of dissolved organic matter by grazing zooplankton. Limnol Oceanogr 23:831–834

    CAS  Google Scholar 

  • Lampert W (1987) Feeding and nutrition in Daphnia. Mem Ist Ital Idrobiol Dott Marco de Marchi Pallanza Italy 45:143–192

    Google Scholar 

  • Lampert W, Bohrer R (1984) Effect of food availability on the respiratory quotient of Daphnia magna. Comp Biochem Phys A 78:221–223

    Article  Google Scholar 

  • Lampert W, Gabriel W (1984) Tracer kinetics in Daphnia: an improved two-compartment model and experimental test. Arch Hydrobiol 100:1–20

    Google Scholar 

  • Lancelot C, Billen G (1985) Carbon-nitrogen relationships in nutrient metabolism of coastal marine ecosystems. Adv Aquat Microbiol 3:263–321

    Google Scholar 

  • Olsen Y, Varum KM, Jensen A (1986) Some characteristics of the carbon compounds released by Daphnia. J Plankton Res 8:505–517

    CAS  Google Scholar 

  • Park J-Ch, Aizaki M, Fukushima T, Otsuki A (1997) Production of labile and refractory dissolved organic carbon by zooplankton excretion: an experimental study using large outdoor continuous flow-through ponds. Can J Fish Aquat Sci 54:434–443

    Article  Google Scholar 

  • Plath K, Boersma M (2001) Mineral limitation of zooplankton: stoichiometric constraints and optimal foraging. Ecology 82:1260–1269

    Google Scholar 

  • Reynolds CS (1997) Vegetation processes in the pelagic: a model for ecosystem theory. In: Kinne O (ed) Excellence in ecology, vol 9. Ecology Institute, Oldendorf/Luhe, Germany

  • Richardot M, Debroas D, Thouvenot A, Sargos D, Dévaux J (2001) Influence of cladoceran grazing activity on dissolved organic matter, enzymatic hydrolysis and bacterial growth. J Plankton Res 23:1249–1261

    Article  Google Scholar 

  • Rosenstock B, Simon M (2001) Sources and sinks of dissolved free amino acids and protein in a large and deep mesotrophic lake. Limnol Oceanogr 46:644–654

    CAS  Google Scholar 

  • Rothhaupt KO (1995) Algal nutrient limitation affects rotifer growth rate but not ingestion rate. Limnol Oceanogr 40:1201–1208

    CAS  Google Scholar 

  • Salisbury FB, Ross CW (1992) Plant physiology, 4th edn. Wadsmorth Belmont, Calif.

  • Sterner RW (1993) Daphnia growth on varying quality of Scenedesmus: mineral limitation of zooplankton. Ecology 74:2351–2360

    Google Scholar 

  • Sterner RW (1997) Modelling interactions of food quality and quantity in homeostatic consumers. Freshwater Biol 38:473–481

    Google Scholar 

  • Sterner RW (1998) Demography of a natural population of Daphnia retrocurva in a lake with low food quality. J Plankton Res 20:471–489

    Google Scholar 

  • Sterner RW, Hessen DO (1994) Algal nutrient limitation and the nutrition of aquatic herbivores. Annu Rev Ecol Syst 25:1–29

    Article  Google Scholar 

  • Sterner RW, Smith RF (1993) Clearance, ingestion and release of N and P by Daphnia obtusa feeding on Scenedesmus acutus of varying quality. Bull Mar Sci 53:228–239

    Google Scholar 

  • Sterner RW, Hagemeier DD, Smith RF, Smith WL (1992) Lipid-ovary indices in food-limited Daphnia. J Plankton Res 14:1449–1460

    CAS  Google Scholar 

  • Sterner RW, Hagemeier DD, Smith WL, Smith RF (1993) Phytoplankton nutrient limitation and food quality for Daphnia. Limnol Oceanogr 38:857–871

