Skip to main content
Log in

A critical review of established methods of structural topology optimization

  • Forum
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The aim of this article is to evaluate and compare established numerical methods of structural topology optimization that have reached the stage of application in industrial software. It is hoped that our text will spark off a fruitful and constructive debate on this important topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allaire G (2002) Shape optimization by the homogenization method. Springer, New York

    MATH  Google Scholar 

  • Allaire G, Kohn RV (1993a) Explicit bounds on elastic energy of a two-phase composite in two space dimensions. Q Appl Math 51:675–699

    MATH  MathSciNet  Google Scholar 

  • Allaire G, Kohn RV (1993b) Topology optimization and optimal shape design using homogenization. Proceedings of NATO ARW Topology Design of Structures (Sesimbra 1992). Kluwer, Dordrecht, pp 207–218

  • Allaire G, Jouve F, Toader AM (2002) A level set method for shape optimization. Comptes Rendus de l’Acad. des Sci 334:1125–1130

    MATH  MathSciNet  Google Scholar 

  • Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comp Phys 104:363–393

    Article  MathSciNet  Google Scholar 

  • Bendsoe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202

    Article  Google Scholar 

  • Bendsoe MP (1995) Optimization of structural topology, shape and material. Springer, Berlin

    Google Scholar 

  • Bendsoe MP, Haber RB (1993) The Michell layout problem as a low volume fraction limit of the perforated plate topology optimization problem: an asymptotic study. Struct Optim 6:263–267

    Article  Google Scholar 

  • Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224

    Article  MathSciNet  Google Scholar 

  • Bendsoe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654

    Google Scholar 

  • Bendsoe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, Berlin

    Google Scholar 

  • Bendsoe MP, Diaz A, Kikuchi N (1993) Topology and generalized layout optimization of elastic structures. Proceedings of NATO ARW Topology Design of Structures (Sesimbra 1992). Kluwer, Dordrecht, pp 207–218

  • Bruns TE, Tortorelli DA (2003) An element removal and reintroduction strategy for topology optimization of structures and compliant mechanisms. Int J Numer Methods Eng 57:1413–1430

    Article  MATH  Google Scholar 

  • Buhl T, Pedersen CBW, Sigmund O (2000) Stiffness design of geometrically nonlinear structures in topology optimization. Struct Multidisc Optim 19:93–104

    Article  Google Scholar 

  • Chern JM, Prager W (1972) Optimal design of trusses for alternative loads. Ing Arch 41:225–231

    Article  MATH  Google Scholar 

  • Diaz AR, Bendsoe MP (1992) Shape optimization of structures for multiple loading situations using a homogenization method. Struct Optim 4:17–22

    Article  Google Scholar 

  • Diaz AR, Kikuchi N (1992) Solution to shape and topology eigenvalue problems using a homogenization method. Int J Numer Methods Eng 35:1487–1502

    Article  MATH  MathSciNet  Google Scholar 

  • Diaz AR, Lipton R (1997) Optimal material layout for 3D elastic structures. Struct Optim 13:60–64

    Article  Google Scholar 

  • Diaz AR, Lipton R (2000) Optimal material layout in 3D elastic structures subjected to multiple loads. Mech Struct Mach 28:219–236

    Article  Google Scholar 

  • Diaz AR, Sigmund O (1995) Checkerboard patterns in layout optimization. Struct Optim 10:40–45

    Article  Google Scholar 

  • Du J, Olhoff N (2004a) Topological optimization of continuum structures with design-dependent surface loads—Part I: New computational approach for 2D problems. Struct Multidisc Optim 27:151–165

    Article  MathSciNet  Google Scholar 

  • Du J, Olhoff N (2004b) Topological optimization of continuum structures with design-dependent surface loads—Part II: Algorithm and examples for 3D problems. Struct Multidisc Optim 27:166–177

    Article  MathSciNet  Google Scholar 

  • Du J, Olhoff N (2007a) Minimization of sound radiation from vibrating bi-material structures using topology optimization. Struct Multidisc Optim 33:305–321

    Article  MathSciNet  Google Scholar 

  • Du J, Olhoff N (2007b) Topological design of freely vibrating continuum structures for maximum values of single and multiple eigenfrequencies and frequency gaps. Struct Multidisc Optim 34:91–110

    Article  MathSciNet  Google Scholar 

  • Edwards CS, Kim HA, Budd CJ (2006) Investigation on the validity of topology optimization methods. Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics Conference. Paper No. AIAA 2006-1984. Newport, Rhode Island pp 1–15, May 2006

  • Edwards CS, Kim HA, Budd CJ (2007) An evaluative study on ESO and SIMP for optimising a cantilever tie-beam. Struct Multidisc Optim 34:403–414

    Article  Google Scholar 

  • Fleury C (1982) Reconciliation of mathematical programming and optimality criteria approaches to structural optimization. In: Morris AJ (ed) Foundations of structural optimization: a unified approach. Wiley, Chichester, pp 363–404

    Google Scholar 

  • Fleury C (1989) CONLIN: an efficient dual optimizer based on convex approximation concepts. Struct Optim 1:81–89

    Article  Google Scholar 

  • Fuchs MB, Jiny S, Peleg K (2005) The SRV constraint for 0/1 topological design. Stuct Multidisc Optim 30:320–326

    Article  Google Scholar 

  • Gaspar Z, Logo J, Rozvany GIN (2002) Addenda and corrigenda to “Aims, scope, methods, history and unified terminology of computer-aided optimization in structural mechanics”. Struct Multidisc Optim 24:338–342

    Article  Google Scholar 

  • Haber RB, Bendsoe MP, Jog CS (1996) A new approach to variable topology shape design using constraint on the perimeter. Struct Optim 11:1–12

    Article  Google Scholar 

  • Haftka RT, Gurdal Z (1992) Elements of structural optimization. Kluwer, Dordrecht

    MATH  Google Scholar 

  • Hajela P, Lee E (1995) Genetic algorithms in truss topology optimization. Int J Solids Struct 32:3341–3357

    Article  MATH  MathSciNet  Google Scholar 

  • Hammer VB, Olhoff N (1999) Topology optimization with design dependent loads. In: Bloebaum CL (ed) Proceedings of WCSMO-3 (CD-Rom)

  • Hammer VB, Olhoff N (2000) Topology optimization of continuum structures subject to pressure loading. Struct Multidisc Optim 19:85–92

    Article  Google Scholar 

  • Hegemier GA, Prager W (1969) On Michell trusses. Int J Mech Sci 11:209–215

    Article  MATH  Google Scholar 

  • Hemp WS (1973) Optimum structures. Clarendon, Oxford

    Google Scholar 

  • Huang X, Xie YM (2007) A new look at ESO and BESO optimization methods. Struct Multidisc Optim 35(1):89–92

    Article  MathSciNet  Google Scholar 

  • Jensen JS, Sigmund O (2004) Systematic design of photonic crystal structures using topology optimization: low-loss waveguide bends. Appl Phys Lett 84:2022–2024

    Article  Google Scholar 

  • Jensen JS, Sigmund O (2005) Topology optimization of photonic crystal structures: a high-bandwidth low-loss T-junction waveguide. J Opt Soc Am B Opt Phys 22:1191–1198

    Article  Google Scholar 

  • Jog CS, Haber RB, Bendsoe MP (1994) Topology design with optimized self-adaptive materials. Int J Numer Methods Eng 37:1323–1350

    Article  MATH  MathSciNet  Google Scholar 

  • Kharmanda G, Olhoff N (2004) Reliability based topology optimization. Struct Multidisc Optim 26:295–307

    Article  MathSciNet  Google Scholar 

  • Kohn RV, Strang G (1986) Optimal design and relaxation of variational problems I, II, III. Commun Pure Appl Math 39:113–137, 139–182, 353–377

    Article  MATH  MathSciNet  Google Scholar 

  • Lewinski T, Rozvany GIN (2007) Exact analytical solutions for some popular benchmark problems in topology optimization II: three-sided polygonal supports. Struct Multidisc Optim 33:337–350

    Article  MathSciNet  Google Scholar 

  • Lewinski T, Rozvany GIN (2008a) Exact analytical solutions for some popular benchmark problems in topology optimization III: L-shaped domains. Struct Multidisc Optim 35:165–174

    Article  MathSciNet  Google Scholar 

  • Lewinski T, Rozvany GIN (2008b) Exact analytical solutions for some popular benchmark problems in topology optimization IV: square-shaped line support. Struct Multidisc Optim DOI 10.1007/s00158-007-0205-4

  • Lewinski T, Zhou M, Rozvany GIN (1994) Extended exact solutions for least-weight truss layouts. Part II: unsymmetric cantilevers. Int J Mech Sci 36:375–398

    Article  MATH  Google Scholar 

  • Ling QQ, Steven GP (2002) A performance-based optimization method for topology design of continuum structures with mean compliance constraint. Comp Methods Appl Mech Eng 191:1471–1489

    Article  Google Scholar 

  • Lurie K, Cherkaev AV (1986) Effective characteristics of composite materials and optimal design of structural elements. Uspekhi Mekhaniki 9:3–81 (in Russian)

    MathSciNet  Google Scholar 

  • Martinez JM (2005) A note on the theoretical convergence properties of the SIMP method. Struct Multidisc Optim 29:319–323

    Article  Google Scholar 

  • Mattheck C, Burkhardt S (1990) A new method of structural optimization based on biological growth. Int J Fatigue 12:185–190

    Article  Google Scholar 

  • Maute K, Ramm E (1997) Adaptive topology optimization of shell structures. AIAA J 37:1767–1777

    Article  Google Scholar 

  • Maute K, Ramm E (1998) Adaptive topology optimization. Struct Optim 10:100–112

    Article  Google Scholar 

  • Maute K, Schwarz S, Ramm E (1998) Adaptive topology optimization of elastoplastic structures. Struct Optim 15:81–90

    Article  Google Scholar 

  • McConnell RE (1974) Least weight frameworks for loads across a span. J Eng Mech ASCE, EM 5:885–891

    Google Scholar 

  • Michell AGM (1904) The limits of economy of material in frame structures. Phil Mag 8:589–597

    Google Scholar 

  • Mlejnek HP (1992) Some exploration of the genesis of structures. In: Bendsoe MP, Mota Soares CA (eds) Topology design of structures. Proceedings of NATO ARW (Sesimbra, Portugal). Kluwer, Dordrecht, pp 287–300

    Google Scholar 

  • Norato JA, Bendsoe MP, Haber RB, Tortorelli DA (2007) A topological derivative method for topology optimization. Struct Multidisc Optim 33:375–386

    Article  MathSciNet  Google Scholar 

  • Olhoff N, Du J (2006) Topology optimization of bi-material structures with respect to sound radiation. In: Bendsoe MP, Olhoff N, Sigmund O (eds) Proceedings of IUTAM Symposium on topological design optimization of structures, machines and materials, Copenhagen, 2005. Springer, Heidelberg, pp 43–52

    Chapter  Google Scholar 

  • Olhoff N, Bendsoe MP, Rasmussen J (1991) On CAD-integrated structural topology and design optimization. Comp Methods Appl Mech Eng 89:259–279

    Article  Google Scholar 

  • Pedersen P (2000) On optimal shapes in materials and structures. Struct Multidisc Optim 19:169–182

    Article  Google Scholar 

  • Pedersen CBW, Allinger P (2006) Industrial implementation and applications of topology optimization and future needs. In: Bendsoe MP, Olhoff N, Sigmund O (eds) Topology design optimization of structures, machines and materials (Proceedings of IUTAM Symposium, Copenhagen, 2006). Springer, Dordrecht, pp 229–238

    Chapter  Google Scholar 

  • Petersson J, Sigmund O (1998) Slope constrained topology optimization. Int J Numer Methods Eng 41:1417–1434

    Article  MATH  MathSciNet  Google Scholar 

  • Pomezanski V, Querin OM, Rozvany GIN (2005) CO-SIMP: extended SIMP algorithm with direct COrner COntact COntrol. Struct Multidisc Optim 30:164–168

    Article  Google Scholar 

  • Poulsen TA (2002) A simple scheme to prevent checkerboard patterns and one node connected hinges in topology optimization. Struct Multidisc Optim 24:396–399

    Article  Google Scholar 

  • Prager W, Rozvany GIN (1977) Optimization of the structural geometry. In: Bednarek AR, Cesari L (eds) Dynamical systems (Proceedings of the International Conference, Gainsville, Florida). Academic, New York, pp 265–293

