Skip to main content
Log in

The isolation and characterisation of the tapetum-specific Arabidopsis thaliana A9 gene

  • Research Articles
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The Brassica napus cDNA clone A9 and the corresponding Arabidopsis thaliana gene have been sequenced. The B. napus cDNA and the A. thaliana gene encode proteins that are 73% identical and are predicted to be 10.3 kDa and 11.6 kDa in size respectively. Fusions of an RNase gene and the reporter gene β-glucuronidase to the A. thaliana A9 promoter demonstrated that in tobacco the A9 promoter is active solely in tapetal cells. Promoter activity is first detectable in anthers prior to sporogenous cell meiosis and ceases during microspore premitotic interphase.

The deduced A9 protein sequence has a pattern of cysteine residues that is present in a superfamily of seed plant proteins which contains seed storage proteins and several protease and α-amylase inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altenbach SB, Pearson KW, Leung FW, Sun SSM: Cloning and sequence analysis of a cDNA encoding a Brazil nut protein exceptionally rich in methionine. Plant Mol Biol 8: 239–250 (1987).

    Google Scholar 

  2. Bevan MW: Binary Agrobacterium vectors for plant transformation. Nucl Acids Res 12: 8711–8721 (1984).

    PubMed  Google Scholar 

  3. Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem 72: 248–254 (1976).

    Article  PubMed  Google Scholar 

  4. Devereux J, Haeberli P, Smithies O: A comprehensive set of sequence analysis programs for the VAX. Nucl Acids Res 12: 387–395 (1983).

    Google Scholar 

  5. Draper J, Scott RJ, Armitage P, Walden R: Plant Genetic Transformation and Gene Expression: A Laboratory Manual. Blackwell, Oxford (1988).

    Google Scholar 

  6. Ericson ML, Roedin J, Lenman M, Glimelius K, Josefsson LG, Rask L: Structure of the rapeseed 1.7S storage protein, napin, and its precursor. J Biol Chem 261: 14576–14581 (1986).

    PubMed  Google Scholar 

  7. Garcia-Maroto F, Marana C, Mena M, Garcia-Olmedo F, Carbonero P: Cloning of cDNA and chromosomal location of genes encoding the three types of subunits of the wheat tetrameric inhibitor of insect α-amylase. Plant Mol Biol 14: 845–853 (1990).

    Article  PubMed  Google Scholar 

  8. Gayler KR, Kolivas S, Macfarlane AJ, Lilley GG, Baldi M, Blagrove J, Johnson ED: Biosynthesis, cDNA and amino acid sequences of a precursor of conglutin δ, a sulphur-rich protein from Lupinus angustifolius. Plant Mol Biol 15: 879–893 (1990).

    PubMed  Google Scholar 

  9. Grant I, Beversdorf WD, Peterson RL: A comparative light and electron microscopic study of microspore and tapetal development in male fertile and cytoplasmic male sterile oilseed rape (Brassica napus). Can J Bot 64: 1055–1068 (1986).

    Google Scholar 

  10. Guerineau JF, Woolston S, Brooks L, Mullineaux P: An expression cassette for targeting foreign proteins into chloroplasts. Nucl Acids Res 16: 11380 (1988).

    PubMed  Google Scholar 

  11. Hartley RW: Barnase and barstar, expression of its cloned inhibitor permits expression of a cloned ribonuclease. J Mol Biol 202: 913–915 (1988).

    PubMed  Google Scholar 

  12. Higgins DG, Sharp PM: CLUSTAL: a package for performing multiple sequence alignments on a microcomputer. Gene 73: 237–244 (1989).

    Article  Google Scholar 

  13. Horovitz A, Serrano L, Avron B, Bycroft M, Fersht AR: Strength and co-operativity of contributions of surface salt bridges to protein stability. J Mol Biol 216: 1031–1044 (1990).

    PubMed  Google Scholar 

  14. Izhar S, Frankel R: Mechanism of male sterility in Petunia: the relationship between pH, callase activity in the anthers, and the breakdown of the microsporogenesis. Theor Appl Genet 41: 104–108 (1971).

    Article  Google Scholar 

  15. Jefferson RA, Kavanagh TA, Bevan MW: GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901–3907 (1987).

    PubMed  Google Scholar 

  16. Joshi CP: An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucl Acids Res 15: 6643–6653 (1987).

    PubMed  Google Scholar 

  17. Joshi CP: Putative polyadenylation signals in nuclear genes of higher plants: a compilation and analysis. Nucl Acids Res 15: 9627–9640 (1987).