    Google Scholar 

  • Sterner RW, Clasen J, Lampert W, Weisse T (1998) Carbon:phosphorus stoichiometry and food chain production. Ecol Lett 1:146–150

    Article  Google Scholar 

  • Strom SL, Benner R, Ziegler S, Dagg MJ (1997) Planktonic grazers are a potentially important source of marine dissolved organic carbon. Limnol Oceanogr 42:1364–1374

    CAS  Google Scholar 

  • Tessier AJ, Goulden CE (1982) Estimating food limitation in cladoceran populations. Limnol Oceanogr 27:707–717

    Google Scholar 

  • Urabe J, Watanabe Y (1992) Possibility of N or P limitation for planktonic cladocerans: an experimental test. Limnol Oceanogr 37:244–251

    CAS  Google Scholar 

  • Urabe J, Clasen J, Sterner RW (1997) Phosphorus limitation of Daphnia growth: Is it real? Limnol Oceanogr 42:1436–1443

    Google Scholar 

  • Van Donk E, Hessen DO (1993) Grazing resistance in nutrient-stressed phytoplankton. Oecologia 93:508–511

    Google Scholar 

  • Vrede T, Andersen T, Hessen DO (1999) Phosphorus distribution in three crustacean zooplankton species. Limnol Oceanogr 44:225–229

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. J. Henrard for his help in resolving the equation systems. We are grateful to S. Diehl for his helpful suggestions and improvements to an earlier draft of the manuscript. F. D. was supported by an exchange Linkecol grant provided by the European Science Foundation, which funded travel and accommodation for the duration of the experiments at the University of Oslo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dag O. Hessen.

Appendices

Appendix A

Demonstration of equations modelling evolution over time of total radioactivity in homogeneously labelled Daphnia feeding on unlabelled algae

The kinetics of the tracer in each pool is described by a system of two differential equations (see Table 1 for explanation of symbols):

$$ \left\{ {\matrix{ {{{d\left( m \right)} \over {dt}} = {{\rho _{21} } \over S}s - {{\rho _{12} } \over M}m - {{\rho _{10} } \over M}m} \hfill \cr {{{d\left( s \right)} \over {dt}} = {{\rho _{12} } \over M}m - {{\rho _{21} } \over S}s} \hfill \cr } } \right. $$

We know that this kind of differential system has a solution of the type:

$$ \left\{ {\matrix{ {m = a\exp \left( {\lambda _j t} \right)} \hfill \cr {s = b\exp \left( {\lambda _j t} \right)} \hfill \cr } } \right. $$
(8)

In using this type of solution in the system, we found:

$$ \left\{ {\matrix{ {\lambda _j a\exp \left( {\lambda _j t} \right) = \left[ { - \left( {{{\rho _{12} + \rho _{10} } \over M}} \right)\;a + {{\rho _{21} } \over S}b} \right]\exp \left( {\lambda _j t} \right)} \hfill \cr {\lambda _j b\exp \left( {\lambda _j t} \right) = \left( {{{\rho _{12} } \over M}a - {{\rho _{21} } \over S}b} \right)\exp \left( {\lambda _j t} \right)} \hfill \cr } } \right. $$

In simplifying this by exp(λ j t), we found algebraic equations for a and b:

$$ \left\{ {\matrix{ { - \left( {\lambda _j + {{\rho _{12} + \rho _{10} } \over M}} \right)\;a + {{\rho _{21} } \over S}b = 0} \hfill \cr {{{\rho _{12} } \over M}a - \left( {\lambda _j + {{\rho _{21} } \over S}} \right)\;b = 0} \hfill \cr } } \right. $$
(9)