    Google Scholar 

  • Rietz A (2001) Sufficiency of a finite exponent in SIMP (power law) methods. Struct Multidisc Optim 21:159–163

    Article  Google Scholar 

  • Rossow MP, Taylor JE (1973) A finite element method for the optimal design of variable thickness sheets. AIAA J 11:1566–1569

    Article  Google Scholar 

  • Rozvany GIN (1972a) Grillages of maximum strength and maximum stiffness. Int J Mech Sci 14:1217–1222

    Article  Google Scholar 

  • Rozvany GIN (1972b) Optimal load transmission by flexure. Comput Methods Appl Mech Eng 1:253–263

    Article  Google Scholar 

  • Rozvany GIN (1976) Optimal design of flexural systems. Pergamon, Oxford (Russian translation Stroiizdat, Moscow, 1980)

    Google Scholar 

  • Rozvany GIN (1989) Structural design via optimality criteria. Kluwer, Dordrecht

    MATH  Google Scholar 

  • Rozvany GIN (1993) Layout theory for grid-like structures. In: Bendsoe MP, Mota Soares CA (eds) Topology design of structures (Proceedings of NATO ARW, Sesimbra, Portugal). Kluwer, Dordrecht, pp 251–272

    Google Scholar 

  • Rozvany GIN (1998) Exact analytical solution for some popular benchmark problems in topology optimization. Struct Optim 15:42–47

    Article  Google Scholar 

  • Rozvany GIN (2001a) Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics. Struct Multidisc Optim 21:90–108

    Article  Google Scholar 

  • Rozvany GIN (2001b) Stress ratio and compliance based methods in topology optimization—a critical review. Struct Multidisc Optim 21:109–119

    Article  Google Scholar 

  • Rozvany GIN (2008) Traditional vs. extended optimality in topology optimization. DOI 10.1007/s00158-008-0231-x

  • Rozvany GIN, Querin OM (2001) Present limitations and possible improvements of SERA (Sequential Element Rejections and Admissions) methods in topology optimization. Proceedings of WCSMO 4, Dalian, China

  • Rozvany GIN, Querin OM (2002a) Combining ESO with rigorous optimality criteria. Int J Veh Des 28:294–299

    Article  Google Scholar 

  • Rozvany GIN, Querin OM (2002b) Theoretical foundations of sequential element rejections and admissions (SERA) methods and their computational implementations in topology optimization. Proceedings of the 9th AIAA/ISSMO Symposium on Multidisc. Anal and Optim. (held in Atlanta, Georgia), AIAA, Reston, VA

  • Rozvany GIN, Querin O (2004) Sequential element rejections and admissions (SERA) method: applications to multiconstraint problems. Proceedings of the 10th AIAA/ISSMO Multidisc. Anal. Optim. Conference, Albany, NY, Aug.–Sept. 2004

  • Rozvany GIN, Zhou M (1991) Applications of the COC algorithm in layout optimization. In: Eschenauer H, Matteck C, Olhoff N (eds) Engineering optimization in design processes. Proceedings of the International Conference (Karlsruhe, Germany, Sept 1990). Springer, Berlin, pp 59–70

    Google Scholar 

  • Rozvany GIN, Zhou M (1993) Layout and generalized shape optimization by iterative COC methods. In: Rozvany GIN (ed) Optimization of large structural systems. Proceedings of NATO ASI (Berchtesgaden 1991). Kluwer, Dordrecht, pp 103–120

    Google Scholar 

  • Rozvany GIN, Zhou M (1994) Optimality criteria methods for large structural systems. In: Adeli H (ed) Advances in design optimization. Chapman & Hall, London, pp 41–108

    Google Scholar 

  • Rozvany GIN, Olhoff N, Bendsoe MP, Ong TG, Szeto WT (1985) Least-weight design of perforated elastic plates. DCAMM Report No. 306, Techn. Univ. Denmark, Lyngby

  • Rozvany GIN, Olhoff N, Bendsoe MP, Ong TG, Szeto WT (1987) Least-weight design of perforated elastic plates I, II. Int J Solids Struct 23:521–536, 537–550

    Article  MATH  Google Scholar 

  • Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Optim 4:250–254

    Article  Google Scholar 

  • Rozvany GIN, Zhou M, Sigmund O (1994) Optimization of topology. In: Adeli H (ed) Advances in design optimization. Chapman & Hall, London, pp 340–399

