Skip to main content

Advertisement

Log in

Current and Future Management Strategies for Relapsed or Progressive Hepatoblastoma

  • Therapy In Practice
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Hepatoblastoma is the most common primary malignant neoplasm of the liver in children. Improvements in chemotherapy and surgical techniques have increased survival rates for those with localized disease. The prognosis for patients with progressive or relapsed disease continues to be dismal. Complete resection by surgery or liver transplantation is necessary for cure. Few conventional chemotherapy agents have demonstrated activity in progressive or relapsed hepatoblastoma. Irinotecan has shown activity in relapsed and progressive hepatoblastoma. The efficacy of high-dose chemotherapy in this setting is unknown. Newer targeted agents that ‘selectively’ interfere with pathway targets involved in tumor growth and progression such as insulin-like growth factor, phosphatidylinositol 3-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR) are currently under development. Because of the rarity of hepatoblastoma, only a small minority of these agents will ever be evaluated in children with this disorder. Gene-directed therapy and immunotherapy have shown promising results in the preclinical setting, and should be investigated as future treatment options for advanced hepatoblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II

Similar content being viewed by others

References

  1. Stiller CA, Pritchard J, Steliarova-Foucher E. Liver cancer in European children: incidence and survival, 1978–1997. Report from the Automated Childhood Cancer Information System project. Eur J Cancer 2006 Sep; 42 (13): 2115–23.

    Article  PubMed  CAS  Google Scholar 

  2. Li J, Thompson TD, Miller JW, et al. Cancer incidence among children and adolescents in the United States, 2001–2003. Pediatrics 2008 Jun; 121 (6): e1470–7

    Article  PubMed  Google Scholar 

  3. Perilongo G, Shafford E, Maibach R, et al. Risk-adapted treatment for childhood hepatoblastoma: final report of the second study of the International Society of Paediatric Oncology — SIOPEL 2. Eur J Cancer 2004 Feb; 40 (3): 411–21.

    Article  PubMed  CAS  Google Scholar 

  4. Fuchs J, Rydzynski J, Von Schweinitz D, et al. Pretreatment prognostic factors and treatment results in children with hepatoblastoma: a report from the German Cooperative Pediatric Liver Tumor Study HB 94. Cancer 2002 Jul 1;95(1): 172–82

    Article  PubMed  Google Scholar 

  5. Zsiros J, Maibach R, Shafford E, et al. Successful treatment of childhood high-risk hepatoblastoma with dose-intensive multiagent chemotherapy and surgery: final results of the SIOPEL-3HR study. J Clin Oncol 2010 May 20; 28 (15): 2584–90.

    Article  PubMed  CAS  Google Scholar 

  6. Perilongo G, Maibach R, Shafford E, et al. Cisplatin versus cisplatin plus doxorubicin for standard-risk hepatoblastoma. N Engl J Med 2009 Oct; 361 (17): 1662–70.

    Article  PubMed  CAS  Google Scholar 

  7. Malogolowkin MH, Katzenstein H, Krailo MD, et al. Intensified platinum therapy is an ineffective strategy for improving outcome in pediatric patients with advanced hepatoblastoma. J Clin Oncol 2006 Jun 20; 24 (18): 2879–84.

    Article  PubMed  CAS  Google Scholar 

  8. Semeraro M, Brugieres L, Zsiros J. 41st Annual Conference of International Society of Paediatric Oncology SIOP 2009, Sao Paulo, Brazil, October 5–9, 2009. Pediatr Blood Cancer 2009 Nov; 53 (5): 701–915.

    Article  Google Scholar 

  9. Black CT, Cangir A, Choroszy M, et al. Marked response to preoperative high-dose cis-platinum in children with unresectable hepatoblastoma. J Pediatr Surg 1991 Sep; 26 (9): 1070–3.

    Article  PubMed  CAS  Google Scholar 

  10. Douglass EC, Green AA, Wrenn E, et al. Effective cisplatin (DDP) based chemotherapy in the treatment of hepatoblastoma. Med Pediatr Oncol 1985; 13 (4): 187–90.

    Article  PubMed  CAS  Google Scholar 

  11. Katzenstein HM, London WB, Douglass EC, et al. Treatment of unresectable and metastatic hepatoblastoma: a Pediatric Oncology Group phase II study. J Clin Oncol 2002; 20 (16): 3438–44.

    Article  PubMed  Google Scholar 

  12. Neglia JP, Woods WG. Continuous-infusion doxorubicin in the treatment of primary hepatic malignancies of childhood. Cancer Treat Rep 1986 May; 70 (5): 655–7.

    PubMed  CAS  Google Scholar 

  13. Ortega JA, Douglass EC, Feusner JH, et al. Randomized comparison of cisplatin/vincristine/fluorouracil and cisplatin/continuous infusion doxorubicin for treatment of pediatric hepatoblastoma: a report from the Children’s Cancer Group and the Pediatric Oncology Group. J Clin Oncol 2000 Jul; 18 (14): 2665–75.

