Skip to main content

mTOR as a Positive Regulator of Tumor Cell Responses to Hypoxia

  • Chapter
TOR

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 279))

Abstract

Rapamycin is a clinically approved immunosuppressive agent that has recently shown promising antitumor activities in human patients. In contrast to many conventional chemotherapeutic agents, rapamycin displays a remarkably high level of selectivity for certain types of tumors. The pharmacological activities of rapamycin are attributable to the functional inhibition of a single target protein, termed the mammalian target of rapamycin (mTOR). Because mTOR is widely expressed in both normal and transformed cells, variations in mTOR expression levels are likely not a primary determinant of tumor sensitivity to rapamycin. However, recent studies highlighted an intriguing link between cancer cell sensitivity to rapamycin and deregulated signaling through the phosphoinositide (PI) 3-kinase pathway. These findings have prompted a search for cancer-related responses that are jointly regulated by the PI 3-kinase signaling cascade and mTOR. The oxygen-regulated transcription factor, hypoxia-induced factor (HIF)-1, has emerged as a candidate target for both of these two highly interactive signaling proteins. Here we review evidence that mTOR functions as a positive regulator of HIF-1-dependent responses to hypoxic stress in human cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abraham RT (2001) Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 15:2177–2196

    Article  PubMed  CAS  Google Scholar 

  • Abraham RT, Wiederrecht GJ (1996) Immunopharmacology of rapamycin. Ann Rev Immunol 14:483–510

    Article  CAS  Google Scholar 

  • Banin S, Moyal L, Shieh S, Taya Y, Anderson CW, Chessa L, Smorodinsky NI, Prives C, Reiss Y, Shiloh Y, Ziv Y (1998) Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281:1674–1677

    Article  PubMed  CAS  Google Scholar 

  • Beretta L, Gingras AC, Svitkin YV, Hall MN, Sonenberg N (1996) Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J 15:658–664

    PubMed  CAS  Google Scholar 

  • Brazil DP, Hemmings BA (2001) Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 26:657–664

    Article  PubMed  CAS  Google Scholar 

  • Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS, Schreiber SL (1994) A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369:756–758

    Article  PubMed  CAS  Google Scholar 

  • Bruick RK, McKnight SL (2001) A conserved family of prolyl-4-hydroxylases that modify HIE Science 294:1337–1340

    Google Scholar 

  • Brunn GJ, Fadden P, Haystead TAJ, Lawrence JC Jr (1997a) The mammalian target of rapamycin phosphorylates sites having a (Ser/Thr)-Pro motif and is activated by antibodies to a region near its COOH terminus. J Biol Chem 272:32547–32550

    Article  PubMed  CAS  Google Scholar 

  • Brunn GJ, Hudson CC, Sekulic A, Williams JM, Hosoi J, Houghton PJ, Lawrence JC, Abraham RT (1997b) Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science 277:99–101

    Article  PubMed  CAS  Google Scholar 

  • Cafferkey R, Young PR, McLaughlin MM, Bergsma DJ, Koltin Y, Sathe GM, Faucette L, Eng WK, Johnson RK, Livi GP (1993) Dominant missense mutations in a novel yeast protein related to mammalian phosphatidylinositol 3-kinase and VPS34 abrogate rapamycin cytotoxicity. Mol Cell Biol 13:6012–6023

    PubMed  CAS  Google Scholar 

  • Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K, Appella E, Kastan MB, Siliciano JD (1998) Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281:1677–1679

    Article  PubMed  CAS  Google Scholar 

  • Denning G, Jamieson L, Maquat LE, Thompson EA, Fields AP (2001) Cloning of a novel phosphatidylinositol kinase-related kinase: characterization of the human SMG-1 RNA surveillance protein. J Biol Chem 276:22709–22714

    Article  PubMed  CAS  Google Scholar 

  • Desai BN, Myers BR, Schreiber SL (2002) FKBP12-rapamycin-associated protein associates with mitochondria and senses osmotic stress via mitochondrial dysfunction. Proc Natl Acad Sci USA 99:4319–4324

    Article  PubMed  CAS  Google Scholar 

  • Elson DA, Thurston G, Huang LE, Ginzinger DG, McDonald DM, Johnson RS, Arbeit JM (2001) Induction of hypervascularity without leakage or inflammation in transgenic mice overexpressing hypoxia-inducible factor-1 alpha. Genes Dev 15:2520–2532

    Article  PubMed  CAS  Google Scholar 

  • Epstein ACR, Gleadle JM, McNeill LA, Hewitson KS, O’Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, Tian YM, Masson N, Hamilton DL, Jaakkola P, Barstead R, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ, Ratcliffe PJ (2001) C-elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107:43–54.

