Skip to main content
Log in

Distribution of Photoperiod-Insensitive Alleles Ppd-D1a, Ppd-B1a, and Ppd-B1c in Winter Common Wheat Cultivars (Triticum aestivum L.) of Various Origin

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Diagnostic molecular markers were used to identify the genotypes by Ppd-A1, Ppd-B1, and Ppd-D1 genes of 232 winter common wheat cultivars from different countries, including 161 from Ukraine. Among the studied cultivars, the most common was the Ppd-D1a allele (81%), ranging from 10% in the United States cultivars to 92% in the cultivars from Ukraine. The pedigree analysis showed that Bezosta 1, Red River 68, and Zlatna Dolina cultivars were donors of the Ppd-D1a gene in Ukrainian common wheat cultivars. Almost all cultivars created in Ukraine from 1970s to the present day have been carriers of the Ppd-D1a. The frequency of the Ppd-B1a and Ppd-B1c alleles in the total sampling was negligible: only 3 and 5%, respectively. Locus Ppd-A1 did not have allele variations; thus, all 232 genotypes were the carriers of the recessive allele Ppd-A1. In general, six different Ppd-1 genotypes were detected in the cultivars. Two (Russia) or three (the European Union, the United States, Ukraine) Ppd-1 genotypes were found in the cultivars from most countries. Four Ppd-1 genotypes were found only in Japanese cultivars, the sampling of which was quite small. A higher frequency (75%) was found only for the genotypes, dominant by the Ppd-D1a allele, ranging from 10% (the United States) to 89% (Ukraine). The frequency of all other monogenic or digenic dominant genotypes-carriers of the Ppd-1 genes was rather low (from 1 to 4%). The monogenic Ppd-B1a dominant genotype was observed only in three cultivars from the United States, and monogenic dominant genotype Ppd-B1c was revealed in the Japanese cultivar Norin 1 and the Triple Dirk C line from Australia. The genotype from the Ppd-D1a Ppd-B1a allele combination was identified in three cultivars from Japan and the Kyrgyz cultivar Erythrospermum 80, and Ppd-D1a Ppd-B1c were identified in single cultivars from Italy, Serbia, Japan, and five cultivars from Ukraine. There was a significant increase in the share of Ppd-D1a allele carriers and a simultaneous decrease in the proportion of genotypes with three recessive Ppd-1 genes in Ukrainian and Russian cultivars as compared with European and the United States cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Bakuma, A.O., Popovych, Yu.A., Motsnyi, I.I., Chebotar, G.O., and Chebotar, S.V., Effects of the Ppd-D1a allele on growth rates and agronomical traits in wheat detected by the application of analogous lines, Cytol. Genet., 2018, vol. 52, no. 5, pp. 343–352. https://doi.org/10.3103/S009545271805002X

    Article  Google Scholar 

  2. Beales, J., Turner, A., Griffiths, S., Snape, J.W., and Laurie, D.A., A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.), Theor. Appl. Genet., 2007, vol. 115, no. 5, pp. 721–733. https://doi.org/10.1007/s00122-007-0603-4

    Article  CAS  PubMed  Google Scholar 

  3. Bentley, A.R., Horsnell, R., Werner, C.P., Turner, A.S., Rose, G.A., Bedard, C., Howell, P., Wilhelm, E.P., Mackay, I.J., Howells, R.M., Greenland, A., Laurie, D.A., and Gosman, N., Short, natural, and extended photoperiod response in BC2F4 lines of bread wheat with different Photoperiod-1 (Ppd-1) alleles, J. Exp. Bot., 2013, vol. 64, no. 7, pp. 1783–1793. https://doi.org/10.1093/jxb/ert038

    Article  CAS  PubMed  Google Scholar 

  4. Chebotar, G., Bakuma, A., Filimonov, V., and Chebotar, S., Haplotypes of Ppd-D1 gene and alleles of Ppd-A1 and Ppd-B1 in Ukrainian bread wheat varieties, Visn. Lviv Univ., Ser. Biol., 2019, vol. 80, pp. 82–89. https://doi.org/10.30970/vlubs.2019.80.10