    PubMed  CAS  Google Scholar 

  14. Malogolowkin MH, Katzenstein HM, Krailo M, et al. Redefining the role of doxorubicin for the treatment of children with hepatoblastoma. J Clin Oncol 2008 May 10; 26 (14): 2379–83.

    Article  PubMed  CAS  Google Scholar 

  15. Fuchs J, Bode U, von Schweinitz D, et al. Analysis of treatment efficiency of carboplatin and etoposide in combination with radical surgery in advanced and recurrent childhood hepatoblastoma: a report of the German Cooperative Pediatric Liver Tumor Study HB 89 and HB 94. Klin Padiatr 1999 Aug; 211 (4): 305–9.

    Article  PubMed  CAS  Google Scholar 

  16. Cacciavillano WD, Brugières L, Childs M, et al. Phase II study of high-dose cyclophosphamide in relapsing and/or resistant hepatoblastoma in children: a study from the SIOPEL group. Eur J Cancer 2004 Oct; 40 (15): 2274–9.

    Article  PubMed  CAS  Google Scholar 

  17. Katzenstein HM, Rigsby C, Shaw PH, et al. Novel therapeutic approaches in the treatment of children with hepatoblastoma. J Pediatr Hematol Oncol 2002 Dec; 24 (9): 751–5.

    Article  PubMed  Google Scholar 

  18. Niwa A, Umeda K, Awaya T, et al. Successful autologous peripheral blood stem cell transplantation with a double-conditioning regimen for recurrent hepatoblastoma after liver transplantation. Pediatr Transplant 2009 Mar; 13 (2): 259–62.

    Article  PubMed  Google Scholar 

  19. Yoshinari M, Imaizumi M, Hayashi Y, et al. Peripheral blood stem cell transplantation for hepatoblastoma with microscopical residue: a therapeutic approach for incompletely resected tumor. Tohoku J Exp Med 1998 Mar; 184 (3): 247–54.

    Article  PubMed  CAS  Google Scholar 

  20. Perilongo G, Otte JB. Autologous peripheral blood stem-cell transplantation with a double-conditioning regimen for recurrent hepatoblastoma after liver transplantation: a valid therapeutic option or just too much. Pediatr Transplant 2009; Mar; 13 (2): 148–9.

    Article  PubMed  Google Scholar 

  21. Malogolowkin MH, Stanley P, Steele DA, et al. Feasibility and toxicity of chemoembolization for children with liver tumors. J Clin Oncol 2000 Mar; 18 (6): 1279–84.

    PubMed  CAS  Google Scholar 

  22. Schnater JM, Aronson DC, Plaschkes J, et al. Surgical view of the treatment of patients with hepatoblastoma: results from the first prospective trial of the International Society of Pediatric Oncology Liver Tumor Study Group. Cancer 2002 Feb 15; 94 (4): 1111–20.

    Article  PubMed  Google Scholar 

  23. Matsunaga T, Sasaki F, Ohira M, et al. Analysis of treatment outcome for children with recurrent or metastatic hepatoblastoma. Pediatr Surg Int 2003 May; 19 (3): 142–6.

    PubMed  Google Scholar 

  24. Feusner JH, Krailo MD, Haas JE, et al. Treatment of pulmonary metastases of initial stage I hepatoblastoma in childhood. Report from the Childrens Cancer Group. Cancer 1993 Feb 1; 71 (3): 859–64.

    Article  PubMed  CAS  Google Scholar 

  25. Meyers RL, Katzenstein HM, Krailo M, et al. Surgical resection of pulmonary metastatic lesions in children with hepatoblastoma. J Pediatr Surg 2007 Dec; 42 (12): 2050–6.

    Article  PubMed  Google Scholar 

  26. Passmore SJ, Noblett HR, Wisheart JD, et al. Prolonged survival following multiple thoracotomies for metastatic hepatoblastoma. Med Pediatr Oncol 1995 Jan; 24 (1): 58–60.

    Article  PubMed  CAS  Google Scholar 

  27. Lockwood L, Heney D, Giles GR, et al. Cisplatin-resistant metastatic hepatoblastoma: complete response to carboplatin, etoposide, and liver transplantation. Med Pediatr Oncol 1993; 21 (7): 517–20.

    Article  PubMed  CAS  Google Scholar 

  28. Miyamura T, Chayama K, Yoshida R, et al. Successful treatment of unresectable advanced hepatoblastoma: living liver transplantation after surgical removal of lung metastasis. Pediatr Transplant [online]. Available from URL: http://www.ncbi.nlm.nih.gov [Accessed 2011 Feb 23]

  29. Otte JB, Pritchard J, Aronson DC, et al. Liver transplantation for hepatoblastoma: results from the International Society of Pediatric Oncology (SIOP) study SIOPEL-1 and review of the world experience. Pediatr Blood Cancer 2004; 42 (1): 74–83.

