Skip to main content

Advertisement

Log in

Systemic exposure to Pseudomonal bacteria: a potential link between type 1 diabetes and chronic inflammation

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Bacterial endotoxins have been associated with chronic inflammation and the development and progression of diabetic nephropathy. We hypothesized that subjects with high serum lipopolysaccharide activity also carry remains of bacterial DNA in their system. Serum-derived bacterial DNA clones were isolated and identified from 10 healthy controls and 14 patients with type 1 diabetes (T1D) using universal primers targeted to bacterial 16S rDNA. A total of 240 clones representing 35 unique bacterial species were isolated and identified. A significant proportion of the isolated bacteria could be assigned to our living environment. Proteobacteria was by far the most prevalent phylum among the samples. Notably, the patients had significantly higher frequencies of Stenotrophomonas maltophilia clones in their sera compared to the healthy controls. Real-time PCR analysis of S. maltophilia and Pseudomonas aeruginosa flagellin gene copy number in the human leukocyte DNA fraction revealed that the overall Pseudomonal bacterial load was higher in older patients with T1D. Serum IgA- and IgG-antibody levels against Pseudomonal bacteria Delftia acidovorans, P. aeruginosa, and S. maltophilia were also determined in 200 healthy controls and 200 patients with T1D. The patients had significantly higher serum levels of IgA antibodies against all three Pseudomonal bacteria. Additionally, the IgA antibodies against Pseudomonal bacteria correlated significantly with serum C-reactive protein. These findings indicate that recurrent or chronic Pseudomonal exposure may increase susceptibility to chronic inflammation in patients with T1D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Llaurado G, Gallart L, Tirado R et al (2012) Insulin resistance, low-grade inflammation and type 1 diabetes mellitus. Acta Diabetol 49:33–39

    Article  PubMed  CAS  Google Scholar 

  2. Fadini BG, Marcuzzo G, Marescotti MC, Kreutzenberg S, Avogaro A (2012) Elevated white blood cell count is associated with prevalence and development of the metabolic syndrome and its components in the general population. Acta Diabetol [Epub ahead of print]

  3. Fornoni A, Ijaz A, Tejada T, Lenz O (2008) Role of inflammation in diabetic nephropathy. Curr Diabetes Rev 4:10–17

    Article  PubMed  CAS  Google Scholar 

  4. Saraheimo M, Teppo A-M, Forsblom C et al (2003) Diabetic nephropathy is associated with low-grade inflammation in type 1 diabetic patients. Diabetologia 46:1402–1407

    Article  PubMed  CAS  Google Scholar 

  5. Muller LM, Gorter KJ, Hak E et al (2005) Increased risk of common infections in patients with type 1 and type 2 diabetes mellitus. Clin Infect Dis 41:281–288

    Article  PubMed  CAS  Google Scholar 

  6. Benfield T, Jensen JS, Nordestgaard BG (2007) Influence of diabetes and hyperglycaemia on infectious disease hospitalisation and outcome. Diabetologia 50:549–554

    Article  PubMed  CAS  Google Scholar 

  7. Gornik I, Gornik O, Gasparovic V (2007) HbA1c is outcome predictor in diabetic patients with sepsis. Diabetes Res Clin Pract 77:120–125

    Article  PubMed  CAS  Google Scholar 

  8. Kornum JB, Thomsen RW, Riis A et al (2008) Diabetes, glycemic control, and risk of hospitalization with pneumonia: a population-based case-control study. Diabetes Care 31:1541–1545

    Article  PubMed  Google Scholar 

  9. Lassenius MI, Pietiläinen KH, Kaartinen K et al (2011) Bacterial endotoxin activity in human serum is associated with dyslipidemia, insulin resistance, obesity, and chronic inflammation. Diabetes Care 34:1809–1815

    Article  PubMed  CAS  Google Scholar 

  10. Nymark M, Pussinen PJ, Tuomainen AM et al (2009) Serum lipopolysaccharide activity is associated with the progression of kidney disease in Finnish patients with type 1 diabetes. Diabetes Care 32:1689–1693