    Article  PubMed  CAS  Google Scholar 

  • Fadden P, Haystead TA, Lawrence JC Jr (1997) Identification of phosphorylation sites in the translational regulator, PHAS-I, that are controlled by insulin and rapamycin in rat adipocytes. J Biol Chem 272:10240–10247

    Article  PubMed  CAS  Google Scholar 

  • Fruman DA, Meyers RE, Cantley LC (1998) Phosphoinositide kinases. Ann Rev Biochem 67:481–507

    Article  PubMed  CAS  Google Scholar 

  • Gingras AC, Gygi SP, Raught B, Polakiewicz RD, Abraham RT, Hoekstra MF, Aebersold R, Sonenberg N (1999) Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev 13:1422–1437

    Article  PubMed  CAS  Google Scholar 

  • Gingras AC, Raught B, Sonenberg N (2001) Regulation of translation initiation by FRAP/mTOR. Genes Dev 15:807–826

    Article  PubMed  CAS  Google Scholar 

  • Grant PA, Schieltz D, Pray-Grant MG, Yates JR III, Workman JL (1998) The ATM-related cofactor Tral is a component of the purified SAGA complex. Mol Cell 2:863–867

    Article  PubMed  CAS  Google Scholar 

  • Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M, Bruns CJ, Zuelke C, Farkas S, Anthuber M, Jauch KW, Geissler EK (2002) Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nature Med 8:128–135

    Article  PubMed  CAS  Google Scholar 

  • Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C, Avruch J (1998) Amino acid and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem 273:14484–14494

    Article  PubMed  CAS  Google Scholar 

  • Heitman J, Mowa NR, Hall MN (1991) Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253:905–909

    Article  PubMed  CAS  Google Scholar 

  • Hosoi H, Dilling MB, Liu LN, Danks MK, Shikata T, Sekulic A, Abraham RT, Lawrence JC Jr, Houghton PJ (1998) Studies on the mechanism of resistance to rapamycin in human cancer cells. Mol Pharm 54:815–824

    CAS  Google Scholar 

  • Hudson CC, Liu M, Chiang GG, Kaper F, Otterness DM, Giaccia AJ, Abraham RT (2002) Regulation of Hypoxia-Induced Factor-1 Expression and Function by the mammalian Target of Rapamycin. Mol Cell Biol 22:7004–7014

    Article  PubMed  CAS  Google Scholar 

  • Hunter T (1995) When is a lipid kinase not a lipid kinase? When it is a protein kinase. Cell 83:1–4

    Article  PubMed  CAS  Google Scholar 

  • Hur E, Chang KY, Lee E, Lee SK, Park H (2001) Mitogen-activated protein kinase inhibitor PD98059 blocks the trans-activation but not the stabilization or DNA binding ability of hypoxia-inducible factor-1 alpha. Mol Pharm 59:1216–1224

    CAS  Google Scholar 

  • Iiboshi Y, Papst PJ, Kawasome H, Hosoi H, Abraham RT, Houghton PJ, Terada N (1999) Amino acid-dependent control of p70(s6 k). Involvement of tRNA aminoa-cylation in the regulation. J Biol Chem 274:1092–1099

    Article  PubMed  CAS  Google Scholar 

  • Ivan M, Kondo K, Yang HF, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG (2001) HIF alpha targeted for VHL-mediated destruction by proline hydroxylation: implications for 0–2 sensing. Science 292:464–468

    Article  PubMed  CAS  Google Scholar 

  • Jiang BH, Jiang GQ, Zheng JZ, Lu ZM, Hunter T, Vogt PK (2001) Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor. Cell Growth Differ 12:363–369

    PubMed  CAS  Google Scholar 

  • Kandel ES, Hay N (1999) The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB. Exper Cell Res 253:210–229

    Article  CAS  Google Scholar 

  • Katso R, Okkenhaug K, Ahmadi K, White S, Timms J, Waterfield MD (2001) Cellular function of phosphoinositide 3-kinases: implications for development, immunity, homeostasis, and cancer. Ann Rev Cell Dev Biol 17:615–675

    Article  CAS  Google Scholar 

  • Kim JE, Chen J (2000) Cytoplasmic-nuclear shuttling of FKBP12-rapamycin-associat-ed protein is involved in rapamycin-sensitive signaling and translation initiation. Proc Natl Acad Sci USA 97:14340–14345

    Article  PubMed  CAS  Google Scholar 

  • Kondo K, Kaelin WG (2001) The von Hippel-Lindau tumor suppressor gene. Exper Cell Res 264:117–125

    Article  CAS  Google Scholar 

  • Kunz J, Henriquez R, Schneider U, Deuter-Reinhard M, Mowa NR, Hall MN (1993) Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for Gl progression. Cell 73:585–596

    Article  PubMed  CAS  Google Scholar 

  • Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML (2002) Asparagine hydroxy-lation of the HIF transactivation domain: a hypoxic switch. Science 295:858–861