This system will give a non-trivial solution only if the next determinant

$$ \left| {\matrix{ { - \left( {\lambda _j + {{\rho _{12} + \rho _{10} } \over M}} \right)} & {{{\rho _{21} } \over S}} \cr {{{\rho _{12} } \over M}} & { - \left( {\lambda _j + {{\rho _{21} } \over S}} \right)} \cr } } \right| = \lambda _j^2 + \left( {{{\rho _{12} } \mathord{\left/ {\vphantom {{\rho _{12} } M}} \right. \kern-\nulldelimiterspace} M} + {{\rho _{21} } \mathord{\left/ {\vphantom {{\rho _{21} } S}} \right. \kern-\nulldelimiterspace} S} + {{\rho _{10} } \mathord{\left/ {\vphantom {{\rho _{10} } M}} \right. \kern-\nulldelimiterspace} M}} \right)\;\lambda _j + {{\rho _{10} \rho _{21} } \mathord{\left/ {\vphantom {{\rho _{10} \rho _{21} } {MS}}} \right. \kern-\nulldelimiterspace} {MS}} = 0 $$

is equal to 0. This gives a quadratic equation in λ j with two solutions:

$$ \lambda _1 = - {1 \over 2}\left( {{{\rho _{12} } \mathord{\left/ {\vphantom {{\rho _{12} } M}} \right. \kern-\nulldelimiterspace} M} + {{\rho _{21} } \mathord{\left/ {\vphantom {{\rho _{21} } S}} \right. \kern-\nulldelimiterspace} S} + {{\rho _{10} } \mathord{\left/ {\vphantom {{\rho _{10} } M}} \right. \kern-\nulldelimiterspace} M}} \right) + {1 \over 2}\sqrt {\left( {{{\rho _{12} } \mathord{\left/ {\vphantom {{\rho _{12} } M}} \right. \kern-\nulldelimiterspace} M} + {{\rho _{21} } \mathord{\left/ {\vphantom {{\rho _{21} } S}} \right. \kern-\nulldelimiterspace} S} + {{\rho _{10} } \mathord{\left/ {\vphantom {{\rho _{10} } M}} \right. \kern-\nulldelimiterspace} M}} \right)^2 - {{4\rho _{10} \rho _{21} } \mathord{\left/ {\vphantom {{4\rho _{10} \rho _{21} } {MS}}} \right. \kern-\nulldelimiterspace} {MS}}} $$
(10)

and

$$ \lambda _2 = - {1 \over 2}\left( {{{\rho _{12} } \mathord{\left/ {\vphantom {{\rho _{12} } M}} \right. \kern-\nulldelimiterspace} M} + {{\rho _{21} } \mathord{\left/ {\vphantom {{\rho _{21} } S}} \right. \kern-\nulldelimiterspace} S} + {{\rho _{10} } \mathord{\left/ {\vphantom {{\rho _{10} } M}} \right. \kern-\nulldelimiterspace} M}} \right) - {1 \over 2}\sqrt {\left( {{{\rho _{12} } \mathord{\left/ {\vphantom {{\rho _{12} } M}} \right. \kern-\nulldelimiterspace} M} + {{\rho _{21} } \mathord{\left/ {\vphantom {{\rho _{21} } S}} \right. \kern-\nulldelimiterspace} S} + {{\rho _{10} } \mathord{\left/ {\vphantom {{\rho _{10} } M}} \right. \kern-\nulldelimiterspace} M}} \right)^2 - {{4\rho _{10} \rho _{21} } \mathord{\left/ {\vphantom {{4\rho _{10} \rho _{21} } {MS}}} \right. \kern-\nulldelimiterspace} {MS}}} $$
(11)

We then rewrite the equations in system 8 (Eq. 8) under their decomposed form:

$$ \left\{ \matrix{ m = a_1 \exp \left( {\lambda _1 t} \right) + a_2 \exp \left( {\lambda _2 t} \right) \hfill \cr s = b_1 \exp \left( {\lambda _1 t} \right) + b_2 \exp \left( {\lambda _2 t} \right) \hfill \cr} \right. $$
(12)