    Article  Google Scholar 

  5. Chen, F., Gao, M., Zhang, J., Zuo, A., Shang, X., and Cui, D., Molecular characterization of vernalization and response genes in bread wheat from the Yellow and Huai Valley of China, BMC Plant Biol., 2013, vol. 13, art. ID 199. https://doi.org/10.1186/1471-2229-13-199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Diaz, A., Zikhali, M., Turner, A., Isaac, P., and Laurie, D., Copy number variation affecting the Photoperiod-B1 and Vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum), PLoS One, 2012, vol. 7, no. 3, p. e33234. https://doi.org/10.1371/journal.pone.0033234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fayt, V.I., Balashova, I.A., and Sivolap, Yu.M., Mapping of QTL associated with heading time in winter wheat, Cytol. Genet., 2011, vol. 45, no. 5, pp. 35–40. https://doi.org/10.3103/S0095452711050045

    Article  Google Scholar 

  8. Fayt, V.I., Pogrebnyuk, E.A., Balashova, I.A., and Stelmakh, A.F., Identification and effects of alleles of Ppd-B1 gene on agronomically valuable traits in recombinant-inbred lines of wheat, Fiziol. Rast. Genet., 2017, vol. 49, no. 1, pp. 36–46.

    Article  Google Scholar 

  9. Filimonov, V.M., Bakuma, A.A., Chebotar, G.A., Burdenyuk-Tarasevich, L.A., and Chebotar, S.V., PCR-analysis of photoperidous sensitivity genes in bread wheat varieities from Bilatserkovska Experimental Breeding Station, Visn. Ukr. Tov-va Genet. Sel., 2018 vol. 16, no. 2, pp. 217–226.

    Google Scholar 

  10. Fomina, E.A., Dmitrieva, T.M., Malyshev, S.V., and Urbanovich, O.Yu., Molecular and genetic characteristics of the collection of wheat varieties (Triticum aestivum L.) by the allelic composition of the photoperiod sensitivity gene Ppd-D1 and genes encoding the Cbf factors of the Fr-B2 locus, Mol. Prikl. Genet., 2018, vol. 25, pp. 7–14.

    Google Scholar 

  11. Grogan, S.M., Brown-Guedira, G., Haley, S.D., McMaster, G.S., Reid, S.D., Smith, J., and Byrne, P.F., Allelic variation in developmental genes and effects on winter wheat heading date in the U.S. Great Plains, PLoS One, 2016, vol. 11, no. 4, p. e0152852. https://doi.org/10.1371/journal.pone.0152852

  12. Guo, Z., Song, Y., Zhou, R., Ren, Z., and Jia, J., Discovery, evaluation and distribution of haplotypes of the wheat Ppd-D1 gene, New Phytol., 2010, vol. 185, no. 3, pp. 841–851.

    Article  CAS  PubMed  Google Scholar 

  13. Kamran, A., Iqbal, M., and Spaner, D., Flowering time in wheat (Triticum aestivum L.): a key factor for global adaptability, Euphytica, 2014, vol. 197, no. 1, pp. 1–26. https://doi.org/10.1007/s10681-014-1075-7

    Article  CAS  Google Scholar 

  14. Kiss, T., Balla, K., Veisz, O., Láng, L., Bedö, Z., Griffiths, S., Isaac, P., and Karsai, I., Allele frequencies in the VRN-A1, VRN-B1 and VRN-D1 vernalization response and PPD-B1 and PPD-D1 photoperiod sensitivity genes, and their effects on heading in a diverse set of wheat cultivars (Triticum aestivum L.), Mol. Breed., 2014, vol. 34, no. 2, pp. 297–310. https://doi.org/10.1007/s11032-014-0034-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kolev, S., Ganeva, G., Christov, N., Belchev, I., Kostov, K., Tsenov, N., Rachovska, G., Landgeva, S., Ivanov, M., Abu Mhadi, N., and Todorovska, E., Allele variation in loci for adaptive response and plant height and its effect on grain yield in wheat, Biotechnol. Biotechnol. Equip., 2010, vol. 24, no. 2, pp. 1807–1813.