    Article  PubMed  CAS  Google Scholar 

  • Laughner E, Taghavi P, Chiles K, Mahon PC, Semenza GL (2001) HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1 alpha (HIF-1 alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol 21:3995–4004

    Article  PubMed  CAS  Google Scholar 

  • Maehama T, Dixon JE (1999) PTEN: a tumour suppressor that functions as a phospholipid phosphatase. Trends Cell Biol 9:125–128

    Article  PubMed  CAS  Google Scholar 

  • Maehama T, Taylor GS, Dixon JE (2001) PTEN and myotubularin: novel phosphoinositide phosphatases. Ann Rev Biochem 70:247–279

    Article  PubMed  CAS  Google Scholar 

  • Masson N, Willam C, Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO J 20:5197–5206

    Article  PubMed  CAS  Google Scholar 

  • Mazure NM, Chen EY, Laderoute KR, Giaccia AJ (1997) Induction of vascular endothelial growth factor by hypoxia is modulated by a phosphatidylinositol 3-kinase/ Akt signaling pathway in Ha-ras-transformed cells through a hypoxia inducible factor-1 transcriptional element. Blood 90:3322–3331

    PubMed  CAS  Google Scholar 

  • McMahon SB, Van Buskirk HA, Dugan KA, Copeland TD, Cole MD (1998) The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell 94:363–374

    Article  PubMed  CAS  Google Scholar 

  • Mills GB, Lu Y, Kohn EC (2001) Linking molecular therapeutics to molecular diagnostics: inhibition of the FRAP/RAFT/TOR component of the PI3 K pathway preferentially blocks PTEN mutant cells in vitro and in vivo. Proc Natl Acad Sci USA 98:10031–10033

    Article  PubMed  CAS  Google Scholar 

  • Montagne J, Stewart MJ, Stocker H, Hafen E, Kozma SC, Thomas G (1999) Drosophila S6 kinase: a regulator of cell size. Science 285:2126–2129

    Article  PubMed  CAS  Google Scholar 

  • Mothe-Satney I, Yang D, Fadden P, Haystead TA, Lawrence JC Jr (2000) Multiple mechanisms control phosphorylation of PHAS-I in five (S/T)P sites that govern translational repression. Mol Cell Biol 20:3558–3567

    Article  PubMed  CAS  Google Scholar 

  • Nave BT, Ouwens DM, Withers DJ, Alessi DR, Shepherd PR (1999) Mammalian target of rapamycin is a direct target for PKB: identification of a convergence point for opposing effects of insulin and amino acid deficiency on protein translation. Biochem J 344:427–431

    Article  PubMed  CAS  Google Scholar 

  • Neshat MS, Mellinghoff IK, Tran C, Stiles B, Thomas G, Petersen R, Frost P, Gibbons JJ, Wu H, Sawyers CL (2001) Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci USA 98:10314–10319

    Article  PubMed  CAS  Google Scholar 

  • Oldham S, Montagne J, Radimerski T, Thomas G, Hafen E (2000) Genetic and biochemical characterization of dTOR, the Drosophila homolog of the target of rapamycin. Genes Devl4:2689–2694

    Article  Google Scholar 

  • Podsypanina K, Lee RT, Politis C, Hennessy I, Crane A, Puc J, Neshat M, Wang H, Yang L, Gibbons J, Frost P, Dreisbach V, Blenis J, Gaciong Z, Fisher P, Sawyers C, Hedrick-Ellenson L, Parsons R (2001) An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten(+/−) mice. Proc Natl Acad Sci USA 98:10320–10325

    Article  PubMed  CAS  Google Scholar 

  • Richard DE, Berra E, Gothie E, Roux D, Pouyssegur J (1999) p42/p44 mitogen-acti-vated protein kinases phosphorylate hypoxia-inducible factor 1 alpha (HIF-1 alpha) and enhance the transcriptional activity of HIF-1. J Biol Chem 274:32631–32637

    Article  PubMed  CAS  Google Scholar 

  • Rohde J, Heitman J, Cardenas ME (2001) The TOR kinases link nutrient sensing to cell growth. J Biol Chem 276:9583–9583

    Article  PubMed  CAS  Google Scholar 

  • Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH (1994) RAFT1: a mammalian protein that binds to FKBP 12 in a rapamycin- dependent fashion and is homologous to yeast TORs. Cell 78:35–43

    Article  PubMed  CAS  Google Scholar 

  • Sabers CJ, Martin MM, Brunn GJ, Williams JM, Dumont FJ, Wiederrecht G, Abraham RT (1995) Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem 270:815–822

    Article  PubMed  CAS  Google Scholar 

  • Schmelzle T, Hall MN (2000) TOR, a central controller of cell growth. Cell 103:253–262.