    Article  PubMed  CAS  Google Scholar 

  11. Pussinen PJ, Havulinna AS, Lehto M et al (2011) Endotoxemia is associated with an increased risk of incident diabetes. Diabetes Care 34:392–397

    Article  PubMed  CAS  Google Scholar 

  12. Cani PD, Amar J, Iglesias MA et al (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–1772

    Article  PubMed  CAS  Google Scholar 

  13. Amar J, Burcelin R, Ruidavets JB et al (2008) Energy intake is associated with endotoxemia in apparently healthy men. Am J Clin Nutr 87:1219–1223

    PubMed  CAS  Google Scholar 

  14. Laugerette F, Vors C, Geloen A et al (2011) Emulsified lipids increase endotoxemia: possible role in early postprandial low-grade inflammation. J Nutr Biochem 22:53–59

    Article  PubMed  CAS  Google Scholar 

  15. McGuckin MA, Eri R, Simms LA et al (2009) Intestinal barrier dysfunction in inflammatory bowel diseases. Inflamm Bowel Dis 15:100–113

    Article  PubMed  Google Scholar 

  16. Secondulfo M, Iafusco D, Carratu R et al (2004) Ultrastructural mucosal alterations and increased intestinal permeability in non-celiac, type I diabetic patients. Dig Liver Dis 36:35–45

    Article  PubMed  CAS  Google Scholar 

  17. Kotilainen P, Jalava J, Meurman O et al (1998) Diagnosis of meningococcal meningitis by broad-range bacterial PCR with cerebrospinal fluid. J Clin Microbiol 36:2205–2209

    PubMed  CAS  Google Scholar 

  18. Pussinen PJ, Vilkuna-Rautiainen T, Alfthan G et al (2002) Multiserotype enzyme-linked immunosorbent assay as a diagnostic aid for periodontitis in large-scale studies. J Clin Microbiol 40:512–518

    Article  PubMed  CAS  Google Scholar 

  19. Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  20. Thompson JD, Gibson TJ, Plewniak F et al (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  21. Felsenstein J (2005) PHYLIP (phylogeny interference package) version 3.6. Distributed by the Author, Department of Genome Sciences, University of Washington, Seattle

  22. Marques da Silva R, Da Caugant, Eribe ERK et al (2006) Bacterial diversity in aortic aneurysms determined by 16S ribosomal RNA gene analysis. J Vasc Surg 44:1055–1060

    Article  PubMed  Google Scholar 

  23. Moriyama K, Ando C, Tashiro K et al (2008) Polymerase chain reaction detection of bacterial 16S rRNA gene in human blood. Microbiol Immunol 52:375–382

    Article  PubMed  CAS  Google Scholar 

  24. Nelson DE, Van Der Pol B, Dong Q et al (2010) Characteristic male urine microbiomes associate with asymptomatic sexually transmitted infection. PLoS ONE 5:E14116

    Article  PubMed  Google Scholar 

  25. Renko J, Lepp PW, Oksala N et al (2008) Bacterial signatures in atherosclerotic lesions represent human commensals and pathogens. Atherosclerosis 201:192–197

    Article  PubMed  CAS  Google Scholar 

  26. Siala M, Gdoura R, Fourati H et al (2009) Broad-range PCR, cloning and sequencing of the full 16S rRNA gene for detection of bacterial DNA in synovial fluid samples of Tunisian patients with reactive and undifferentiated arthritis. Arthritis Res Ther 11:R102

    Article  PubMed  Google Scholar 

  27. Mariat D, Firmesse O, Levenez F et al (2009) The firmicutes/bacteroides ratio of the human microbiota changes with age. BMC Microbiol 9:123

    Article  PubMed  CAS  Google Scholar 

  28. Burcelin R, Serino M, Chabo C, Blasco-Baque V, Amar J (2011) Gut microbiota and diabetes: from pathogenesis to therapeutic perspective. Acta Diabetol 48:257–273

