Skip to main content
Log in

Characterization of an anther- and tapetum-specific gene and its highly specific promoter isolated from tomato

  • Physiology and Biochemistry
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

An Erratum to this article was published on 17 February 2009

Abstract

A full-length genomic clone of 2,233 bp long containing an anther- and tapetum-specific gene TomA108 was isolated and characterized from tomato. The gene was present in one copy per haploid genome. The isolated clone contained 5′ and 3′ untranslated regions of 810 and 170 nucleotides, respectively and a single intron with highly repetitive sequences. The cDNA encoded the protein with an apparent mass of 10.6 kDa and a pI (isoelectric point) of 5.3. It was cysteine-rich and had an N-terminal hydrophobic domain with characteristics of a secretory signal. Amino acid sequence comparisons demonstrated that the protein was closely related to a family of cereal seed storage proteins and protease inhibitors. The fusion of β-glucuronidase to the TomA108 promoter demonstrated that the promoter was highly active from early-meiosis to free microspores production in tapetum of tobacco. This strong and highly specific promoter can be potentially used to generate male sterility for efficient production of plant hybrids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

GUS:

β-Glucuronidase

EDTA:

Ethylene diamine tetraacetie acid

MADS:

MCM1, AGAMOUS, DEFICIENS, and SRF

CarG:

(CC(A/T)6GG)

GA:

Gibbrerllin

ABA:

Abscisic acid

SA:

Salicylic acid

SDS:

Sodium dodecyl sulfate

IPTG:

Isopropyl-1-thio-β-d-alactoside

PAGE:

Polyacrylamide gel electrophoresis

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    Article  PubMed  CAS  Google Scholar 

  • Achard P, Herr A, Baulcombe DC, Harberd NP (2004) Modulation of floral development by a gibberellin-regulated microRNA. Development 131:3357–3365

    Article  PubMed  CAS  Google Scholar 

  • Aguirre P, Smith AG (1993) Molecular characterization of a gene encoding a cysteine-rich protein preferentially expressed in anthers of Lycopersicon esculentum. Plant Mol Biol 23:77–487

    Article  Google Scholar 

  • Allen RD, Bernier F, Lessard PA, Beachy RN (1989) Nuclear factors interact with a soybean beta-conglycinin enhancer. Plant Cell 1:623–631

    Article  PubMed  CAS  Google Scholar 

  • Bate N, Twell D (1998) Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol Biol 37:859–869

    Article  PubMed  CAS  Google Scholar 

  • Bedinger P (1992) The remarkable biology of pollen. Plant Cell 4:879–887

    Article  PubMed  CAS  Google Scholar 

  • Bino RJ (1985) Histological aspects of microsporogenesis in fertile, cytoplasmic male sterile and restored fertile Petunia hybrida. Theor Appl Genet 69:425–428

    Article  Google Scholar 

  • Block MD, Debrouwer D, Moens T (1997) The development of a nuclear male sterility system in wheat. Expression of the barnase gene under the control of tapetum specific promoters. Theor Appl Genet 95:125–131

    Article  Google Scholar 

  • Budelier KA, Smith AG, Gasser CS (1990) Regulation of a styler transmitting tissue-specific gene in wild-type and transgenic tomato and tobacco. Mol Genet Genomics 224:183–192

    Article  CAS  Google Scholar 

  • Cercos M, Gomez-Cadenas A, Ho THD (1999) Hormonal regulation of a cysteine proteinase gene, EPB-1, in barley aleurone layers: cis- and trans-acting elements involved in the co-ordinated gene expression regulated by gibberellins and abscisic acid. Plant J 19:107–118

    Article  PubMed  CAS  Google Scholar 

  • Chen RD, Tabaeizadeh Z (1992) Expression and molecular cloning of drought- and ABA-induced genes in the wild tomato Lycopesicon chilense. Biochem Cell Biol 70:199–206

    Article  PubMed  CAS  Google Scholar 

  • Chen RD, Smith AG (1993) Nucleotide sequence of a stamen- and tapetum-specific gene from Lycopersicon esculentum. Plant Physiol 101:1413

    Article  PubMed  CAS  Google Scholar 

  • Chen RD, Aguirre P, Smith AG (1994) Molecular characterization and development expression of the anther- and tapetum-specific gene encoding a novel glycine-rich protein from Lycopersicon esculentum. J Plant Physiol 143:651–658