We then rewrite the second equation in system 9 (Eq. 9) with decomposition of λ j into λ 1 and λ 2:

$$ {{\rho _{12} } \over M}a_1 - \left( {\lambda _1 + {{\rho _{21} } \over S}} \right)\;b_1 = 0 \Leftrightarrow b_1 = {{{{\rho _{12} a_1 } \mathord{\left/ {\vphantom {{\rho _{12} a_1 } M}} \right. \kern-\nulldelimiterspace} M}} \over {\lambda _1 + {{\rho _{21} } \mathord{\left/ {\vphantom {{\rho _{21} } S}} \right. \kern-\nulldelimiterspace} S}}} $$

and

$$ {{\rho _{12} } \over M}a_2 - \left( {\lambda _2 + {{\rho _{21} } \over S}} \right)\;b_2 = 0 \Leftrightarrow b_2 = {{{{\rho _{12} a_2 } \mathord{\left/ {\vphantom {{\rho _{12} a_2 } M}} \right. \kern-\nulldelimiterspace} M}} \over {\lambda _2 + {{\rho _{21} } \mathord{\left/ {\vphantom {{\rho _{21} } S}} \right. \kern-\nulldelimiterspace} S}}} $$

If we insert these two equations into system 12 (Eq. 12), we obtain a new system of two linear equations with two variables a 1 and a 2:

$$ \eqalign{ & \left\{ \matrix{ m = a_1 \exp \left( {\lambda _1 t} \right) + a_2 \exp \left( {\lambda _2 t} \right) \hfill \cr s = {{{{\rho _{12} a_1 } \mathord{\left/ {\vphantom {{\rho _{12} a_1 } M}} \right. \kern-\nulldelimiterspace} M}} \over {\lambda _1 + {{\rho _{21} } \mathord{\left/ {\vphantom {{\rho _{21} } S}} \right. \kern-\nulldelimiterspace} S}}}\exp \left( {\lambda _1 t} \right) + {{{{\rho _{12} a_2 } \mathord{\left/ {\vphantom {{\rho _{12} a_2 } M}} \right. \kern-\nulldelimiterspace} M}} \over {\lambda _2 + {{\rho _{21} } \mathord{\left/ {\vphantom {{\rho _{21} } S}} \right. \kern-\nulldelimiterspace} S}}}\exp \left( {\lambda _2 t} \right) \hfill \cr} \right. \cr & \Rightarrow m + s = a_1 \exp \left( {\lambda _1 t} \right)\;\left( {1 + {{{{\rho _{12} } \mathord{\left/ {\vphantom {{\rho _{12} } M}} \right. \kern-\nulldelimiterspace} M}} \over {\lambda _1 + {{\rho _{21} } \mathord{\left/ {\vphantom {{\rho _{21} } S}} \right. \kern-\nulldelimiterspace} S}}}} \right) + a_2 \exp \left( {\lambda _2 t} \right)\;\left( {1 + {{{{\rho _{12} } \mathord{\left/ {\vphantom {{\rho _{12} } M}} \right. \kern-\nulldelimiterspace} M}} \over {\lambda _2 + {{\rho _{21} } \mathord{\left/ {\vphantom {{\rho _{21} } S}} \right. \kern-\nulldelimiterspace} S}}}} \right) \cr} $$
(13)

Under initial conditions, system 13 (Eq. 13) becomes:

$$ \left\{ \matrix{ m_0 = a_1 + a_2 \Leftrightarrow a_1 = m_0 - a_2 \hfill \cr s_0 = {{{{\rho _{12} a_1 } \mathord{\left/ {\vphantom {{\rho _{12} a_1 } M}} \right. \kern-\nulldelimiterspace} M}} \over {\lambda _1 + {{\rho _{21} } \mathord{\left/ {\vphantom {{\rho _{21} } S}} \right. \kern-\nulldelimiterspace} S}}} + {{{{\rho _{12} a_2 } \mathord{\left/ {\vphantom {{\rho _{12} a_2 } M}} \right. \kern-\nulldelimiterspace} M}} \over {\lambda _2 + {{\rho _{21} } \mathord{\left/ {\vphantom {{\rho _{21} } S}} \right. \kern-\nulldelimiterspace} S}}} \hfill \cr} \right. $$