    Article  CAS  Google Scholar 

  16. Langer, S.M, Longin, C.F.H., and Würschum, T., Flowering time control in European winter wheat, Front. Plant Sci., 2014, vol. 5, pp. 537–562. https://doi.org/10.3389/fpls.2014.00537

    Article  PubMed  PubMed Central  Google Scholar 

  17. Law, C.N., Sutka, J., and Worland, A.J., A genetic study of day-length response in wheat, Heredity, 1978, vol. 41, no. 2, pp. 185–191.

    Article  Google Scholar 

  18. Muterko, À., Kalendar, R., Cockram, J., and Balashova, I., Discovery, evaluation and distribution of haplotypes and new alleles of the Photoperiod-A1 gene in wheat, Plant Mol. Biol., 2015, vol. 88, pp. 149–164. https://doi.org/10.1007/s11103-015-0313-2

    Article  CAS  PubMed  Google Scholar 

  19. Nishida, H., Yoshida, T., Kawakami, K., Fujita, M., Long, B., Akashi, Y., Laurie, D.A., and Kato, K., Structural variation in the 5′ upstream region of photoperiod-insensitive alleles Ppd-A1a and Ppd-B1a identified in hexaploid wheat (Triticum aestivum L.), and their effect on heading time, Mol. Breed., 2013, vol. 31, no. 1, pp. 27–37. https://doi.org/10.1007/s11032-012-9765-0

    Article  CAS  Google Scholar 

  20. Petrović, S., Marić, S., Čupić, T., Drezner, G., and Karsai, I., Distribution of allelic variants of hexaploid wheat germplasm at Xgwm261 and Ppd-D1 locus, Poljoprivreda, 2012, vol. 18, no. 2, pp. 25–29.

    Google Scholar 

  21. Pirych, A.V, Bulavka, N.V., and Yurchenko, T.V., Photoperiodic sensitivity and vernalization requirement of winter wheat varieties (Trticum aestivum L.) of myronivka breeding, Grain Crops, 2018, vol. 2, no. 2, pp. 261–266. https://doi.org/10.31867/2523-4544/0034

    Article  Google Scholar 

  22. Rokitskiy, P.F., Biologicheskaya statistika (Biological Statistics), Moscow: Kolos, 1973.

  23. Seki, M., Chono, M., Matsunaka, H., Fujita, M., Oda, S., Kubo, K., Kiribuchi-Otobe, C., Kojima, H., Nishida, H., and Kato, K., Distribution of photoperiod-insensitive alleles Ppd-B1a and Ppd-D1a and their effect on heading time in Japanese wheat cultivars, Breed. Sci., 2011, vol. 61, no. 4, pp. 405–412. https://doi.org/10.1270/jsbbs.61.405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Seki, M., Chono, M., Nishimura, T., Sato, M., Yoshimura, Y., Matsunaka, H., Fujita, M., Oda, S., Kubo, K., Kiribuchi-Otobe, C., Kojuma, H., Nishida, Y., and Kato, K., Distribution of photoperiod-insensitive allele Ppd-A1a and its effect on heading time in Japanese wheat cultivar, Breed. Sci., 2013, vol. 63, no. 3, pp. 309–316. https://doi.org/10.1270/jsbbs.63.309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shaw, L.M., Turner, A.S., and Laurie, D.A., The impact of photoperiod insensitive Ppd-1a mutations on the photoperiod pathway across the three genomes of hexaploid wheat (Triticum aestivum), Plant J., 2012, vol. 71, no. 1, pp. 71–84. https://doi.org/10.1111/j.1365-313X.2012.04971.x

    Article  CAS  PubMed  Google Scholar 

  26. Šíp, V., Chrpová, J., Žofajová, A., Pánková, K., Užík, M., and Snape, J.W., Effects of specific Rht and Ppd alleles on agronomic traits in winter wheat cultivars grown in middle Europe, Euphytica, 2010, vol. 172, no. 2, pp. 221–233. https://doi.org/10.1007/s10681-009-0049-7

    Article  CAS  Google Scholar 

  27. Snape, J.W., The genetics of adaptation in wheat and its role in maximizing yield potential, Hereditas, 2001, vol. 23, no. 1, pp. 46–47.