    Article  PubMed  CAS  Google Scholar 

  • Scott PH, Brunn GJ, Kohn AD, Roth RA, Lawrence JC (1998) Evidence of insulin-stimulated phosphorylation and activation of mammalian target of rapamycin by a protein kinase B signaling pathway. Proc Natl Acad Sci USA 95:7772–7777

    Article  PubMed  CAS  Google Scholar 

  • Sekulic A, Hudson CC, Homme JL, Yin P, Otterness DM, Karnitz LM, Abraham RT (2000) A direct linkage between the phosphoinositide 3-Kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res 60:3504–3513

    PubMed  CAS  Google Scholar 

  • Semenza GL (1999) Regulation of mammalian 0–2 homeostasis by hypoxia- inducible factor 1. Ann Rev Cell Dev Biol 15:551–578

    Article  CAS  Google Scholar 

  • Semenza GL (2000) HIF-1 and human disease: one highly involved factor. Genes Dev 14:1983–1991

    PubMed  CAS  Google Scholar 

  • Semenza GL (2001) HIF-1, 0–2, and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell 107:1–3

    Article  PubMed  CAS  Google Scholar 

  • Shigemitsu K, Tsujishita Y, Hara K, Nanahoshi M, Avruch J, Yonezawa K (1999) Regulation of translational effectors by amino acid and mammalian target of rapamycin signaling pathways. Possible involvement of autophagy in cultured hepatoma cells. J Biol Chem 274:1058–1065

    Article  PubMed  CAS  Google Scholar 

  • Simpson L, Parsons R (2001) PTEN: life as a tumor suppressor. Exper Cell Res 264:29–41

    Article  CAS  Google Scholar 

  • Smith GCM, Jackson SP (1999) The DNA-dependent protein kinase. Genes Dev 13:916–934

    Article  PubMed  CAS  Google Scholar 

  • Stan R, McLaughlin MM, Cafferkey R, Johnson RK, Rosenberg M, Livi GP (1994) Interaction between FKBP12-rapamycin and TOR involves a conserved serine residue. J Biol Chem 269:32027–32030

    PubMed  CAS  Google Scholar 

  • Stocker H, Hafen E (2000) Genetic control of cell size. Curr Opin Genetics Dev 10:529–535

    Article  CAS  Google Scholar 

  • Tibbetts RS, Abraham RT (2000) PI3K-related kinases—roles in cell-cycle regulation and DNA damage responses. In: Signaling Networks and Cell Cycle Control: The Molecular Basis of Cancer and Other Diseases vol 5 pp 267–301

    Article  Google Scholar 

  • Tibbetts RS, Brumbaugh KM, Williams JM, Sarkaria JN, Cliby WA, Shieh SY, Taya Y, Prives C, Abraham RT (1999) A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev 13:152–157

    Article  PubMed  CAS  Google Scholar 

  • Trumpp A, Refaeli Y, Oskarsson T, Gasser S, Murphy M, Martin GR, Bishop, JM (2001) c-Myc regulates mammalian body size by controlling cell number but not cell size. Nature 414:768–773

    Article  PubMed  CAS  Google Scholar 

  • von Manteuffel SR, Gingras AC, Ming XF, Sonenberg N, Thomas G (1996) 4E-BP1 phosphorylation is mediated by the FRAP-p70s6 k pathway and is independent of mitogen-activated protein kinase. Proc Natl Acad Sci USA 93:4076–4080

    Article  Google Scholar 

  • Yamashita A, Ohnishi T, Kashima I, Taya Y, Ohno S (2001) Human SMG-1, a novel phosphatidylinositol 3-kinase-related protein kinase, associates with components of the mRNA surveillance complex and is involved in the regulation of nonsense-mediated mRNA decay. Genes Dev 15:2215–2228

    Article  PubMed  CAS  Google Scholar 

  • Yang HF, Kaelin WG (2001) Molecular pathogenesis of the von Hippel-Lindau hereditary cancer syndrome: implications for oxygen sensing. Cell Growth Diff 12:447–455

    PubMed  CAS  Google Scholar 

  • Zhong H, Chiles K, Feldser D, Laughner E, Hanrahan C, Georgescu MM, Simons JW, Semenza GL (2000) Modulation of hypoxia-inducible factor 1 alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res 60:1541–1545

    PubMed  CAS  Google Scholar 

  • Zundel W, Schindler C, Haas-Kogan D, Koong A, Kaper F, Chen E, Gottschalk AR, Ryan HE, Johnson RS, Jefferson AB, Stokoe D, Giaccia AJ (2000) Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev 14:391–396

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Abraham, R.T. (2004). mTOR as a Positive Regulator of Tumor Cell Responses to Hypoxia. In: Thomas, G., Sabatini, D.M., Hall, M.N. (eds) TOR. Current Topics in Microbiology and Immunology, vol 279. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18930-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18930-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62360-8

  • Online ISBN: 978-3-642-18930-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics