Skip to main content
Log in

A genetic linkage map of Brassica carinata constructed with a doubled haploid population

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Brassica carinata is an important oilseed crop with unique favourable traits that are desirable for other Brassica crops. However, given the limited research into genetic resources in B. carinata, knowledge of the genetic structure of this species is relatively poor. Nine homozygous, genetically distinct accessions of B. carinata were obtained via microspore culture, from which two divergent doubled haploid (DH) lines were used to develop a DH mapping population that consisted of 183 lines. The mapping population showed segregation of multiple traits of interest. A genetic map was constructed with PCR-based markers, and a total of 212 loci, which covered 1,703 cM, were assigned to eight linkage groups in the B genome and nine linkage groups in the C genome, which allowed comparison with genetic maps of other important Brassica species that contain the B/C genome(s). Loci for two Mendelian-inherited traits related to pigmentation (petal and anther tip colour) and one quantitative trait (seed coat colour) were identified using the linkage map. The significance of the mapping population in the context of genetic improvement of Brassica crops is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alemayehu N, Becker H (2002) Genotypic diversity and patterns of variation in a germplasm material of Ethiopian mustard (Brassica carinata A. Braun). Genet Resour Crop Evol 49:573–582

    Article  Google Scholar 

  • Arabidopsis Genome Iniative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Badani AG, Snowdon RJ, Wittkop B, Lipsa FD, Baetzel R, Horn R, De Haro A, Font R, Lühs W, Friedt W (2006) Colocalization of a partially dominant gene for yellow seed colour with a major QTL influencing acid detergent fibre (ADF) content in different crosses of oilseed rape (Brassica napus). Genome 49:1499–1509

    Article  PubMed  CAS  Google Scholar 

  • Brock MT, Dechaine JM, Iniguez-Luy FL, Maloof JN, Stinchcombe JR, Weinig C (2010) Floral genetic architecture: an examination of QTL architecture underlying floral (Co)variation across environments. Genetics 186:1451–1465

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Zou J, Cowling WA, Meng J (2010) Allelic diversity in a novel gene pool of canola-quality Brassica napus enriched with alleles from B. rapa and B. carinata. Crop Pasture Sci 61:483–492

    Article  CAS  Google Scholar 

  • Cheng X, Xu J, Xia S, Gu J, Yang Y, Fu J, Qian X, Zhang S, Wu J, Liu K (2009) Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theor Appl Genet 118:1121–1131

    Article  PubMed  CAS  Google Scholar 

  • Choi SR, Teakle GR, Plaha P, Kim JH, Allender CJ, Beynon E, Piao ZY, Soengas P, Han TH, King GJ, Barker GC, Hand P, Lydiate DJ, Batley J, Edwards D, Koo DH, Bang JW, Park B-S, Lim YP (2007) The reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theor Appl Genet 115:777–792

    Article  PubMed  CAS  Google Scholar 

  • Clarke K, Gorley R (2006) PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth

    Google Scholar 

  • Deynze AEV, Beversdorf WD, Pauls KP (1993) Temperature effects on seed color in black- and yellow-seeded rapeseed. Can J Plant Sci 73:383–387

    Article  Google Scholar 

  • Engels J (1984) Genetic variation in Ethiopian Brassica ssp. Crucif Newslett 9:59–60

    Google Scholar 

  • Fan C, Cai G, Qin J, Li Q, Yang M, Wu J, Fu T, Liu K, Zhou Y (2010) Mapping of quantitative trait loci and development of allele-specific markers for seed weight in Brassica napus. Theor Appl Genet 121:1289–1301

    Article  PubMed  CAS  Google Scholar 

  • Fu F-Y, Liu L-Z, Chai Y-R, Chen L, Yang T, Jin M-Y, Ma A-F, Yan X-Y, Zhang Z-S, Li J-N (2007) Localization of QTLs for seed color using recombinant inbred lines of Brassica napus in different environments. Genome 50:840–854

    Article  PubMed  CAS  Google Scholar 

  • Getinet A, Rakow G, Downey RK (1996) Agronomic performance and seed quality of Ethiopian mustard in Saskatchewan. Can J Plant Sci 76:387–392