    CAS  Google Scholar 

  • Chen RD, Wang F, Smith AG (1996) A flower-specific gene encoding an osmotin-like protein. Gene 14:301–302

    Article  Google Scholar 

  • Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA, Budworth PR, Tao Y, Xie (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14:559–574

    Article  PubMed  CAS  Google Scholar 

  • Cho HJ, Kim S, Kim M, Kim BD (2001) Production of transgenic male sterile tobacco plants with the cDNA encoding a ribosome inactivating protein in Dianthus sinensis L. Mol Cells 11:326–333

    PubMed  CAS  Google Scholar 

  • Foster R, Izawa T Chua NH (1994) Plant bZIP proteins gather at ACGT elements. FASEB J 8:192–200

    PubMed  CAS  Google Scholar 

  • Fuerstenberg SI, Bucciaglia PA, Smith AG (2000) Molecular characterization of an anther-specific gene from tobacco shows sequence similarity to a tapetum-specific gene from tomato. Sex Plant Reprod 12:250–252

    Article  CAS  Google Scholar 

  • Gomez MD, Beltran JP, Canas LA (2004) The pea END1 promoter drives anther-specific gene expression in different plant species. Planta 219(6):967–81

    Article  PubMed  CAS  Google Scholar 

  • Heslop-Harrison J (1968) Pollen wall development. Science 161:230–237

    Article  PubMed  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Higo H (1998a) PLACE: a database of plant cis-acting regulatory DNA elements. Nucleic Acids Res 26:358–359

    Article  PubMed  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Higo H (1998b) PLACE: a database of plant cis-acting regulatory DNA elements. Nucleic Acids Res 26:358–359

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Reports 4:387–405

    Article  Google Scholar 

  • Kapoor S, Kobayashi A, Takatsuji H (2002) Silencing of the tapetum-specific zinc finger gene TAZ1 causes premature degeneration of tapetum and pollen abortion in petunia. Plant Cell 14:2353–2367

    Article  PubMed  CAS  Google Scholar 

  • Koltunow A, Truettner J, Cox KH, Wallroth M, Goldberg RB (1990) Different temperal and spatial gene expression patterns occur during anther development. Plant Cell 2:1201–1224

    Article  PubMed  CAS  Google Scholar 

  • Lauga B, Charbonnel-Campaa L, Combes D (2000) Characterization of MZm3-3, a Zea mays tapetum-specific transcript. Plant Sci 157:65–75

    Article  PubMed  CAS  Google Scholar 

  • Lee YK, Chung KH, Kin HU, Jin YM, Kim HI Park BS (2003) Induction of male sterile cabbage using a tapetum-specific promoter from Brassica campestris L. ssp. Pekinensis. Plant Cell Rep 22:173–268

    Google Scholar 

  • Lessard PA, Allen RD, Bernier F, Crispino JD, Fujiwara T, Beachy RN (1991) Multiple nuclear factors interact with upstream sequences of differentially regulated beta-conglycinin genes. Plant Mol Biol 16:397–413

    Article  PubMed  CAS  Google Scholar 

  • MacCormick S, Niedermeyer J, Fry J, Barnason A, Horsch R, Fraley R (1986) Leaf disc transformation of cultivated tomato (L. esculentum) using agrobacterium tumefaciens. Plant Cell Rep 12:81–84

    Article  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Mariani C, De Beuckeleer M, Treuttner J, Leemans J, Goldberg RB (1990) Induction of male sterility in plants by a chimeric ribonuclease gene. Nature 347:737–741

    Article  CAS  Google Scholar 

  • Mundy J, Rogers JC (1986) Selective expression of a probable amylase/protease inhibitor in barley aleurone cells: comparison to the barley amylase/subtilisin inhibitor. Planta 169:51–63

    Article  CAS  Google Scholar 

  • Nacken WKF, Huijser J, Beltran JP, Suedler H, Sommer H (1991) Molecular characterization of two stamen-specific genes, tap1 and fil1 that are expressed in the wild type, but not in the deficiens mutant of Antirrbinum majus. Mol Genet Genomics 229:129–136

    CAS  Google Scholar 

  • Nakamura Y, Sato S, Asamizu E, Kaneko T, Kotani H, Miyajima N and Tabata S (1998) Structural analysis of Arabidopsis thaliana chromosome 5. VII. Sequence features of the regions of 1,013,767 bp covered by sixteen physically assigned P1 and TAC clones. DNA Res 5:297–308