    Article  PubMed  CAS  Google Scholar 

  30. Furman WL, Stewart CF, Poquette CA, et al. Direct translation of a protracted irinotecan schedule from a xenograft model to a phase I trial in children. J Clin Oncol 1999 Jun; 17 (6): 1815–24.

    PubMed  CAS  Google Scholar 

  31. Rodriguez-Galindo C, Radomski K, Stewart CF, et al. Clinical use of topoisomerase I inhibitors in anticancer treatment. Med Pediatr Oncol 2000 Oct; 35 (4): 385–402.

    Article  PubMed  CAS  Google Scholar 

  32. Houghton PJ, Cheshire PJ, Hallman II JD, et al. Efficacy of topoisomerase I inhibitors, topotecan and irinotecan, administered at low dose levels in protracted schedules to mice bearing xenografts of human tumors. Cancer Chemother Pharmacol 1995; 36 (5): 393–403.

    Article  PubMed  CAS  Google Scholar 

  33. Ijichi O, Ishikawa S, Shinkoda Y, et al. Response of heavily treated and relapsed hepatoblastoma in the transplanted liver to single-agent therapy with irinotecan. Pediatr Transplant 2006 Aug; 10 (5): 635–8.

    Article  PubMed  Google Scholar 

  34. Qayed M, Powell C, Morgan ER, et al. Irinotecan as maintenance therapy in high-risk hepatoblastoma. Pediatr Blood Cancer 2010 May; 54 (5): 761–3.

    PubMed  Google Scholar 

  35. Palmer RD, Williams DM. Dramatic response of multiply relapsed hepatoblastoma to irinotecan (CPT-11). Med Pediatr Oncol 2003 Jul; 41 (1): 78–80.

    Article  PubMed  Google Scholar 

  36. Guichard S, Arnould S, Hennebelle I, et al. Combination of oxaliplatin and irinotecan on human colon cancer cell lines: activity in vitro and in vivo. Anticancer Drugs 2001 Oct; 12 (9): 741–51.

    Article  PubMed  CAS  Google Scholar 

  37. Zeghari-Squalli N, Raymond E, Cvitkovic E, et al. Cellular pharmacology of the combination of the DNA topoisomerase I inhibitor SN-38 and the diaminocyclohexane platinum derivative oxaliplatin. Clin Cancer Res 1999 May; 5(5): 1189–96.

    PubMed  CAS  Google Scholar 

  38. Beaty III O, Berg S, Blaney S, et al. A phase II trial and pharmacokinetic study of oxaliplatin in children with refractory solid tumors: a Children’s Oncology Group study. Pediatr Blood Cancer 2010 Sep; 55 (3): 440–5.

    Article  PubMed  Google Scholar 

  39. Stordal B, Pavlakis N, Davey R. Oxaliplatin for the treatment of cisplatin-resistant cancer: a systematic review. Cancer Treat Rev 2007 Jun; 33 (4): 347–57.

    Article  PubMed  CAS  Google Scholar 

  40. Fulbright JM, Huh W, Anderson P, et al. Can anthracycline therapy for pediatric malignancies be less cardiotoxic. Curr Oncol Rep 2010; Nov; 12 (6): 411–9.

    Article  PubMed  Google Scholar 

  41. Batist G, Ramakrishnan G, Rao CS, et al. Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J Clin Oncol 2001 Mar 1; 19 (5): 1444–54.

    PubMed  CAS  Google Scholar 

  42. Safra T, Muggia F, Jeffers S, et al. Pegylated liposomal doxorubicin (doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. Ann Oncol 2000 Aug; 11 (8): 1029–33.

    Article  PubMed  CAS  Google Scholar 

  43. Marina NM, Cochrane D, Harney E, et al. Dose escalation and pharmacokinetics of pegylated liposomal doxorubicin (Doxil) in children with solid tumors: a pediatric oncology group study. Clin Cancer Res 2002 Feb; 8 (2): 413–8.

    PubMed  CAS  Google Scholar 

  44. Gray SG, Eriksson T, Ekström C, et al. Altered expression of members of the IGF-axis in hepatoblastomas. Br J Cancer 2000 May; 82 (9): 1561–7.

    Article  PubMed  CAS  Google Scholar 

  45. Tomizawa M, Saisho H. Signaling pathway of insulin-like growth factor-II as a target of molecular therapy for hepatoblastoma. World J Gastroenterol 2006 Oct 28; 12(40): 6531–5.

    PubMed  CAS  Google Scholar 

  46. Hartmann W, Küchler J, Koch A, et al. Activation of phosphatidylinositol-3’-kinase/AKT signaling is essential in hepatoblastoma survival. Clin Cancer Res 2009 Jul 15; 15 (14): 4538–45.