    Article  PubMed  Google Scholar 

  29. Qin J, Li R, Raes J et al (2010) A human gut microbial gene catalogue established by metagenomic sequecing. Nature 464:59–65

    Article  PubMed  CAS  Google Scholar 

  30. Cani PD, Bibiloni R, Knauf C et al (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57:1470–1481

    Article  PubMed  CAS  Google Scholar 

  31. Amar J, Chabo C, Waget A et al (2011) Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med 3:559–572

    Article  PubMed  CAS  Google Scholar 

  32. Bahrani-Mougeot FK, Paster BJ, Coleman S et al (2008) Diverse and novel oral bacterial species in blood following dental procedures. J Clin Microbiol 46:2129–2132

    Article  PubMed  Google Scholar 

  33. Geerts SO, Nys M, De Mol P et al (2002) Systemic release of endotoxins induced by gentle mastication: association with periodontitis severity. J Periodontol 73:73–78

    Article  PubMed  CAS  Google Scholar 

  34. Lockhart PB, Brennan MT, Sasser HC et al (2008) Bacteremia associated with toothbrushing and dental extraction. Circulation 117:3118–3125

    Article  PubMed  CAS  Google Scholar 

  35. Lucas VS, Gafan G, Dewhurst S, Roberts GJ (2008) Prevalence, intensity and nature of bacteraemia after toothbrushing. J Dent 36:481–487

    Article  PubMed  Google Scholar 

  36. Knuuttila M, Suominen-Taipale L (2008) Periodontal status. In: Suominen-Taipale L, Nordblad A, Vehkalahti M, Aromaa A (eds) Oral health in the Finnish adult population. Publications of the National Public Health Institute B25, Helsinki, pp 49–53

  37. Aspriello SD, Zizzi A, Tirabassi G et al (2011) Diabetes mellitus-associated periodontitis: differences between type 1 and type 2 diabetes mellitus. J Periodontal Res 46:164–169

    Article  PubMed  CAS  Google Scholar 

  38. Choi YH, McKeown RE, Mayer-Davis EJ et al (2011) Association between periodontitis and impaired fasting glucose and diabetes. Diabetes Care 34:381–386

    Article  PubMed  Google Scholar 

  39. Kshirsagar AV, Offenbacher S, Moss KL et al (2007) Antibodies to periodontal organisms are associated with decreased kidney function. The dental atherosclerosis risk in communities study. Blood Purif 25:125–132

    Article  PubMed  CAS  Google Scholar 

  40. Shultis WA, Weil EJ, Looker HC et al (2007) Effect of periodontitis on overt nephropathy and end-stage renal disease in type 2 diabetes. Diabetes Care 30:306–311

    Article  PubMed  Google Scholar 

  41. Larsen N, Vogensen FK, van den Berg FWJ et al (2010) Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 5:e9085

    Article  PubMed  Google Scholar 

  42. Qureshi A, Mooney L, Denton M, Kerr KG (2005) Stenotrophomonas maltophilia in salad. Emerg Infect Dis 11:1157–1158

    Article  PubMed  Google Scholar 

  43. Brooke JS (2012) Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clin Microbiol Rev 25:2–41

    Article  PubMed  CAS  Google Scholar 

  44. Driscoll JA, Brody SL, Kollef MH (2007) The epidemiology, pathogenesis and treament of Pseudomonas aeruginosa infections. Drugs 67:351368

    Article  Google Scholar 

  45. Talon D, Bailly P, Leprat R et al (1994) Typing of hospital strains of Xanthomonas maltophilia by pulsed-field gel electrophoresis. J Hosp Infect 27:209–217

    Article  PubMed  CAS  Google Scholar 

  46. Spicuzza L, Sciuto C, Vitaliti G et al (2009) Emerging pathogens in cystic fibrosis: ten years of follow-up in a cohort of patients. Eur J Clin Microbiol Infect Dis 28:191–195