    Article  Google Scholar 

  • Iniguez-Luy F, Lukens L, Farnham M, Amasino R, Osborn T (2009) Development of public immortal mapping populations, molecular markers and linkage maps for rapid cycling Brassica rapa and B. oleracea. Theor Appl Genet 120:31–43

    Article  PubMed  CAS  Google Scholar 

  • Jadhav A, Katavic V, Marillia E-F, Michael Giblin E, Barton DL, Kumar A, Sonntag C, Babic V, Keller WA, Taylor DC (2005) Increased levels of erucic acid in Brassica carinata by co-suppression and antisense repression of the endogenous FAD2 gene. Metab Eng 7:215–220

    Article  PubMed  CAS  Google Scholar 

  • Jagannath A, Sodhi Y, Gupta V, Mukhopadhyay A, Arumugam N, Singh I, Rohatgi S, Burma P, Pradhan A, Pental D (2011) Eliminating expression of erucic acid-encoding loci allows the identification of “hidden” QTL contributing to oil quality fractions and oil content in Brassica juncea (Indian mustard). Theor Appl Genet 122:1091–1103

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Tian E, Li R, Chen L, Meng J (2007) Genetic diversity of Brassica carinata with emphasis on the interspecific crossability with B. rapa. Plant Breed 126:487–491

    Article  CAS  Google Scholar 

  • Jönsson R (1978) Breeding for improved oil and meal quality in rape (Brassica napus L.) and turnip rape (Brassica campestris L.). Hereditas 87:205–218

    Article  Google Scholar 

  • Kim H, Choi S, Bae J, Hong C, Lee S, Hossain M, Van Nguyen D, Jin M, Park B-S, Bang J-W, Bancroft I, Lim Y (2009) Sequenced BAC anchored reference genetic map that reconciles the ten individual chromosomes of Brassica rapa. BMC Genomics 10:432

    Article  PubMed  Google Scholar 

  • Lagercrantz U (1998) Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 150:1217–1228

    PubMed  CAS  Google Scholar 

  • Lagercrantz U, Lydiate DJ (1995) RFLP mapping in Brassica nigra indicates differing recombination rates in male and female meioses. Genome 38:255–264

    Article  PubMed  CAS  Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461

    Article  CAS  Google Scholar 

  • Long Y, Shi J, Qiu D, Li R, Zhang C, Wang J, Hou J, Zhao J, Shi L, Park B-S, Choi SR, Lim YP, Meng J (2007) Flowering time quantitative trait loci analysis of oilseed Brassica in multiple environments and genome wide alignment with Arabidopsis. Genetics 177:2433–2444

    PubMed  CAS  Google Scholar 

  • Lou P, Xie Q, Xu X, Edwards C, Brock M, Weinig C, McClung C (2011) Genetic architecture of the circadian clock and flowering time in Brassica rapa. Theor Appl Genet 123:397–409

    Article  PubMed  CAS  Google Scholar 

  • Lukens LN, Quijada PA, Udall J, Pires JC, Schranz ME, Osborn TC (2004) Genome redundancy and plasticity within ancient and recent Brassica crop species. Biol J Linn Soc 82:665–674

    Article  Google Scholar 

  • Lysak MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15:516–525

    Article  PubMed  CAS  Google Scholar 

  • Mahmood T, Rahman MH, Stringam GR, Raney JP, Good AG (2005) Molecular markers for seed colour in Brassica juncea. Genome 48:755–760

    Article  PubMed  CAS  Google Scholar 

  • Meng J, Shi S, Gan L, Li Z, Qu X (1998) The production of yellow-seeded Brassica napus (AACC) through crossing interspecific hybrids of B. campestris (AA) and B. carinata (BBCC) with B. napus. Euphytica 103:329–333

    Article  Google Scholar 

  • Möllers C, Iqbal MCM, Röbbelen G (1994) Efficient production of doubled haploid Brassica napus plants by colchicine treatment of microspores. Euphytica 75:95–104

    Article  Google Scholar 

  • Nagaoka T, Doullah M, Matsumoto S, Kawasaki S, Ishikawa T, Hori H, Okazaki K (2010) Identification of QTLs that control clubroot resistance in Brassica oleracea and comparative analysis of clubroot resistance genes between B. rapa and B. oleracea. Theor Appl Genet 120:1335–1346