    Article  PubMed  CAS  Google Scholar 

  47. Grotegut S, Kappler R, Tarimoradi S, et al. Hepatocyte growth factor protects hepatoblastoma cells from chemotherapy-induced apoptosis by AKT activation. Int J Oncol 2010 May; 36 (5): 1261–7.

    PubMed  CAS  Google Scholar 

  48. Eichenmüller M, Gruner I, Hagl B, et al. Blocking the hedgehog pathway inhibits hepatoblastoma growth. Hepatology 2009 Feb; 49 (2): 482–90.

    Article  PubMed  CAS  Google Scholar 

  49. Ranganathan S, Tan X, Monga SPS. beta-Catenin and met deregulation in childhood Hepatoblastomas. Pediatr Dev Pathol 2005 Aug; 8 (4): 435–47.

    Article  PubMed  CAS  Google Scholar 

  50. Taniguchi K, Roberts LR, Aderca IN, et al. Mutational spectrum of beta-catenin, AXIN1, and AXIN2 in hepatocellular carcinomas and hepatoblastomas. Oncogene 2002 Jul 18; 21 (31): 4863–71.

    Article  PubMed  CAS  Google Scholar 

  51. Koch A, Denkhaus D, Albrecht S, et al. Childhood hepatoblastomas frequently carry a mutated degradation targeting box of the beta-catenin gene. Cancer Res 1999 Jan 15; 59 (2): 269–73.

    PubMed  CAS  Google Scholar 

  52. Adesina AM, Lopez-Terrada D, Wong KK, et al. Gene expression profiling reveals signatures characterizing histologic subtypes of hepatoblastoma and global deregulation in cell growth and survival pathways. Hum Pathol 2009 Jun; 40 (6): 843–53.

    Article  PubMed  CAS  Google Scholar 

  53. Massoner P, Ladurner-Rennau M, Eder IE, et al. Insulin-like growth factors and insulin control a multifunctional signalling network of significant importance in cancer. Br J Cancer 2010 Nov 9; 103 (10): 1479–84.

    Article  PubMed  CAS  Google Scholar 

  54. Heidegger I, Pircher A, Klocker H, et al. Targeting the insulin-like growth factor network in cancer therapy. Cancer Biol Ther 2011 Apr 15; 11 (8): 701–7.

    Article  PubMed  CAS  Google Scholar 

  55. Rosenzweig SA, Atreya HS. Defining the pathway to insulin-like growth factor system targeting in cancer. Biochem Pharmacol 2010 Oct 15; 80 (8): 1115–24.

    Article  PubMed  CAS  Google Scholar 

  56. Ryan PD, Goss PE. The emerging role of the insulin-like growth factor pathway as a therapeutic target in cancer. Oncologist 2008 Jan; 13 (1): 16–24.

    Article  PubMed  CAS  Google Scholar 

  57. Kim SY, Toretsky JA, Scher D, et al. The role of IGF-1R in pediatric malignancies. Oncologist 2009 Jan; 14 (1): 83–91.

    Article  PubMed  CAS  Google Scholar 

  58. Gualberto A, Pollak M. Emerging role of insulin-like growth factor receptor inhibitors in oncology: early clinical trial results and future directions. Oncogene 2009 Aug 27; 28 (34): 3009–21.

    Article  PubMed  CAS  Google Scholar 

  59. Bowles DW, Jimeno A. New phosphatidylinositol 3-kinase inhibitors for cancer. Expert Opin Investig Drugs 2011 Apr; 20 (4): 507–18.

    Article  PubMed  CAS  Google Scholar 

  60. Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2002 Jul; 2 (7): 489–501.

    Article  PubMed  CAS  Google Scholar 

  61. Bjornsti M-A, Houghton PJ. The TOR pathway: a target for cancer therapy. Nat Rev Cancer 2004 May; 4 (5): 335–48.

    Article  PubMed  CAS  Google Scholar 

  62. Jacinto E, Hall MN. Tor signalling in bugs, brain and brawn. Nat Rev Mol Cell Biol 2003 Feb; 4 (2): 117–26.

    Article  PubMed  CAS  Google Scholar 

  63. Wan X, Shen N, Mendoza A, et al. CCI-779 inhibits rhabdomyosarcoma xenograft growth by an antiangiogenic mechanism linked to the targeting of mTOR/Hif-1alpha/VEGF signaling. Neoplasia 2006 May; 8 (5): 394–401.

    Article  PubMed  CAS  Google Scholar 

  64. Land SC, Tee AR. Hypoxia-inducible factor 1alpha is regulated by the mammalian target of rapamycin (mTOR) via an mTOR signaling motif. J Biol Chem 2007 Jul 13; 282 (28): 20534–43.

    Article  PubMed  CAS  Google Scholar 

  65. Abraham RT. mTOR as a positive regulator of tumor cell responses to hypoxia. Curr Top Microbiol Immunol 2004; 279: 299–319.

    Article  PubMed  CAS  Google Scholar 

  66. Misawa A, Hosoi H, Tsuchiya K, et al. Rapamycin inhibits proliferation of human neuroblastoma cells without suppression of MycN. Int J Cancer 2003 Mar 20; 104 (2): 233–7.

