Skip to main content
Log in

Cellulose: a random walk along its historical path

  • General
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose as a material has been widely used for centuries in all kinds of practical applications. However, its chemical composition, structure and morphology were also unknown for centuries. The modern history of cellulose chemistry actually began in 1837 when Anselme Payen chemically identified cellulose from plants. Since then, the establishment of its chemical and physical structures has undergone multitudinous periods of struggle. Until the early 1920s, many scientists believed that cellulose was made up of a few small molecules of glucose or cellobiose. Very few scientists accepted the premiss that it was a polymer. The controversial debates were continued for over ten years. Eventually, substantial experimental data provided proof that cellulose is a covalently linked, high-molecular-weight macromolecule. This fact also provided the foundation for the establishment of polymer science. Some of the historical development of chemistry and structures are briefly reviewed, and recent approaches to studying cellulose structures with new instrumentation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambronn, B. (1911)Berhandl. Sächs. Akad. Wiss. Leipzig 63, 249.

    Google Scholar 

  • Astbury, W. T. (1933)Trans. Farad. Soc. 29, 193, 204.

    Google Scholar 

  • Atalla, R. H. (1987)The Structure of Cellulose. Characterization of the Solid States. ACS Symposium Series 340, American Chemical Society, Washington, D.C.

    Google Scholar 

  • Balashov, V. and Preston, R. D. (1955)Nature 176, 64.

    Google Scholar 

  • Beall, G. and Jörgenson, L. (1951)Text. Res. J. 21, 203.

    Google Scholar 

  • Beg, M. M., Aslam, J., Khan, Q. H., Butt, N. M., Rolandson, S. and Ahmed, A. U. (1974)J. Polym. Sci., Polym. Letters Ed. 12, 311.

    Google Scholar 

  • Berman, H. M. and Kim, S. M. (1968)Acta Cryst. B24, 897.

    Google Scholar 

  • Barthelemy, H. (1917)Caoutchouc & gutta-percha 14, 9274.

    Google Scholar 

  • Blackwell, J. and Marchessault, R. H. (1971) Infrared Spectroscopy of Cellulose. InCellulose and Cellulose Derivatives (N. Bikales and L. E. Segal, eds.). New York: Wiley-Interscience.

    Google Scholar 

  • Blackwell, J. (1982) The Macromolecular Organization of Cellulose and Chitin. InCellulose and Other Natural Polymer Systems (Brown, R. M., Jr., ed.). New York: Plenum Press.

    Google Scholar 

  • Böeseken, J. (1915)Rec. Trav. Chim. 35, 320.

    Google Scholar 

  • Bergmann, M. and Knehe, E. (1925)Ann. 445, 1.

    Google Scholar 

  • Braconnot, H. (1819)Ann. Chim. 12, 172.

    Google Scholar 

  • Idem. (1833)Ann. 7, 249.

    Google Scholar 

  • Idem. (1833)Ann. Chim. Phys. 52, 290.

    Google Scholar 

  • Brenner, F. C.et al. (1948)J. Am. Chem. Soc. 70, 977.

    Google Scholar 

  • Brongniart, A., Pelouze, T. J., Dumas, A. B. and Hedb, C. R. (1839)Seances Acad. Sci. 8, 51–51.

    Google Scholar 

  • Brown, G. M. and Ley, H. A. (1965)Science 147, 1038.

    Google Scholar 

  • Centola, G. (1938)Gass. Chem. Ital. 68, 825.

    Google Scholar 

  • Chanzy, H., Dube, M. and Marchessault, R. H. (1978)Tappi 61, 81.

    Google Scholar 

  • Charlton, W., Haworth, W. N. and Peat, S. (1926)J. Chem. Soc., 89.

  • Chu, S. S. C. and Jeffrey, G. A. (1968)Acta Cryst. B24, 830.

    Google Scholar 

  • Claffey, W. and Blackwell, J. (1976)Biopolymers 15, 1903.