    Google Scholar 

  28. Stelmakh, A.F. and Fayt, V.I., Winter bread wheat adaptivity may be improved by increasing photosensitivity and vernalization requirement, Zb. Nauk. Pr., 2016, vol. 27, pp. 103–108.

    Google Scholar 

  29. Sun, H., Guo, Z., Gao, L., Zhao, G., Zhang, W., Zhou, R., Wu, Y., Wang, H., and An, Y., DNA-metylation pattern of Photoperiod-B1 is associated with photoperiod insensitivity in wheat (Triticum aestivum), New Phytol., 2014, vol. 204, vol. 3, pp. 682–692. https://doi.org/10.1111/nph.12948

  30. Takenaka, S. and Kawahara, T., Evolution of tetraploid wheat based on variations in 5′ UTR regions of Ppd-A1: evidence of gene flow between emmer and timopheevi wheat, Genet. Resour. Crop Evol., 2013, vol. 60, no. 7, pp. 2143–2155.

    Article  CAS  Google Scholar 

  31. Tanio, M. and Kato, K., Development of near-isogenic lines for photoperiod-insensitive genes, Ppd-B1 and Ppd-D1, carried by the Japanese wheat cultivars and their effect on apical development, Breed. Sci., 2007, vol. 57, no. 1, pp. 65–72.

    Article  Google Scholar 

  32. Vlasenko, V.A., Kochmarskyi, V.S., Koliuchyi, V.T., Kolomiiets, L.A., Khomenko, S.O., and Solona, V.Yo., Selektsiina evoliutsiia myronivskykh pshenyts (Breeding evolution of Myronivka wheats), Myronivka: N.p., 2012.

  33. Whittal, A., Kaviani, M., Graf, R., Humphreys, G., and Navabi, A., Allelic variation of vernalization and photoperiod response genes in a diverse set of North American high latitude winter wheat genotype, PLoS One, 2018, vol. 13, no. 8, p. e0203068. https://doi.org/10.1371/journal.pone.0203068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wilhelm, E.P., Turner, A.S., and Laurie, D.A., Photoperiod insensitive Ppd-A1a mutations in tetraploid wheat (Triticum durum Desf.), Theor. Appl. Genet., 2009, vol. 118, no. 2, pp. 285–294. https://doi.org/10.1007/s00122-008-0898-9

    Article  CAS  PubMed  Google Scholar 

  35. Worland, A.J., The influence of flowering time genes on environmental adaptability in European wheats, Euphytica, 1996, vol. 89, no. 1, pp. 49–57. https://doi.org/10.1007/BF00015718

    Article  Google Scholar 

  36. Yan, L., Fu, D., Li, C., Blechl, A., Tranquilli, G., Bonafede, M., et al., The wheat and barley vernalization gene VRN3 is an orthologue of FT, Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, no. 51, pp. 19581–19586. https://doi.org/10.1073/pnas.0607142103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. I. Fait or I. A. Balashova.

Ethics declarations

The authors declare that they have no conflict of interests. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by V. Mittova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fait, V.I., Balashova, I.A. Distribution of Photoperiod-Insensitive Alleles Ppd-D1a, Ppd-B1a, and Ppd-B1c in Winter Common Wheat Cultivars (Triticum aestivum L.) of Various Origin. Cytol. Genet. 56, 109–117 (2022). https://doi.org/10.3103/S0095452722020049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452722020049

Keywords:

Navigation