    Article  PubMed  CAS  Google Scholar 

  67. Hosoi H, Dilling MB, Liu LN, et al. Studies on the mechanism of resistance to rapamycin in human cancer cells. Mol Pharmacol 1998 Nov; 54 (5): 815–24.

    PubMed  CAS  Google Scholar 

  68. Mondesire WH, Jian W, Zhang H, et al. Targeting mammalian target of rapamycin synergistically enhances chemotherapy-induced cytotoxicity in breast cancer cells. Clin Cancer Res 2004 Oct 15; 10 (20): 7031–42.

    Article  PubMed  CAS  Google Scholar 

  69. Geoerger B, Kerr K, Tang CB, et al. Antitumor activity of the rapamycin analog CCI-779 in human primitive neuroectodermal tumor/medulloblastoma models as single agent and in combination chemotherapy. Cancer Res 2001 Feb 15; 61 (4): 1527–32.

    PubMed  CAS  Google Scholar 

  70. Tan X, Apte U, Micsenyi A, et al. Epidermal growth factor receptor: a novel target of the Wnt/beta-catenin pathway in liver. Gastroenterology 2005 Jul; 129 (1): 285–302.

    Article  PubMed  CAS  Google Scholar 

  71. López-Terrada D, Gunaratne PH, Adesina AM, et al. Histologic subtypes of hepatoblastoma are characterized by differential canonical Wnt and Notch pathway activation in DLK+ precursors. Hum Pathol 2009 Jun; 40 (6): 783–94.

    Article  PubMed  CAS  Google Scholar 

  72. McCrudden KW, Hopkins B, Frischer J, et al. Anti-VEGF antibody in experimental hepatoblastoma: suppression of tumor growth and altered angiogenesis. J Pediatr Surg 2003 Mar; 38 (3): 308–14; discussion 308–314

    Article  PubMed  Google Scholar 

  73. Glade Bender JL, Adamson PC, Reid JM, et al. Phase I trial and pharmacokinetic study of bevacizumab in pediatric patients with refractory solid tumors: a Children’s Oncology Group Study. J Clin Oncol 2008 Jan 20; 26 (3): 399–405.

    Article  PubMed  Google Scholar 

  74. Taylor M, Rössler J, Geoerger B, et al. New anti-angiogenic strategies in pediatric solid malignancies: agents and biomarkers of a near future. Expert Opin Investig Drugs 2010 Jul; 19 (7): 859–74.

    Article  PubMed  CAS  Google Scholar 

  75. Eder JP, Van de Woude GF, Boerner SA, et al. Novel therapeutic inhibitors of the c-Met signaling pathway in cancer. Clin Cancer Res 2009 Apr 1; 15 (7): 2207–14.

    Article  PubMed  CAS  Google Scholar 

  76. Peruzzi B, Bottaro DP. Targeting the c-Met signaling pathway in cancer. Clin Cancer Res 2006 Jun 15; 12 (12): 3657–60.

    Article  PubMed  CAS  Google Scholar 

  77. Corso S, Comoglio PM, Giordano S. Cancer therapy: can the challenge be MET. Trends Mol Med 2005; Jun; 11 (6): 284–92.

    Article  PubMed  CAS  Google Scholar 

  78. von Schweinitz D, Faundez A, Teichmann B, et al. Hepatocyte growth-factor-scatter factor can stimulate post-operative tumor-cell proliferation in childhood hepatoblastoma. Int J Cancer 2000 Jan 15; 85 (2): 151–9.

    Google Scholar 

  79. Armengol C, Cairo S, Fabre M, et al. Wnt signaling and hepatocarcinogenesis: the hepatoblastoma model. Int J Biochem Cell Biol 2011 Feb; 43 (2): 265–70.

    Article  PubMed  CAS  Google Scholar 

  80. Koch A, Waha A, Hartmann W, et al. Elevated expression of Wnt antagonists is a common event in hepatoblastomas. Clin Cancer Res 2005 Jun 15; 11 (12): 4295–304.

    Article  PubMed  CAS  Google Scholar 

  81. Cairo S, Armengol C, De Reyniès A, et al. Hepatic stem-like phenotype and interplay of Wnt/beta-catenin and Myc signaling in aggressive childhood liver cancer. Cancer Cell 2008 Dec 9; 14 (6): 471–84.

    Article  PubMed  CAS  Google Scholar 

  82. Verkaar F, Zaman GJR. New avenues to target Wnt/b-catenin signaling. Drug Discov Today 2011; Jan; 16 (1–2): 16.

    Google Scholar 

  83. Yang L, Xie G, Fan Q, et al. Activation of the hedgehog-signaling pathway in human cancer and the clinical implications. Oncogene 2010 Jan 28; 29 (4): 469–81.