    Google Scholar 

  • Colvin, J. R. (1972)Crit. Rev. Macromol. Sci. 1, 47.

    Google Scholar 

  • Conrad, C. C. and Stroggie, A. G. (1945)Ind. Eng. Chem. 37, 592.

    Google Scholar 

  • Creely, J. J., Segal, L. and Loeb, L. (1959)J. Polym. Sci. 36, 205.

    Google Scholar 

  • Cross, C. F. and Bevan, E. J. (1901)J. Chem. Soc. 79, 366.

    Google Scholar 

  • Denham, W. S. and Woodhouse, H. (1913)ibid. 103, 1735.

    Google Scholar 

  • Idem. (1914)ibid. 105, 2357.

    Google Scholar 

  • Idem. (1917)ibid. 111, 244.

    Google Scholar 

  • Idem. (1921)ibid. 119, 77.

    Google Scholar 

  • Dobb, M. G., Fernando, L. D. and Sikorski, J. (1974) Proceedings of the 8th International Congress on Electron Microscopy, Canberra, Australia, Vol.1, p. 364.

    Google Scholar 

  • Ellefsen, O., Gjonnes, J. and Norman. (1959)Acta. Chem. Scand. 13, 853.

    Google Scholar 

  • Ellefsen, O. and Norman, N. (1962)J. Polym. Sci. 58, 769.

    Google Scholar 

  • Ellefsen, O., Kringstad, K. and Tonnesen, B. A. (1963) InEncylopedia of X-Rays and Gamma Rays (G. L. Clark, ed.). New York: Reinhold.

    Google Scholar 

  • Ellis, K. C. and Warwicker, J. O. (1962)J. Polym. Sci. 56, 339.

    Google Scholar 

  • Fengel, D. (1970)Tappi 53, 497.

    Google Scholar 

  • Fengel, D. (1971)J. Polym. Sci. Part C 36, 383.

    Google Scholar 

  • Fengel, D. (1974)Naturwissenschaften 61, 31.

    Google Scholar 

  • Fischer, D. G. and Mann, J. (1960)J. Polymer Sci. 42, 189.

    Google Scholar 

  • Fischer, E. and Zemplen, G. (1909)Ann. 365, 1.

    Google Scholar 

  • Franchimont, A. N. P. (1879)Ber. 12, 1941.

    Google Scholar 

  • Franke, W. W. and Ermen, B. (1969)Z. Naturforsch. 24b, 918.

    Google Scholar 

  • Freudenberg, K. (1921)Ber. 54, 767.

    Google Scholar 

  • Freudenberg, K. and Braun, E. (1928)Ann. 460, 288.

    Google Scholar 

  • Freudenberg, K., Bruch, E. and Rau, H. (1929)Ber. 62, 3078.

    Google Scholar 

  • Freudenberg, K., Brach, E., Durr, W., Bolz, F. and Steinbrunn, G. (1930)ibid. 63, 1527.

    Google Scholar 

  • Freudenberg, K., Friedrich, K. and Bumann, I. (1932)Liegigs Ann. 494, 41.

    Google Scholar 

  • Freudenberg, K. and Blomqvist, C. (1935)Ber. Dtsch. Chem. Ges. 68B, 2070.

    Google Scholar 

  • Freudenberg, K., Plankenhorn, E. and Boppel, H. (1938)Ber. 71, 2435.

    Google Scholar 

  • Frey-Wyssling, A. (1936)Protoplasma 25, 261.

    Google Scholar 

  • Idem. (1938)Kolloiz-Z. 85, 148.

    Google Scholar 

  • Idem. (1938)Submikroskopische Morphologie des Protoplasmas und seiner Derivate, Berlin: Gebrüder Borntraeger.

    Google Scholar 

  • Frey-Wyssling, A. and Mühlethaler, K. (1963)Makromol. Chem. 62, 25.

    Google Scholar 

  • Friedrich, W., Knipping, P. M. and von Laue, M. (1912)Sitzungsber. Bayer. Akad. Wiss. 5, 303.

    Google Scholar 

  • Friese, H. and Hess, K. (1927)Justus Liebigs Ann. Chem. 456, 38.

    Google Scholar 

  • Frilette, V. J.,et al. (1948)J. Am. Chem. Soc. 70, 1107.

    Google Scholar 

  • Gay-Lussac, J. and Thenard, J. (1811)Recherches Physico-Chimiques 2, pp. 268–350.

    Google Scholar 

  • Gardner, K. H. and Blackwell, J. (1974a)Biopolymers 13, 1975.

    Google Scholar 

  • Gardner, K. H. and Blackwell, J. (1974b)Biochim. Biophys. Acta 343, 232.

    Google Scholar 

  • Gerngross, O., Hermann, K. and Abitz, W. (1930)Z. Physik. Chem. B10, 371.

    Google Scholar 

  • Green, A. G. (1904)Z. Farben-u. Textichem. 3, 97.

    Google Scholar 

  • Gross, S. J. and Clark, G. L. (1938)Z. Krist. A99, 357.

    Google Scholar 

  • Halle, E. (1934)Kolloid-Zt. 69, 324.

    Google Scholar 

  • Ham, J. T. and Williams, D. G. (1970)Acta Cryst. B26, 1373.

    Google Scholar 

  • Hanna, R. B. and Côté, W. A., Jr. (1974)Cytobiologie 10, 102.

    Google Scholar 

  • Haworth, W. N. (1925)Nature 116, 430.

    Google Scholar 

  • Idem. (1928)Helv. Chim. Acta 11, 547.

    Google Scholar 

  • Haworth, W. N. and Hirst, E. L. (1921)J. Chem. Soc. 119, 193.

    Google Scholar 

  • Haworth, W. N., Charlton, W. and Peat, S. (1926)ibid., 89.

    Google Scholar 

  • Haworth, W. N., Hirst, E. L. and Miller E. J. (1927)ibid., 2346.

    Google Scholar 

  • Haworth, W. N., Long, C. W. and Plant, J. H. T. (1927)ibid., 2809.

    Google Scholar 

  • Haworth, W. N. and Machemer, H. (1931)ibid., 2372.

    Google Scholar 

  • Hearle, J. W. S. and Greer, R. E. (1970)Textile Progress 2(4), 1.

    Google Scholar 

  • Hengstenberg, J. and Mark, H. Z. (1928)Kristallogr. 69, 271.

    Google Scholar 

  • Hermans, P. H. (1940)Proc. Nederland Akad. Weten. 43, 1.

    Google Scholar 

  • Idem. (1941)J. Phys. Chem. 45, 827.

    Google Scholar 

  • Idem. (1941)Kolloid Z. 97, 231.

    Google Scholar 

  • Idem. (1949)The Physics and Chemistry of Cellulose Fibers. New York: Elsevier.

    Google Scholar 

  • Idem. (1949)J. Polymer Sci. 4, 317.

    Google Scholar 

  • Hermans, P. H. and Platzek, P. (1939)Z. Physik. Chem. A185, 260, 269.

    Google Scholar 

  • Hermans, P. H., de Pooys, J. and Mann, C. (1943)Kolloid-Z. 102, 169.

    Google Scholar 

  • Hermans, P. H. and Weidinger, A. (1949)J. Appl. Phys. 19, 491.

    Google Scholar 

  • Herzog, R. O. (1925)Ber. 58, 1256.

    Google Scholar 

  • Herzog, R. O. and Jancke, W. (1920)Z. Physik 3, 196.

    Google Scholar 

  • Hess, K. (1924)Ann. 435, 1.

    Google Scholar 

  • Hess, K. and Wittelsbach, W. (1920)Z. Elektrochem. 26, 232.

    Google Scholar 

  • Hess, K. and Ljubitsch, N. (1928)Ber. 61, 1460.

    Google Scholar 

  • Hess, K. and Kiessig, H. (1944)Z. Physik. Chem. A193, 196.