    Article  PubMed  CAS  Google Scholar 

  • Park BS, Jin YM, Kim HI (2003) A tapetum-specific gene, BcA9, of Chinese cabbage. In: EMBL, GenBank and DDBJ nucleotide sequence databases under the accession number AAO85389.1 GI:29569832

  • Perez-Prat E, Campagne MML (2002) Hybrid seed production and the challenge of propagating male sterile plants. Trends Plant Sci 7:199–203

    Article  PubMed  CAS  Google Scholar 

  • Rogers HJ, Bate N, Combe J, Sullivan J, Sweetman J, Swan C, Lonsdale DM, Twell D (2001) Functional analysis of cis-regulatory elements within the promoter of the tobacco late pollen gene g10. Plant Mol Biol 45:577–58

    Article  PubMed  CAS  Google Scholar 

  • Rubinelli P, Hu Y, Ma H (1998) Identification, sequence analysis and expression studies of novel anther-specific genes of Arabidopsis thaliana. Plant Mol Biol 37:607–619

    Article  PubMed  CAS  Google Scholar 

  • Schrauwen JAM, Mettenmeyer T, Croes AF, Wullems GJ (1996) Tapetum-specific genes: what role do they play in male gametophyte development? Acta Bot Neerl 45:1–15

    CAS  Google Scholar 

  • Simpson SD, Nakashima K, Narusaka Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence. Plant J 33:259–270

    Article  PubMed  CAS  Google Scholar 

  • Smith AG, Pring DR (1987) Nucleotide sequence and molecular characterization of a maize mitochondrial plasmid-like DNA. Current Genet 12:617–623

    Article  CAS  Google Scholar 

  • Smith AG, Gasser CS, Budelier KA, Fraley RT (1990) Identification and characterization of stamen- and tapetum-specific genes from tomato. Mol Genet Genomics 222:9–16

    CAS  Google Scholar 

  • Takishima K, Wantanabe S, Yamada M, Suga T, Mamiya G (1988) Amino acid sequence of two nonspecific lipid-transfer proteins from germinated castor bean. Eur J Biochem 177:241–249

    Article  PubMed  CAS  Google Scholar 

  • Tang W, Perry SE (2003) Binding site selection for the plant MADS domain protein AGL15: an in vitro and in vivo study. J Biol Chem 278:28154–28159

    Article  PubMed  CAS  Google Scholar 

  • Twell D, Wing R, Yamaguchi J, McCormick S (1989) Isolation and expression of an anther-specific gene from tomato. Mol Genet Genomics 217:240–245

    Article  CAS  Google Scholar 

  • von Heijne G (1986) A new method for predicting signal sequence cleavage sites. Nucleic Acids Res 14:4683–4690

    Article  Google Scholar 

  • Wyatt P, Hodge R, Smartt S, Draper J, Scott R (1992) The isolation and characterization of the tapetum-specific Arabidopsis thaliana A9 gene. Plant Mol Biol 19:611–622

    Article  Google Scholar 

  • Yanagisawa S, Schmidt RJ (1999) Diversity and similarity among recognition sequences of Dof transcription factors. Plant J 17:209–214

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa S (2004) Dof domain proteins: plant-specific transcription factors associated with diverse phenomena unique to plants. Plant Cell Physiol 45:386–91

    Article  PubMed  CAS  Google Scholar 

  • Yu D, Chen C, Chen Z (2001) Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell 13:1527–1540

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZL, Xie Z, Zou X, Casaretto J, Ho TH, Shen QJ (2004) A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol 134:1500–13

    Article  PubMed  CAS  Google Scholar 

  • Zhou DX (1999) Regulatory mechanism of plant gene transcription by GT-elements and GT-factors. Trends Plant Sci 4:210–214

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Liu.

Additional information

Communicated by Y. Lu

An erratum to this article can be found at http://dx.doi.org/10.1007/s00299-009-0682-6.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, S.X., Liu, G.S. & Chen, R.D. Characterization of an anther- and tapetum-specific gene and its highly specific promoter isolated from tomato. Plant Cell Rep 25, 231–240 (2006). https://doi.org/10.1007/s00299-005-0056-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-005-0056-7

Keywords

Navigation