    Article  PubMed  CAS  Google Scholar 

  84. Ruizi Altaba A, Sánchez P, Dahmane N. Gli and hedgehog in cancer: tumours, embryos and stem cells. Nat Rev Cancer 2002 May; 2 (5): 361–72.

    Article  CAS  Google Scholar 

  85. Oue T, Yoneda A, Uehara S, et al. Increased expression of the hedgehog signaling pathway in pediatric solid malignancies. J Pediatr Surg 2010 Feb; 45 (2): 387–92.

    Article  PubMed  Google Scholar 

  86. Ratnam K, Low JA. Current development of clinical inhibitors of poly(ADP-ribose) polymerase in oncology. Clin Cancer Res 2007 Mar 1; 13 (5): 1383–8.

    Article  PubMed  CAS  Google Scholar 

  87. Teicher BA. Combinations of PARP, hedgehog and HDAC inhibitors with standard drugs. Curr Opin Pharmacol 2010 Aug; 10 (4): 397–404.

    Article  PubMed  CAS  Google Scholar 

  88. Muñoz-Gämez JA, Quiles-Pérez R, Ruiz-Extremera A, et al. Inhibition of poly (ADP-ribose) polymerase-1 enhances doxorubicin activity against liver cancer cells. Cancer Lett 2011 Feb 1; 301 (1): 47–56.

    Article  PubMed  CAS  Google Scholar 

  89. Tentori L, Leonetti C, Scarsella M, et al. Inhibition of poly(ADP-ribose) polymerase prevents irinotecan-induced intestinal damage and enhances irinotecan/temozolomide efficacy against colon carcinoma. FASEB J 2006 Aug; 20 (10): 1709–11.

    Article  PubMed  CAS  Google Scholar 

  90. Miknyoczki SJ, Jones-Bolin S, Pritchard S, et al. Chemopotentiation of temozolomide, irinotecan, and cisplatin activity by CEP-6800, a poly(ADP-ribose) polymerase inhibitor. Mol Cancer Ther 2003 Apr; 2 (4): 371–82.

    Article  PubMed  CAS  Google Scholar 

  91. Racz I, Tory K, Gallyas Jr F, et al. BGP-15-a novel poly(ADP-ribose) polymerase inhibitor-protects against nephrotoxicity of cisplatin without compromising its antitumor activity. Biochem Pharmacol 2002 Mar 15; 63 (6): 1099–111.

    Article  PubMed  CAS  Google Scholar 

  92. Rouleau M, Patel A, Hendzel MJ, et al. PARP inhibition: PARP1 and beyond. Nat Rev Cancer 2010 Apr; 10 (4): 293–301.

    Article  PubMed  CAS  Google Scholar 

  93. Wilhelm S, Carter C, Lynch M, et al. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov 2006 Oct; 5 (10): 835–44.

    Article  PubMed  CAS  Google Scholar 

  94. Heim M, Sharifi M, Hilger RA, et al. Antitumor effect and potentiation or reduction in cytotoxic drug activity in human colon carcinoma cells by the Raf kinase inhibitor (RKI) BAY 43–9006. Int J Clin Pharmacol Ther 2003 Dec; 41 (12): 616–7.

    PubMed  CAS  Google Scholar 

  95. Abou-Alfa GK, Johnson P, Knox JJ, et al. Doxorubicin plus sorafenib vs doxorubicin alone in patients with advanced hepatocellular carcinoma: a randomized trial. JAMA 2010 Nov 17; 304 (19): 2154–60.

    Article  PubMed  CAS  Google Scholar 

  96. Marsh A, Lo J, Cohen RA, et al. Sorafenib and bevacizumab for recurrent metastatic hepatoblastoma: stable radiographic disease with decreased AFP. Pediatr Blood Cancer. Epub 2012 Apr 10

  97. Powles T, Chowdhury S, Jones R, et al. Sunitinib and other targeted therapies for renal cell carcinoma. Br J Cancer 2011 Mar 1; 104 (5): 741–5.

    Article  PubMed  CAS  Google Scholar 

  98. Bukowski RM. Pazopanib: a multikinase inhibitor with activity in advanced renal cell carcinoma. Expert Rev Anticancer Ther 2010 May; 10 (5): 635–45.

    Article  PubMed  CAS  Google Scholar 

  99. Vilar E, Perez-Garcia J, Tabernero J. Pushing the envelope in the mTOR pathway: the second generation of inhibitors. Mol Cancer Ther 2011 Mar; 10 (3): 395–403.

    Article  PubMed  CAS  Google Scholar 

  100. Huynh H. Tyrosine kinase inhibitors to treat liver cancer. Expert Opin Emerg Drugs 2010 Mar; 15 (1): 13–26.

    Article  PubMed  CAS  Google Scholar 

  101. Huynh H. Molecularly targeted therapy in hepatocellular carcinoma. Biochem Pharmacol 2010 Sep 1; 80 (5): 550–60.

    Article  PubMed  CAS  Google Scholar 

  102. Sangro B, Mazzolini G, Ruiz M, et al. A phase I clinical trial of thymidine kinase-based gene therapy in advanced hepatocellular carcinoma. Cancer Gene Ther 2010 Dec; 17 (12): 837–43.