    Article  PubMed  CAS  Google Scholar 

  • Navabi ZK, Stead KE, Pires JC, Xiong Z, Sharpe AG, Parkin IAP, Rahman MH, Good AG (2011) Analysis of B-genome chromosome introgression in interspecific hybrids of Brassica napus × B. carinata. Genetics 187:659–673

    Article  PubMed  CAS  Google Scholar 

  • Niedringhaus TP, Milanova D, Kerby MB, Snyder MP, Barron AE (2011) Landscape of next-generation sequencing technologies. Anal Chem 83:4327–4341

    Article  PubMed  CAS  Google Scholar 

  • Padmaja KL, Arumugam N, Gupta V, Mukhopadhyay A, Sodhi YS, Pental D, Pradhan AK (2005) Mapping and tagging of seed coat colour and the identification of microsatellite markers for marker-assisted manipulation of the trait in Brassica juncea. Theor Appl Genet 111:8–14

    Article  PubMed  CAS  Google Scholar 

  • Panjabi P, Jagannath A, Bisht N, Padmaja KL, Sharma S, Gupta V, Pradhan A, Pental D (2008) Comparative mapping of Brassica juncea and Arabidopsis thaliana using intron polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genomics 9:113

    Article  PubMed  Google Scholar 

  • Parkin I (2011) Chasing ghosts: comparative mapping in the Brassicaceae. In: Bancroft I, Schmidt R (eds) Genetics and genomics of the Brassicaceae. Springer, New York, pp 153–170

    Chapter  Google Scholar 

  • Peiffer DA, Le JM, Steemers FJ, Chang W, Jenniges T, Garcia F, Haden K, Li J, Shaw CA, Belmont J, Cheung SW, Shen RM, Barker DL, Gunderson KL (2006) High-resolution genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping. Genome Res 16:1136–1148

    Article  PubMed  CAS  Google Scholar 

  • Piotrowska A, Krymanski J, Bartkowiak-Broda I, Krotka K (2003) Characteristic of yellow-seeded lines of winter oilseed rape. In: Sørensen H (ed) Proc 11th Int Rapeseed Conf. The Royal Veterinary and Agricultural University, Frederiksberg, pp 247–249

    Google Scholar 

  • Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I (2006) A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet 114:67–80

    Article  PubMed  CAS  Google Scholar 

  • Quiros CF, Kianian SF, Ochoa O, Douches D (1985) Genome evolution in Brassica: use of molecular markers and cytogenetic stocks. Cruciferae Newslett 10:21–23

    Google Scholar 

  • Radoev M, Becker HC, Ecke W (2008) Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics 179:1547–1558

    Article  PubMed  CAS  Google Scholar 

  • Rahman MH (2001) Production of yellow seeded Brassica napus through interspecific crosses. Plant Breed 120:463–472

    Article  Google Scholar 

  • Raman H, Raman R, Nelson MN, Aslam MN, Rajasekaran R, Wratten N, Cowling WA, Kilian A, Sharpe AG, Schondelmaier J (2012) Diversity array technology markers: genetic diversity analyses and linkage map construction in rapeseed (Brassica napus L.). DNA Res 19:51–65

    Article  PubMed  CAS  Google Scholar 

  • Ramchiary N, Padmaja K, Sharma S, Gupta V, Sodhi Y, Mukhopadhyay A, Arumugam N, Pental D, Pradhan A (2007) Mapping of yield influencing QTL in Brassica juncea: implications for breeding of a major oilseed crop of dryland areas. Theor Appl Genet 115:807–817

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Suárez C, Giménez M, Gutiérrez N, Ávila C, Machado A, Huttner E, Ramírez M, Martín A, Castillo A, Kilian A, Atienza S (2011) Development of wild barley (Hordeum chilense)-derived DArT markers and their use into genetic and physical mapping. Theor Appl Genet. p 1–10

  • Rohlf FJ (2008) NTSYSpc: Numerical Taxonomy System. 2.21o edn. Exeter Publishing, New York

  • Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542

    Article  PubMed  CAS  Google Scholar 

  • Seegeler CJP (1983) Oil plants in Ethiopia: their taxonomy and agricultural significance. Agricultural University, Wageningen, p 368

    Google Scholar 

  • Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft I, Zhao J, Meng J (2009) Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics 182:851–861