Thus,

$$ \matrix{ {s_0 = {{\rho _{12} } \over M}\left( {{{m_0 - a_2 } \over {\lambda _1 + {{\rho _{21} } \mathord{\left/ {\vphantom {{\rho _{21} } S}} \right. \kern-\nulldelimiterspace} S}}} + {{a_2 } \over {\lambda _2 + {{\rho _{21} } \mathord{\left/ {\vphantom {{\rho _{21} } S}} \right. \kern-\nulldelimiterspace} S}}}} \right)} \hfill \cr { \Leftrightarrow a_2 = \left[ {{{\lambda _1 + {{\rho _{21} } \mathord{\left/ {\vphantom {{\rho _{21} } S}} \right. \kern-\nulldelimiterspace} S}} \over {{{\rho _{12} } \mathord{\left/ {\vphantom {{\rho _{12} } M}} \right. \kern-\nulldelimiterspace} M}}}s_0 - m_0 } \right]{{\lambda _2 + {{\rho _{21} } \mathord{\left/ {\vphantom {{\rho _{21} } S}} \right. \kern-\nulldelimiterspace} S}} \over {\lambda _1 - \lambda _2 }}} \hfill \cr } $$

Appendix B

Demonstration of equations modelling evolution over time of radioactivity in unlabelled Daphnia feeding on labelled algae

The kinetics of the tracer in each pool is described by (see Table 1 for explanation of symbols):

$$ \left\{ {\matrix{ {{{d\left( m \right)} \over {dt}}} \hfill & = \hfill & {{{\rho _{21} } \over S}s - {{\rho _{12} } \over M}m - {{\rho _{10} } \over M}m + {{\rho _{01} } \over {100}}W\;SA} \hfill \cr {{{d\left( s \right)} \over {dt}}} \hfill & = \hfill & {{{\rho _{12} } \over M}m - {{\rho _{21} } \over S}s} \hfill \cr } } \right. $$
(14)

Let us define

$$ m_t = o_t + \alpha $$
(15)

and

$$ s_t = u_t + \beta $$
(16)

that we insert in the system of differential equations:

$$ \left\{ {\matrix{ {{{d\left( o \right)} \over {dt}}} \hfill & = \hfill & { - {{\left( {\rho _{12} + \rho _{10} } \right)} \over M}o + {{\rho _{21} } \over S}u - {{\left( {\rho _{12} + \rho _{10} } \right)} \over M}\alpha + {{\rho _{21} } \over S}\beta + {{\rho _{01} } \over {100}}W\;SA} \hfill \cr {{{d\left( u \right)} \over {dt}}} \hfill & = \hfill & {{{\rho _{12} } \over M}o - {{\rho _{21} } \over S}u + {{\rho _{12} } \over M}\alpha - {{\rho _{21} } \over S}\beta } \hfill \cr } } \right. $$
(17)

We can now determine α et β which nullify the non-homogeneous terms:

$$ \eqalign{ & \left\{ {\matrix{ {{{\left( {\rho _{12} + \rho _{10} } \right)} \over M}\alpha - {{\rho _{21} } \over S}\beta = {{\rho _{01} } \over {100}}W\;SA} \hfill \cr {{{\rho _{12} } \over M}\alpha - {{\rho _{21} } \over S}\beta = 0} \hfill \cr } } \right. \cr & \Leftrightarrow \left\{ {\matrix{ {\alpha = {{\rho _{01} } \over {\rho _{10} 100}}W\;M\;SA} \hfill \cr {\beta = {{\rho _{12} \rho _{01} } \over {\rho _{10} \rho _{21} 100}}W\;S\;SA} \hfill \cr } } \right. \cr} $$