    Google Scholar 

  • Hess, K., Mahl, H. and Gutter, E. (1957)Kolloid-Z. 155, 1.

    Google Scholar 

  • Hiasiwetz, H. and Habermann, J. (1871)J. Ann. Chem. Pharm. 159, 304.

    Google Scholar 

  • Hibbert, J. (1921)Ind. Eng. Chem. 13, 256, 334.

    Google Scholar 

  • Honjo, G. and Watanabe, M. (1958)Nature 181, 326.

    Google Scholar 

  • Howsomon, J. A. (1949)Textile Research J. 19, 152.

    Google Scholar 

  • Howsomon, J. A. and Sisson, W. A. (1954)Cellulose and Cellulose Derivatives, 2nd Ed. New York: Interscience, p. 244.

    Google Scholar 

  • Irvine, J. C. and Hirst, E. L. (1922)J. Chem. Soc. 121, 1585.

    Google Scholar 

  • Idem. (1923)ibid. 123, 518, 529.

    Google Scholar 

  • Jeffries, R., Jones, D. M., Roberts, J. G., Selby, K., Simmens, S. C. and Warwicker, J. (1969)Cell. Chem. Technol. 3, 355.

    Google Scholar 

  • Jones, D. W. (1958)J. Polym. Sci. 8, 1213.

    Google Scholar 

  • Jörgenson, L. (1950)Studies on the Partial Hydrolysis of Cellulose. Moestue, Oslo, p. 76.

    Google Scholar 

  • Kargin, V. A. and Michailow, M. V. (1939)Acta Physicochim. URSS. 11, 343.

    Google Scholar 

  • Kenner, J., Jones, D. W. and Sharpies, A. (1952)Rep. Prog. Appl. Chem. 37, 723.

    Google Scholar 

  • Koch, H. J. and Peterlin, A. S. (1970)Carbohyd. Res. 15, 403.

    Google Scholar 

  • Kratky, O. (1938)Z. Papier 56, 189.

    Google Scholar 

  • Idem. (1940)Angew. Chem. 53, 153.

    Google Scholar 

  • Kratky, O. and Mark, H. (1938)Papier-Fabr. 36, 345.

    Google Scholar 

  • Idem. (1937)Z. Physik. Chem. B36, 129.

    Google Scholar 

  • Liang, C. Y. and Marchessault, R. H. (1959)J. Poly. Sci. 37, 385.

    Google Scholar 

  • Liang, C. Y., Bassett, K. H., McGinnes, E. A. and Marchessault, R. A. (1960)Tappi 43, 1017.

    Google Scholar 

  • Lieser, T. H. (1938)Papier-Fabr. 36, 272.

    Google Scholar 

  • Mann, J. and Marrinan, H. J. (1958)J. Polym. Sci. 32, 357.

    Google Scholar 

  • Marchessault, R. H. and Sarko, A. (1967)Advances in Carbohydrate Chemistry 22, 421.

    Google Scholar 

  • Marchessault, R. H. and Sundararajan, P. R. (1983) InCellulose in The Polysaccharides (Aspinall, G. O., ed.), Vol. 2. New York: Academic Press.

    Google Scholar 

  • Marchessault, R. H. and Liang, C. Y. (1960)J. Polym. Sci. 43, 71.

    Google Scholar 

  • Idem. (1962)ibid. 59, 357.

    Google Scholar 

  • Mark, H. (1940)J. Phys. Chem. 44, 764.

    Google Scholar 

  • Idem. (1940)Chem. Revs. 26, 169.

    Google Scholar 

  • Mark, H. F. (1976)Chem. Eng. News 54, 176.

    Google Scholar 

  • Mark, H. and Tobolsky, A. V. (1950)Physical Chemistry of High Polymeric Systems, 2nd Edn. New York: Interscience, p. 459.

    Google Scholar 

  • Marx-Figini, M. and Schulz, G. V. (1966)Naturwissenschaften 53, 466.