    Article  PubMed  CAS  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical Taxonomy. Freeman, San Francisco

    Google Scholar 

  • Song KM, Osborn TC, Williams PH (1988) Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). Theor Appl Genet 75:784–794

    Article  CAS  Google Scholar 

  • Stringam GR, McGregor DI, Pawlowski SH (1974) Chemical and morphological characteristics associated with seedcoat color in rapeseed. Proc 4 Int Rapeseed Conf, Giessen, pp 99–108

  • Struss D, Quiros C, Plieske J, Röbbelen G (1996) Construction of Brassica B genome synteny groups based on chromosomes extracted from three different sources by phenotypic, isozyme and molecular markers. Theor Appl Genet 93:1026–1032

    Article  CAS  Google Scholar 

  • Tang ZL, Li JN, Zhang XK, Chen L, Wang R (1997) Genetic variation of yellow-seeded rapeseed lines (Brassica napus L.) from different genetic sources. Plant Breed 116:471–474

    Article  CAS  Google Scholar 

  • The Brassica rapa Genome Sequencing Project Consortium (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035-1039

  • UN (1935) Genome analysis in Brassica with special reference to the exprimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot: p 389–452

  • Van Ooijen J (2006) JoinMap Version 4.0 Software for the calculation of genetics linkage maps. Kyazma, Wageningen

  • Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530

    Article  PubMed  CAS  Google Scholar 

  • Velasco L, Nabloussi A, De Haro A, Fernández-Martínez JM (2003) Development of high-oleic, low-linolenic acid Ethiopian-mustard (Brassica carinata) germplasm. Theor Appl Genet 107:823–830

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Tvd Lee, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng Z-B (2010) Windows QTL Cartographer V2.5. Raleigh, NC

  • Wang J, Lydiate D, Parkin I, Falentin C, Delourme R, Carion P, King G (2011) Integration of linkage maps for the Amphidiploid Brassica napus and comparative mapping with Arabidopsis and Brassica rapa. BMC Genomics 12:101

    Article  PubMed  CAS  Google Scholar 

  • Warwick SI (2011) Brassicaceae in agriculture. In: Bancroft I, Schmidt R (eds) Genetics and genomics of the Brassicaceae. Springer, New York, pp 33–67

    Chapter  Google Scholar 

  • Warwick SI, Gugel RK, McDonald T, Falk KC (2006) Genetic variation of Ethiopian mustard (Brassica carinata A. Braun) germplasm in western Canada. Genet Resour Crop Evol 53:297–312

    Article  CAS  Google Scholar 

  • Xiao Y, Chen L, Zou J, Tian E, Xia W, Meng J (2010) Development of a population for substantial new type Brassica napus diversified at both A/C genomes. Theor Appl Genet 121:1141–1150

    Article  PubMed  Google Scholar 

  • Yan X, Li J, Fu F, Jin M, Chen L, Liu L (2009) Co-location of seed oil content, seed hull content and seed coat color QTL in three different environments in Brassica napus L. Euphytica 170:355–364

    Article  CAS  Google Scholar 

  • Yang Y-W, Lai K-N, Tai P-Y, Li W-H (1999) Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and other angiosperm lineages. J Mol Evol 48:597–604

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Huang J, Chen F, Xu F, Ni X, Xu H, Wang Y, Jiang C, Wang H, Xu A, Huang R, Li D, Meng J (2011) Molecular mapping of Arabidopsis thaliana lipid-related orthologous genes in Brassica napus. Theor Appl Genet 123:1–15

    Article  Google Scholar 

  • Zou J, Zhu J, Huang S, Tian E, Xiao Y, Fu D, Tu J, Fu T, Meng J (2010) Broadening the avenue of intersubgenomic heterosis in oilseed Brassica. Theor Appl Genet 120:283–290

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Science Foundation of China (Project code: 30830073). Jun Zou was supported by the China Postdoctoral Science Foundation (20100471198).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinling Meng.

Additional information

Communicated by A. Bervillé.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, S., Zou, J., Li, R. et al. A genetic linkage map of Brassica carinata constructed with a doubled haploid population. Theor Appl Genet 125, 1113–1124 (2012). https://doi.org/10.1007/s00122-012-1898-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-1898-3

Keywords

Navigation