    PubMed  Google Scholar 

  18. Kamalay JC, Goldberg RB: Organ-specific nuclear RNAs in tobacco. Proc Natl Acad Sci USA 81: 2801–2805 (1984).

    PubMed  Google Scholar 

  19. Kashlan N, Richardson M: The complete amino acid sequence of a major wheat protein inhibitor of α-amylase. Phytochemistry 20: 1781–1784 (1981).

    Article  Google Scholar 

  20. Koltunow AM, Truettner J, Cox KH, Wallroth M, Goldberg RB: Different temporal and spatial gene expression patterns occur during anther development. Plant Cell 2: 1201–1224 (1990).

    Article  PubMed  Google Scholar 

  21. Kreis M, Forde BG, Rahman S, Miflin BJ, Shewry PR: Molecular evolution of the seed storage proteins of barley, rye and wheat. J Mol Biol 183: 499–502 (1985).

    Article  PubMed  Google Scholar 

  22. Lazaro A, Rodriguez-Palenzuela P, Marana C, Carbonero P, Garcia-Olmedo F: Signal peptide homology between the sweet protein thaumatin II and unrelated cereal α-amylase/trypsin inhibitors. FEBS Lett 239: 147–150 (1988).

    Article  PubMed  Google Scholar 

  23. Lilley GG, Inglis A: Amino acid sequence of conglutin δ, a sulphur-rich seed protein of Lupinus angustifolius L. FEBS Lett 195: 235–241 (1986).

    Article  Google Scholar 

  24. Maeda K, Wakabayashi S, Matsubara H: Disulphide bridges in an α-amylase inhibitor from wheat kernel. J Biochem 94: 865–870 (1983).

    PubMed  Google Scholar 

  25. Maeda K, Wakabayashi S, Matsubara H: Complete amino acid sequence of an α-amylase inhibitor in wheat kernel (0.19-inhibitor). Biochim Biophys Acta 828: 213–221 (1985).

    PubMed  Google Scholar 

  26. Mascarenhas JP: The male gametophyte of flowering plants. Plant Cell 1: 657–664 (1989).

    Article  PubMed  Google Scholar 

  27. Mariani C, DeBeuckeleer M, Truettner J, Leemans J, Goldberg RB. Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature 347: 737–741 (1990).

    Article  Google Scholar 

  28. Mepham RH, Lane GR: Formation and development of the tapetal periplasmodium in Tradescantia bracteata. Protoplasma 68: 175–192 (1969).

    Google Scholar 

  29. Nacken WKF, Huijser P, Saedler H, Sommer H: Molecular analysis of tap2, an anther-specific gene from Antirrhinum majus. FEBS Lett 280: 155–158 (1991).

    Article  PubMed  Google Scholar 

  30. Odani S, Koide T, Ono T, Ohnishi K: Structural relationship between barley (Hordeum vulgare) trypsin inhibitor and castor-bean (Ricinus communis) storage protein. Biochem J 213: 543–545 (1983).

    PubMed  Google Scholar 

  31. Pearson WR, Lipman DJ: Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85: 2444–2448 (1988).

    PubMed  Google Scholar 

  32. Richardson M: The protease inhibitors of plants and micro-organisms. Phytochemistry 16: 159–169 (1977).

    Article  Google Scholar 

  33. Scott R, Dagless E, Hodge R, Paul W, Soufleri I, Draper J: Patterns of gene expression in developing anthers of Brassica napus. Plant Mol Biol 17: 195–207 (1991).

    PubMed  Google Scholar 

  34. Seurinck J, Truettner J, Goldberg RB: The nucleotide sequence of an anther-specific gene. Nucl Acids Res 18: 3403 (1990).

    PubMed  Google Scholar 

  35. Sharief FS, Li SS-L: Amino acid sequence of small and large subunits of seed storage protein from Ricinus communis. J Biol Chem 257: 14753–14759 (1982).

    PubMed  Google Scholar 

  36. Smith AG, Gasser CS, Budelier KA, Fraley RT: Identification and characterisation of stamen- and tapetum-specific genes from tomato. Mol Gen Genet 222: 9–16 (1990).

    PubMed  Google Scholar 

  37. Vasil IK: Physiology and cytology of anther development. Biol Rev 42: 327–373 (1967).

    PubMed  Google Scholar 

  38. vonHeijne G: Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem 133: 17–21 (1983).

    PubMed  Google Scholar 

  39. vonHeijne G: Signal sequences, the limits of variation. J Mol Biol 184: 99–105 (1985).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paul, W., Hodge, R., Smartt, S. et al. The isolation and characterisation of the tapetum-specific Arabidopsis thaliana A9 gene. Plant Mol Biol 19, 611–622 (1992). https://doi.org/10.1007/BF00026787

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00026787

Key words

Navigation