    Google Scholar 

  • Mermans, P. H. (1951)Makromol. Chem. 6, 25.

    Google Scholar 

  • Meyer, K. H. (1950)Natural and Synthetic High Polymers. New York: Interscience, pp. 310–318.

    Google Scholar 

  • Meyer, K. H. (1928)Z. Angew. Chem. 41, 935.

    Google Scholar 

  • Idem. (1930)Kolloid-Z. 53, 8.

    Google Scholar 

  • Meyer, K. H. and Mark, H. (1928)Ber. 61B, 593.

    Google Scholar 

  • Idem. (1928)ibid. 1936.

    Google Scholar 

  • Idem. (1929)Z. Physik. Chem. B2, 115.

    Google Scholar 

  • Idem. (1930)Der Aufbau der Hochpolymeren Organischen Naturstoffe auf Grund Molekularmorphologischer Betrachtungen. Leipzig, Akadem. Verlagsger p. 264.

    Google Scholar 

  • Meyer, K. H. and Misch, L. (1937a)Ber. 70B, 266.

    Google Scholar 

  • Idem. (1937b)Helv. Chim. Acta 20, 232.

    Google Scholar 

  • Idem. (1940) Makromolekulare Chemie. Akadem. Verlagsges., Leipzig, 365–377.

    Google Scholar 

  • Michell, A. J. (1970)Carbohyd. Res. 12, 453.

    Google Scholar 

  • Monier-William, G. W. (1921)J. Chem. Soc. 119, 803.

    Google Scholar 

  • Mukherjee, S. M. and Woods, H. J. (1953)Biochim. Biophys. Acta 10, 499.

    Google Scholar 

  • Mühlethaler, K. (1969)J. Polym. Sci., Part C 28, 305.

    Google Scholar 

  • Mühlethaler, K. and Schqeiz, Z. (1960)Forstv. 30, 53.

    Google Scholar 

  • Nägeli, C. (1858) Die Stärkeköner, Pflanzenphysiologische Untersuchungen,2 Die Stärkekekörner.

  • Nägeli, C. and Schewndener, S. (1877)Das Mikroskop, 2nd Edn. Leipzig: W. Engelmann.

    Google Scholar 

  • Nagasawa, T. (1937)J. Jpn. For. Soc. 19, 260.

    Google Scholar 

  • Neale, S. M. (1933)Trans. Faraday Soc. 29, 317.

    Google Scholar 

  • Nickerson, R. F. (1941)Ind. Eng. Chem. 33, 1022.

    Google Scholar 

  • Nickerson, R. F.,et al. (1942)ibid. 34, 1480.

    Google Scholar 

  • Nieduszynski, I. A. and Atkins, E. D. T. (1970)Biochim. Biophys. Acta. 222, 109.

    Google Scholar 

  • Nishikawa, S. and Ono, S. (1913)Proc. Math.-Phys. Soc. Tokyo 7, 131.

    Google Scholar 

  • Nishikawa, S. (1914)ibid. 296.

    Google Scholar 

  • Okamura, K. (1991) Structure of Cellulose. InWood and Cellulosic Chemistry (D. N.-S. Hon and N. Shiraishi, eds.). New York: Marcel Dekker, pp. 89–112.

    Google Scholar 

  • Ost, H. (1913)Ber. 34, 398.

    Google Scholar 

  • Idem. (1919)Angew. Chem. 32, 66.

    Google Scholar 

  • Ost, H. and Wilkening, L. (1910)Chem.-Zig. 34, 461.

    Google Scholar 

  • Payen, A. (1839)Compt. Rend. 8, 51.

    Google Scholar 

  • Payen, A. (1842)Quatrieme Memoire sur les Developements des Vegetaux, Extrait des Memoires de l'Academie royale des Sciences. Tome VIII des savants etrangers. Paris: Imprimerie Royale.

    Google Scholar 

  • Phillips, M. (1940)J. Wash. Acad. Sci. 30, 65.