    Google Scholar 

  • Rozvany GIN, Bendsoe MP, Kirsch U (1995) Layout optimization of structures. Appl Mech Rev ASME 48:41–119

    Article  Google Scholar 

  • Rozvany GIN, Querin OM, Gaspar Z, Pomezanski V (2002a) Extended optimality in topology design. Struct Multidisc Optim 24:257–261

    Article  Google Scholar 

  • Rozvany GIN, Querin OM, Gaspar Z, Pomezanski V (2002b) Checkerboards, element chains and hinges in topology optimization: causes and prevention. In: Gosling P (ed) Proceedings of the 4th ASMO-UK/ISSMO Conference. Univ. Newcastle-upon-Tyne, UK, pp 149–159

    Google Scholar 

  • Rozvany GIN, Querin OM, Gaspar Z, Pomezanski V (2003) Weight increasing effect of topology simplification. Struct Multidisc Optim 25:459–465

    Article  Google Scholar 

  • Rozvany GIN, Pomezanski V, Querin OM, Gaspar Z, Logo J (2004) Corner contact suppression in topology optimization. In: Querin OM, Sienz J, Toropov VV, Goslong P (eds) Extended Abstracts 5th ASMO UK/ISSMO Conference, pp 33–40

  • Rozvany GIN, Pomezanski V, Gaspar Z, Querin OM (2005a) Some pivotal issues in structural topology optimization. In: Herskovits J, Mazorche S, Canelas A (eds) Proceedings of WCSMO 6 (CD-ROM), Rio de Janeiro, Brasil, 2005, CD paper, ISBN 85-285-0070-5

  • Rozvany GIN, Querin OM, Gaspar Z, Pomezanski V (2005b) Erratum for “Extended optimality in topology design”. Struct Multidisc Optim 30:504

    Article  Google Scholar 

  • Rozvany GIN, Lewinski T, Querin OM, Logo J (2006a) Quality control in topology optimization using analytically derived benchmarks. Proceedings of the 11th AIAA/ISSMO Multidisc. Anal. Opt. Conf., Portsouth, Virginia, USA, AIAA paper No.: AIAA 2006-6940, CD paper, 11 pp Collection of Technical Papers—11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 1, pp 484–494

  • Rozvany GIN, Pomezanski V, Querin OM, Gaspar Z, Logo J (2006b) Some basic issues of topology optimization. In: Bendsoe MP, Olhoff N, Sigmund O. Proceedings of IUTAM Symposium on topology design optimization of structures, machines and materials. Springer, Heidelberg, pp 77–86

    Chapter  Google Scholar 

  • Sankaranarayanan S, Haftka RT, Kapania RK (1992) Truss topology optimization with simultaneous analysis and design. Proceedings of 33rd AIAA/ASME/ASCE/AHS/ASC Struct Dyn Mat Conf (Dallas). AIAA, Washington, DC, pp 2576–2585

  • Save M, Prager W (1985) Structural Optimization—vol 1: optimality criteria. Plenum, New York

    MATH  Google Scholar 

  • Schnack E, Spörl V, Iancu G (1988) Gradientless shape optimization with FEM. VDI Research Report 647/88. VDI-Verlag, Düsseldorf

  • Sethian JA, Wiegman A (2000) Structural boundary design via level set and immersed interface methods. J Comp Phys 163:489–528

    Article  MATH  Google Scholar 

  • Sigmund O (1994) Design of material structures using topology optimization. PhD thesis, Dept Solid Mech, Univ Denmark

  • Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Struct Mach 25:493–524

    Article  Google Scholar 

  • Sigmund O (2001a) A 99 line topology optimization code written in Matlab. Struct Multidisc Optim 21:120–127

    Article  Google Scholar 

  • Sigmund O (2001b) Design of multiphysics actuators using topology optimization. Part II: two-material structures. Comput Methods Appl Mech Eng 190:6605–6627

    Google Scholar 

  • Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidisc Optim 33:401–424

    Article  Google Scholar 

  • Sigmund O, Jensen JS (2003) Systematic design of phononic band gap materials and structures by topology optimization. Philos Trans R Soc A Math Phys Eng Sci 361:1001–1019