Both equations of system 17 (Eq. 17) become homogeneous:

$$ \left\{ \matrix{ {{d\left( o \right)} \over {dt}} = - {{\left( {\rho _{12} + \rho _{10} } \right)} \over M}o + {{\rho _{21} } \over S}u \hfill \cr {{d\left( u \right)} \over {dt}} = {{\rho _{12} } \over M}o - {{\rho _{21} } \over S}u \hfill \cr} \right. $$

As for the problem defined in Appendix A, we know that the solution of this linear differential system is a linear combination:

$$ \left\{ \matrix{ o_t = a_1 \exp \left( {\lambda _1 t} \right) + a_2 \exp \left( {\lambda _2 t} \right) \hfill \cr u_t = b_1 \exp \left( {\lambda _1 t} \right) + b_2 \exp \left( {\lambda _2 t} \right) \hfill \cr} \right. $$
(18)

where, as in Appendix A, b 1 and b 2 are defined, respectively, by \( b_1 = {{{{\rho _{12} a_1 } \mathord{\left/ {\vphantom {{\rho _{12} a_1 } M}} \right. \kern-\nulldelimiterspace} M}} \over {\lambda _1 + {{\rho _{21} } \mathord{\left/ {\vphantom {{\rho _{21} } S}} \right. \kern-\nulldelimiterspace} S}}} \), and \( b_2 = {{{{\rho _{12} a_2 } \mathord{\left/ {\vphantom {{\rho _{12} a_2 } M}} \right. \kern-\nulldelimiterspace} M}} \over {\lambda _2 + {{\rho _{21} } \mathord{\left/ {\vphantom {{\rho _{21} } S}} \right. \kern-\nulldelimiterspace} S}}} \), and λ 1 and λ 2, respectively, by Eqs. 10 and 11.

Under initial conditions, m 0=0 and s 0=0.

The insertion of Eqs. 15 and 16 into system 18 (Eq. 18) gives:

$$ \left\{ \matrix{ - \alpha = a_1 + a_2 \Leftrightarrow a_1 = - \left( {a_2 + \alpha } \right) \hfill \cr - \beta = b_1 + b_2 \hfill \cr} \right. $$

Thus,

$$ {\matrix{ {{ - \beta = {{\rho _{{12}} } \over M}{\left[ {{{ - {\left( {a_{2} + \alpha } \right)}} \over {\lambda _{1} + {\rho _{{21}} } \mathord{\left/ {\vphantom {{\rho _{{21}} } S}} \right. {\kern-\nulldelimiterspace} S}}} + {{a_{2} } \over {\lambda _{2} + {\rho _{{21}} } \mathord{\left/ {\vphantom {{\rho _{{21}} } S}} \right. {\kern-\nulldelimiterspace} S}}}} \right]}} \hfill} \cr {{ \Leftrightarrow a_{2} = {\left( {\alpha - {{\lambda _{1} + {\rho _{{21}} } \mathord{\left/ {\vphantom {{\rho _{{21}} } S}} \right. {\kern-\nulldelimiterspace} S}} \over {{\rho _{{12}} } \mathord{\left/ {\vphantom {{\rho _{{12}} } M}} \right. {\kern-\nulldelimiterspace} M}}}\beta } \right)}{{\lambda _{2} + {\rho _{{21}} } \mathord{\left/ {\vphantom {{\rho _{{21}} } S}} \right. {\kern-\nulldelimiterspace} S}} \over {\lambda _{1} - \lambda _{2} }}} \hfill} \cr } } $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darchambeau, F., Faerøvig, P.J. & Hessen, D.O. How Daphnia copes with excess carbon in its food. Oecologia 136, 336–346 (2003). https://doi.org/10.1007/s00442-003-1283-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-003-1283-7

Keywords

Navigation