    Google Scholar 

  • Polanyi, M. (1921)Naturwissenschaften 9, 288;Z. Physik. 7, 149.

    Google Scholar 

  • Polanyi, M. and Weissenberg, Z. (1922)Physik. 9, 123.

    Google Scholar 

  • Preston, R. D. (1962)Polymer 3, 511.

    Google Scholar 

  • Idem. (1971)J. Microscopy 93, 7.

    Google Scholar 

  • Idem. (1974)The Physical Biology of Plant Cell Walls. London: Chapman and Hall, 139–183.

    Google Scholar 

  • Idem. (1975)Phys. Rep. 21, 183.

    Google Scholar 

  • Preston, R. D. and Cronshaw, J. (1958)Nature 181, 248.

    Google Scholar 

  • Pringsheim, H. (1912)Z. Physiol. Chem. 78, 266.

    Google Scholar 

  • Idem. (1925)Naturwissenschaften 13, 1045.

    Google Scholar 

  • Idem. (1926)Ber. 59, 2973.

    Google Scholar 

  • Rånby, B. (1969)Adv. Chem. Ser. 95, 134.

    Google Scholar 

  • Rånby, B. G. (1958). InFundamentals of Papermaking Fibers (Balam, F., ed.). Tech. Sec. Brit. Paper and Board Makers Assoc., Kenley, Surrey, England, p. 55.

    Google Scholar 

  • Reid, J. D. and Dryden, E. C. (1940)Textile Colorist 62, 43.

    Google Scholar 

  • Richtmyer, N. K. and Hudson, C. S. (1939)J. Amer. Chem. Soc. 61, 1834.

    Google Scholar 

  • Roseveare, W. E. (1952)Ind. Eng. Chem. 44, 168.

    Google Scholar 

  • Rowland, S. O. and Roberts, E. J. (1972)J. Polym. Sci., Part A-1 10, 2447.

    Google Scholar 

  • Sakurada, I. and Hutino, K. (1936)Kolloid-Zt. 77, 346.

    Google Scholar 

  • Sakurada, I. and Okamura, S. (1937)ibid. 81, 199.

    Google Scholar 

  • Scallan, A. M. (1971)Textile Res. J. 41, 647.

    Google Scholar 

  • Sarko, A. (1976)Appl. Polym. Symp. 28, 729.

    Google Scholar 

  • Sarko, A. (1986) Recently X-Ray Crystallographic Studies of Celluloses. InCellulose: Structure, Modification and Hydrolysis (Young, R. A. and Rowell, R. M., eds.). New York: Wiley, pp. 29–49.

    Google Scholar 

  • Sarko, A. and Muggli, R. (1974)Macromol. 7, 486.

    Google Scholar 

  • Scherbaer, P. C., Jr. and Hussey, R. E. (1931)J. Amer. Chem. Soc. 53, 2344.

    Google Scholar 

  • Schorignin, P. and Semljarskaja, M. (1936)Ber. 69, 1713.

    Google Scholar 

  • Schultz, G. V. and Marx, M. (1954)Makromol. Chem. 14, 52.

    Google Scholar 

  • Idem. (1958)J. Polym. Sci. 30, 119.

    Google Scholar 

  • Seifriz, W. (1929)Amer. Nat. 63, 410.

    Google Scholar 

  • Shafizadeh, F. and McGinnis, G. D. (1971)Adv. Carbohydrate Chem. and Biochem. 26, 297.

    Google Scholar 

  • Skraup, L. H. and Köenig, J. (1913)Ber. 34, 115.

    Google Scholar 

  • Idem. (1901)Monatsh. 22, 1011.

    Google Scholar 

  • Spencer, C. C. (1921)Cellulsoechemie 10, 61.

    Google Scholar 

  • Sponsler, O. L. (1926)J. Gen. Physiol. 9, 221, 677.

    Google Scholar 

  • Sponsler, O. L. and Dore, W. H. (1928)Colloid Symposium Monograph 4, 171 (1926);J. Amer. Chem. Soc. 50, 1950.