    Article  MATH  MathSciNet  Google Scholar 

  • Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16:68–75

    Article  Google Scholar 

  • Sokolowski J, Zochowski A (1999) On the topological derivative in shape optimization. Siam J Control Optim 37:1251–1272

    Article  MATH  MathSciNet  Google Scholar 

  • Stolpe M, Bendsoe MP (2007) A non-linear branch and cut method for solving discrete minimum compliance problems to global optimality, WCSMO-7, Proceedings CD, pp 1–10

  • Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidisc Optim 22:116–124

    Article  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24:359–373

    Article  MATH  MathSciNet  Google Scholar 

  • Svanberg K, Werme M (2005) Hierarchical neighbourhood search method for topology optimization. Struct Multidisc Optim 29:325–340

    Article  MathSciNet  Google Scholar 

  • Svanberg K, Werme M (2006a) Topology optimization by sequential integer linear programming. In: Bendsoe MP, Olhoff N, Sigmund O (eds) Proceedings of IUTAM Symposium on topological design optimization of structures, machines and materials. Springer, Dordrecht, pp 425–438

    Chapter  Google Scholar 

  • Svanberg K, Werme M (2006b) Topology optimization by neighbourhood search method based on efficient sensitivity calculations. Int J Numer Methods Eng 67:1670–1699

    Article  MATH  MathSciNet  Google Scholar 

  • Svanberg K, Werme M (2007) Sequential integer programming method for stress constrained topology optimization. Struct Multidisc Optim 34:277–299

    Article  MathSciNet  Google Scholar 

  • Sved G (1954) The minimum weight of certain redundant structures. Aust J appl Sci 5:1–8

    Google Scholar 

  • Tanskanen P (2002) The evolutionary structural optimization method: theoretical aspects. Comput Methods Appl Mech Eng 191:5485–5498

    Article  MATH  Google Scholar 

  • Tanskanen P (2006) A multiobjective and fixed element based modification of the evolutionary structural optimization method. Comput Methods Appl Mech Eng 196:76–90

    Article  MATH  Google Scholar 

  • Tcherniak D, Sigmund O (2001) A web-based topology optimization program. Struct Multidisc Optim 22:179–187

    Article  Google Scholar 

  • Wang MY, Wang XM, Guo DM (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246

    Article  MATH  MathSciNet  Google Scholar 

  • Wang X, Wang MY, Guo D (2004) Structural shape and topology optimization in level-set-based framework of region representation. Struct Multidisc Optim 27:1–19

    Article  MathSciNet  Google Scholar 

  • Werme M (2006) Globally optimal benchmark solutions to some small scale discretized continuum topology optimization problems. Struct Multidisc Optim 32:259–262

    Article  Google Scholar 

  • Xie YM, Steven GP (1992) Shape and layout optimization via an evolutionary procedure. Proceedings of the International Conference Comput. Eng. (Hong Kong), Hong Kong University, p 421

  • Xie YM, Steven GP (1997) Evolutionary structural optimization. Springer, London

    MATH  Google Scholar 

  • Yang XY, Xie YM, Steven GP, Querin OM (1998) Bi-directional evolutionary structural optimization. Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium Multidisc Anal. Optim (St. Louis), pp 1449–1457

  • Zhou M, Rozvany GIN (1991) The COC algorithm, Part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89:309–336

    Article  Google Scholar 

  • Zhou M, Rozvany GIN (1992/1993) DCOC: an optimality criterion method for large systems. Part I: theory. Part II: algorithm. Struct Optim 5:12–25, 6:250–262

    Article  Google Scholar 

  • Zhou M, Rozvany GIN (2001) On the validity of ESO type methods in topology optimization. Struct Multidisc Optim 21:80–83

    Google Scholar 

  • Zhou M, Shyy YK, Thomas HL (2001) Checkerboard and minimum member size control in topology optimization. Struct Multidisc Optim 21:152–158

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. N. Rozvany.

Additional information

This article is an extended version of a paper presented at the WCSMO-7 in Seoul in 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rozvany, G.I.N. A critical review of established methods of structural topology optimization. Struct Multidisc Optim 37, 217–237 (2009). https://doi.org/10.1007/s00158-007-0217-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-007-0217-0

Keywords

Navigation