    Article  PubMed  CAS  Google Scholar 

  47. Conti S, dos Santos SSF, Koga-Ito CY, Jorge AOC (2009) Enterobacteriaceae and pseudomonadaceae on the dorsum of the human tongue. J Appl Oral Sci 17:375–380

    PubMed  Google Scholar 

  48. Leung WK, Yau JYY, Cheung BPK et al (2003) Oral colonisation by aerobic and facultatively anaerobic gram-negative rods and yeast in Tibetans living in Lhasa. Arch Oral Biol 48:117–123

    Article  PubMed  CAS  Google Scholar 

  49. Senpuku H, Sogame A, Inoshita E et al (2003) Systemic diseases in association with microbial species in oral biofilm from elderly requiring care. Gerontology 49:301–309

    Article  PubMed  CAS  Google Scholar 

  50. Tada A, Senpuku H, Motozawa Y et al (2006) Association between commensal bacteria and opportunistic pathogens in the dental plaque of elderly individuals. Clin Microbiol Infect 12:776–781

    PubMed  CAS  Google Scholar 

  51. Wendel M, Paul R, Heller AR (2007) Lipoproteins in inflammation and sepsis. II. Clinical aspects. Intensive Care Med 33:25–35

    Article  PubMed  CAS  Google Scholar 

  52. Zhang H-Y, Sun S-H, Guo Y-J et al (2005) Tissue distribution of a plasmid DNA containing epitopes of foot-and-mouth disease virus in mice. Vaccine 23:5632–5640

    Article  PubMed  CAS  Google Scholar 

  53. Mercer DK, Scott KP, Bruce-Johnson WA et al (1999) Fate of free DNA and transformation of the oral bacterium Streptococcus gordonii DL1 by plasmid DNA in human saliva. Appl Environ Microbiol 65:6–10

    PubMed  CAS  Google Scholar 

  54. Tamkovich SN, Vlasov VV, Laktionov PP (2008) Circulating deoxyribonucleic acids in blood and their using in medical diagnostics. Mol Biol (Mosk) 42:12–23

    Article  CAS  Google Scholar 

  55. Koren O, Spor A, Felin J et al (2011) Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci USA 108:4592–4598

    Article  PubMed  CAS  Google Scholar 

  56. Ott SJ, Mokhtari NEE, Musfeldt M et al (2006) Detection of diverse bacterial signatures in atherosclerotic lesions of patients with coronary heart disease. Circulation 113:929–937

    Article  PubMed  Google Scholar 

  57. Watt S, Aesch B, Lanotte P et al (2003) Viral and bacterial DNA in carotid atherosclerotic lesions. Eur J Clin Microbiol Infect Dis 22:99–105

    PubMed  CAS  Google Scholar 

  58. Amar J, Serino M, Lange C et al (2011) Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept. Diabetologia 54:3055–3061

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by Folkhälsan Research Foundation (P.-H. G.), Wilhelm and Else Stockmann Foundation (P.-H. G., L. P., C. F., M. L.), Diabetes Research Foundation (M. L.), The Novo Nordisk Foundation (M. L.), and the Sigrid Juselius Foundation (P. J. P.). Part of this study was presented in abstract form at the 45th Annual Meeting of the Scandinavian Society for the Study of Diabetes (2010), Malmö, Sweden. Laboratory technicians and nurses R. Keva, M. Parkkonen, A.-R. Salonen, A. Sandelin, T. Soppela and J. Tuomikangas at the Folkhälsan Institute of Genetics are acknowledged for their skillful technical assistance. We also acknowledge the physicians and nurses at each study center (Supplementary file 5).

Conflict of interest

No potential conflicts of interest relevant to this paper were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markku Lehto.

Additional information

Communicated by Massimo Federici.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peräneva, L., Fogarty, C.L., Pussinen, P.J. et al. Systemic exposure to Pseudomonal bacteria: a potential link between type 1 diabetes and chronic inflammation. Acta Diabetol 50, 351–361 (2013). https://doi.org/10.1007/s00592-012-0421-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-012-0421-2

Keywords

Navigation