    Article  PubMed  CAS  Google Scholar 

  103. Yang ZX, Wang D, Wang G, et al. Clinical study of recombinant adenovirus-p53 combined with fractionated stereotactic radiotherapy for hepatocellular carcinoma. J Cancer Res Clin Oncol 2010 Apr; 136 (4): 625–30.

    Article  PubMed  Google Scholar 

  104. Sangro B, Mazzolini G, Ruiz J, et al. Phase I trial of intratumoral injection of an adenovirus encoding interleukin-12 for advanced digestive tumors. J Clin Oncol 2004 Apr 15; 22 (8): 1389–97.

    Article  PubMed  CAS  Google Scholar 

  105. Warmann SW, Fuchs J, Bitzer M, et al. Emerging gene-directed anti-tumor strategies against human hepatoblastoma. Expert Opin Biol Ther 2009 Sep; 9 (9): 1155–61.

    Article  PubMed  CAS  Google Scholar 

  106. Tomlinson GE, Douglass EC, Pollock BH, et al. Cytogenetic evaluation of a large series of hepatoblastomas: numerical abnormalities with recurring aberrations involving 1q12-q21. Genes Chromosomes Cancer 2005 Oct; 44 (2): 177–84.

    Article  PubMed  CAS  Google Scholar 

  107. Weber RG, Pietsch T, von Schweinitz D, et al. Characterization of genomic alterations in hepatoblastomas: a role for gains on chromosomes 8q and 20 as predictors of poor outcome. Am J Pathol 2000 Aug; 157 (2): 571–8.

    Article  PubMed  CAS  Google Scholar 

  108. Terracciano LM, Bernasconi B, Ruck P, et al. Comparative genomic hybridization analysis of hepatoblastoma reveals high frequency of X-chromosome gains and similarities between epithelial and stromal components. Hum Pathol 2003 Sep; 34 (9): 864–71.

    Article  PubMed  CAS  Google Scholar 

  109. Rainier S, Dobry CJ, Feinberg AP. Loss of imprinting in hepatoblastoma. Cancer Res 1995 May 1; 55 (9): 1836–8.

    PubMed  CAS  Google Scholar 

  110. Honda S, Arai Y, Haruta M, et al. Loss of imprinting of IGF2 correlates with hypermethylation of the H19 differentially methylated region in hepatoblastoma. Br J Cancer 2008 Dec 2; 99 (11): 1891–9.

    Article  PubMed  CAS  Google Scholar 

  111. Warmann SW, Armeanu S, Heitmann H, et al. Optimizing vector application for gene transfer into human hepatoblastoma cells. Pediatr Surg Int 2006 Sep; 22 (9): 733–42.

    Article  PubMed  Google Scholar 

  112. Warmann SW, Fuchs J, Seitz G, et al. New trends in tumor biology: transfection of a human hepatoblastoma cell line with green fluorescent protein. J Pediatr Surg 2005 Apr; 40 (4): 653–57.

    Article  PubMed  Google Scholar 

  113. Warmann SW, Frank H, Heitmann H, et al. Bcl-2 gene silencing in pediatric epithelial liver tumors. J Surg Res 2008 Jan; 144 (1): 43–8.

    Article  PubMed  CAS  Google Scholar 

  114. Lieber J, Kirchner B, Eicher C, et al. Inhibition of Bcl-2 and Bcl-X enhances chemotherapy sensitivity in hepatoblastoma cells. Pediatr Blood Cancer 2010 Dec 1; 55 (6): 1089–95.

    Article  PubMed  Google Scholar 

  115. Lin Y-C, You L, Xu Z, et al. Wnt inhibitory factor-1 gene transfer inhibits melanoma cell growth. Hum Gene Ther 2007 Apr; 18 (4): 379–86.

    Article  PubMed  CAS  Google Scholar 

  116. Warmann SW, Armeanu S, Heigoldt H, et al. Adenovirus-mediated cytosine deaminase/5-fluorocytosine suicide gene therapy of human hepatoblastoma in vitro. Pediatr Blood Cancer 2009 Aug; 53 (2): 145–51.

    Article  PubMed  Google Scholar 

  117. Cattaneo R, Miest T, Shashkova EV, et al. Reprogrammed viruses as cancer therapeutics: targeted, armed and shielded. Nat Rev Microbiol 2008 Jul; 6 (7): 529–40.

    Article  PubMed  CAS  Google Scholar 

  118. Chang J-F, Chen P-J, Sze DY, et al. Oncolytic virotherapy for advanced liver tumours. J Cell Mol Med 2009 Jul; 13 (7): 1238–47.