    Google Scholar 

  • Sponsler, O. L. (1930)J. Gen. Physiol. 9, 221 (1925);Ind. Eng. Chem. 20, 1060 (1928);Technol. Chem. Papier-Zellstoff-Fabr. 28, 20 (1931);Cellulosechemie 11, 186.

    Google Scholar 

  • Staudinger, H. (1932)Die Hochmolekularen Organischen Verbindungen. Berlin: Springer-Verlag.

    Google Scholar 

  • Idem. (1961)From Organic Chemistry to Macromolecules. New York: Wiley-Interscience.

    Google Scholar 

  • Staudinger, H. and Fritschi, J. (1922)Helv. Chim. Acta,5, 785.

    Google Scholar 

  • Staudinger, H. and Lütky, M. (1925)ibid. 8, 41.

    Google Scholar 

  • Staudinger, H. (1926)Ber. 59, 3019.

    Google Scholar 

  • Stewart, O. C. (1956) InMan's Role in Changing the Face of the Earth (Thomas, W. L., Jr., ed.). Chicago: Univ. of Chicago Press, p. 11.

    Google Scholar 

  • Sundararajan, P. R. and Rao, V. S. R. (1968)Tetrahedron 24, 289.

    Google Scholar 

  • Timell, T. E. (1950)Studies on Cellulose Reactions, Diss. Stockholm: K.T.H..

    Google Scholar 

  • Tollens, B. (1985)Kurzes Handbuch der Kohlenhydrate, Vol. 2. Breslau: E. Trewendt, p. 252.

    Google Scholar 

  • Idem. (1914)Handbuch der Kohlenhydrate, Vol. II, 3rd Edn. Leipzig, J. A. Barth p. 564.

    Google Scholar 

  • Trogus, C. and Hess, K. (1931)Z. Phys. Chem. (Leipzig) B14, 387.

    Google Scholar 

  • Tsuboi, M. (1957)J. Polym. Sci. 25, 159.

    Google Scholar 

  • Urban, H. (1926)Cellulosechem. 7, 73.

    Google Scholar 

  • Vignon, L. (1899)Bull. Soc. Chim. 22, 597.

    Google Scholar 

  • Viswanathan, A. and Shenouda, S. G. (1971)J. Appl. Polym. Sci. 15, 519.

    Google Scholar 

  • Wadsworth, L. C. and Curculo, J. A. (1978) InModified Cellulosics (Rowell, R. M. and Young, R. A., eds.). New York: Academic Press.

    Google Scholar 

  • Walton, A. G. and Blackwell, J. (1973) InBiopolymers, Vol. 22. New York: Academic Press, p. 421.

    Google Scholar 

  • Wardrop, A. B. (1954)Holzforschung 8, 12.

    Google Scholar 

  • Warwicker, J. O., Jeffries, R., Colbran, R. L. and Robinson, R. N. (1966)A Review of the Literature on the Effect of Caustic Soda and Other Swelling Agents on the Fine Structure of Cotton (Shirley Institute Pamphlet No. 93). Manchester: The Cotton, Silk and Manmade Fibers Research Association.

    Google Scholar 

  • Wellard, H. J. (1954)J. Polym. Sci. 13, 471.

    Google Scholar 

  • Willstatter, R. and Zechmeister, L. (1913)Ber. 46, 2401.

    Google Scholar 

  • Zechmeister, L. and Toth, G. (1931)Ber. B64, 854.

    Google Scholar 

  • Zemplen, G. (1926)Ber. 59B, 1254.

    Google Scholar 

  • Zeronian, S. H. (1985)Cellulose Chemistry and Its Applications (Nevell, T. P. and Zeronian, S. H., eds.). UK: Ellis Horwood.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hon, D.N.S. Cellulose: a random walk along its historical path. Cellulose 1, 1–25 (1994). https://doi.org/10.1007/BF00818796

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00818796

Keywords

Navigation