    Article  PubMed  Google Scholar 

  119. Kirn DH, Thorne SH. Targeted and armed oncolytic poxviruses: a novel multi-mechanistic therapeutic class for cancer. Nat Rev Cancer 2009 Jan; 9 (1): 64–71.

    Article  PubMed  CAS  Google Scholar 

  120. Russell SJ, Peng KW. Measles virus for cancer therapy. Curr Top Microbiol Immunol 2009; 330: 213–41.

    Article  PubMed  CAS  Google Scholar 

  121. Park B-H, Hwang T, Liu T-C, et al. Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. Lancet Oncol 2008 Jun; 9 (6): 533–42.

    Article  PubMed  CAS  Google Scholar 

  122. Liu T-C, Hwang T, Park B-H, et al. The targeted oncolytic poxvirus JX-594 demonstrates antitumoral, antivascular, and anti-HBV activities in patients with hepatocellular carcinoma. Mol Ther 2008 Sep; 16 (9): 1637–42.

    Article  PubMed  CAS  Google Scholar 

  123. Inaba H, Handgretinger R, Furman W, et al. Allogeneic graft-versus-hepatoblastoma effect. Pediatr Blood Cancer 2006 Apr; 46 (4): 501–5.

    Article  PubMed  Google Scholar 

  124. Appelbaum FR. Haematopoietic cell transplantation as immunotherapy. Nature 2001 May 17; 411 (6835): 385–9.

    Article  PubMed  CAS  Google Scholar 

  125. Lang P, Handgretinger R. Haploidentical SCT in children: an update and future perspectives. Bone Marrow Transplant 2008 Oct; 42 Suppl. 2: S54–9

    Article  PubMed  Google Scholar 

  126. Lang P, Pfeiffer M, Müller I, et al. Haploidentical stem cell transplantation in patients with pediatric solid tumors: preliminary results of a pilot study and analysis of graft versus tumor effects. Klin Padiatr 2006 Dec; 218 (6): 321–6.

    Article  PubMed  CAS  Google Scholar 

  127. Lang P, Schumm M, Greil J, et al. A comparison between three graft manipulation methods for haploidentical stem cell transplantation in pediatric patients: preliminary results of a pilot study. Klin Padiatr 2005 Dec; 217 (6): 334–8.

    Article  PubMed  CAS  Google Scholar 

  128. Cho D, Shook DR, Shimasaki N, et al. Cytotoxicity of activated natural killer cells against pediatric solid tumors. Clin Cancer Res 2010 Aug 1; 16 (15): 3901–9.

    Article  PubMed  CAS  Google Scholar 

  129. Pfeiffer M, Seitz G, Ruck P, et al. CD 155 is involved in NK-cell mediated lysis of human hepatoblastoma in vitro. Front Biosci 2011 Jun 1; 3: 1456–66.

    Google Scholar 

  130. Pfeiffer M, Schumm M, Feuchtinger T, et al. Intensity of HLA class I expression and KIR-mismatch determine NK-cell mediated lysis of leukaemic blasts from children with acute lymphatic leukaemia. Br J Haematol 2007 Jul; 138(1): 97–100.

    Article  PubMed  Google Scholar 

  131. Kim J-Y, Son Y-O, Park S-W, et al. Increase of NKG2D ligands and sensitivity to NK cell-mediated cytotoxicity of tumor cells by heat shock and ionizing radiation. Exp Mol Med 2006 Oct 31; 38 (5): 474–84.

    Article  PubMed  CAS  Google Scholar 

  132. Seitz G, Pfeiffer M, Fuchs J, et al. Establishment of a rhabdomyosarcoma xenograft model in human-adapted mice. Oncol Rep 2010 Oct; 24 (4): 1067–72.

    Article  PubMed  Google Scholar 

  133. Jacobs JFM, Coulie PG, Figdor CG, et al. Targets for active immunotherapy against pediatric solid tumors. Cancer Immunol Immunother 2009 Jun; 58 (6): 831–41.

    Article  PubMed  CAS  Google Scholar 

  134. Jacobs JFM, Hoogerbrugge PM, van de Rakt MWMM, et al. Phenotypic and functional characterization of mature dendritic cells from pediatric cancer patients. Pediatr Blood Cancer 2007 Dec; 49 (7): 924–7.

    Article  PubMed  Google Scholar 

  135. Balza E, Carnemolla B, Mortara L, et al. Therapy-induced antitumor vaccination in neuroblastomas by the combined targeting of IL-2 and TNFalpha. Int J Cancer 2010 Jul 1; 127 (1): 101–10.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

No sources of funding were used to prepare this manuscript. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcio H. Malogolowkin MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venkatramani, R., Furman, W.L., Fuchs, J. et al. Current and Future Management Strategies for Relapsed or Progressive Hepatoblastoma. Pediatr Drugs 14, 221–232 (2012). https://doi.org/10.2165/11597740-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11597740-000000000-00000

Keywords

Navigation