Skip to main content

Advertisement

Log in

Optimizing vector application for gene transfer into human hepatoblastoma cells

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Gene targeting is currently of distinct interest as an innovative additive treatment option in various malignancies. Its role in pediatric liver tumors has not yet been evaluated thoroughly. For the first time the authors systematically analyzed both lipid-based transfection as well as transduction with adenovirus vectors (Ad) and Sendai virus vectors (SeVV) in order to optimize gene transfer into hepatoblastoma (HB) cells. Two HB cell lines were infected with Ad or SeVV coding for green fluorescent protein (Ad-GFP, SeVV-GFP); transduction efficiencies and apoptosis were assessed using flow cytometry. Furthermore, lipofection of HB cell lines with plasmid-constructs comprising liver-specific promoters was performed using Lipofectamine™ 2000 and FuGENE 6™; lipofection efficiency was monitored by flow cytometry, microscopy, and luciferase activity. The Ad-GFP showed higher transduction rates (61–86%) than the SeVV-GFP (4–24%) depending on the HB cell line used. Infections with first generation SeVV vectors (SeVV-GFP) led to increased target cell apoptosis (7–43%) compared to Ad-GFP (4–16%). The Lipofectamine™ 2000 revealed a higher transfection efficiency than the FuGENE 6™ for both HB cell lines tested. The liver-specific promoters were found to be differently active in the HB cell lines. This study delineates recombinant adenovirus vectors as a promising tool for gene transduction in the HB cells. Furthermore, enhanced activity of the liver-specific promoters in HUH6 cells compared to HepT1 cells supports the observation of varying biological behavior in histologically differing HB tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fuchs J, Rydzynski J, von Schweinitz D et al (2002) Pretreatment prognostic factors and treatment results in children with hepatoblastoma—a report from the German Cooperative Pediatric Liver Tumor Study HB 94. Cancer 95:172–182

    Article  PubMed  Google Scholar 

  2. Brown J, Perilongo G, Shafford E et al (2000) Pretreatment prognostic factors for children with hepatoblastoma—results from the International Society of Paediatric Oncology (SIOP) study SIOPEL 1. Eur J Cancer 36:1418–1425

    Article  PubMed  CAS  Google Scholar 

  3. Ortega JA, Douglass EC, Feusner JH et al (2000) Randomized comparison of cisplatin/vincristine/flourouracil and cisplatin/continuous infusion doxorubicin for treatment of pediatric hepatoblastoma: a report from the Children’s Cancer Group and the Pediatric Oncology Group. J Clin Oncol 18:2665–2675

    PubMed  CAS  Google Scholar 

  4. Von Schweinitz D, Byrd DJ, Hecker H, Weinel P, Bode U, Burger D, Erttmann R, Harms D, Mildenberger H (1997) Efficiency and toxicity of ifosfamide, cisplatin and doxorubicin in the treatment of childhood hepatoblastoma. Study Committee of the Cooperative Paediatric Liver Tumour Study HB89 of the German Society for Paediatric Oncology and Haematology. Eur J Cancer 33:1243–1249

    Article  Google Scholar 

  5. Minemura M, Tanimura H, Tabor E (1999) Overexpression of multidrug resistance genes MDR1 and cMOAT in human hepatocellular carcinoma and hepatoblastoma cell lines. Int J Oncol 15:559–563

    PubMed  CAS  Google Scholar 

  6. Bader P, Fuchs J, Wenderoth M et al (1998) Altered expression of resistance associated genes in hepatoblastoma xenografts incorporated into mice following treatment with doxorubicin or cisplatin. Anticancer Res 18:3127–3132

    PubMed  CAS  Google Scholar 

  7. Warmann S, Göhring G, Teichmann B et al (2003) P-glycoprotein modulation improves in vitro chemosensitivity in malignant pediatric liver tumors. Anticancer Res 23:4607–4612

    PubMed  CAS  Google Scholar 

  8. Warmann S, Hunger M, Teichmann B et al (2002) The role of the MDR1 gene in the development of multidrug resistance in human hepatoblastoma—clinical course and in vivo model. Cancer 95:1795–1801

    Article  PubMed  CAS  Google Scholar 

  9. Mullen JT, Tanabe KK (2003) New approaches to the treatment of hepatic malignancies—viral oncolysis for malignant liver tumors. Ann Surg Oncol 10:569–605

    Article  Google Scholar 

  10. Wang L, Hernández-Alcoceba R, Shankar V et al (2004) Prolonged and inducible transgene expression in the liver using gutless adenovirus: a potential therapy for liver cancer. Gastroenterology 126:278–289

    Article  PubMed  CAS  Google Scholar 

  11. Benihoud K, Yeh P, Perricaudet M (1999) Adenovirus vectors for gene delivery. Curr Opin Biotechnol 10:440–447

    Article  PubMed  CAS  Google Scholar 

  12. Wilson JM (2001) Adenovirus-mediated gene transfer to liver. Adv Drug Deliv Rev 46:205–209

    Article  PubMed  CAS  Google Scholar 

  13. Bitzer M, Armeanu S, Lauer UM, Neubert WJ (2003) Sendai virus vectors as an emerging negative-strand viral vector system. J Gene Med 5:543–553

    Article  PubMed  CAS  Google Scholar 

  14. Kaneda Y, Nakajima T, Nishikawa T et al (2002) Hemagglutinating virus of Japan (HVJ) envelope vector as a versatile gene delivery system. Mol Ther 6:219–226

    Article  PubMed  CAS  Google Scholar 

  15. Adachi Y, Reynolds PN, Yamamoto M et al (2000) Midkine promoter-based adenoviral vector gene delivery for pediatric solid tumors. Cancer Res 60:4305–4310

    PubMed  CAS  Google Scholar 

  16. Lemken ML, Wybranietz WA, Schmidt U, Graepler F, Armeanu S, Bitzer M, Lauer UM (2005) Liver-directed gene expression employing synthetic transcriptional control units. World J Gastroenterol 11:5295–5302

    PubMed  CAS  Google Scholar 

  17. Pietsch T, Fonatsch C, Albrecht S et al (1996) Characterization of the continuous cell line HepT1 derived from a human hepatoblastoma. Lab Invest 4:809–818

    Google Scholar 

  18. Doi I (1976) Establishment of a cell line and its clonal sublines from a patient with hepatoblastoma. Gann 67:1–10

    PubMed  CAS  Google Scholar 

  19. Kekule AS, Lauer U, Weiss L, Luber B, Hofschneider PH (1993) Hepatitis B virus transactivator HBx uses a tumour promoter signalling pathway. Nature 361:742–745

    Article  PubMed  CAS  Google Scholar 

  20. Wybranietz WA, Gross CD, Phelan A, O’Hare P, Spiegel M, Graepler F, Bitzer M, Stahler P, Gregor M, Lauer UM (2001) Enhanced suicide gene effect by adenoviral transduction of a VP22-cytosine deaminase (CD) fusion gene. Gene Ther 8:1654–1664

    Article  PubMed  CAS  Google Scholar 

  21. Leyrer S, Neubert WJ, Sedlmeier R (1998) Rapid and efficient recovery of Sendai virus from cDNA: factors influencing recombinant virus rescue. J Virol Methods 75:47–58

    Article  PubMed  CAS  Google Scholar 

  22. Bitzer M, Prinz F, Bauer M, Spiegel M, Neubert WJ, Gregor M, Schulze-Osthoff K, Lauer UM (1999) Sendai virus infection induces apoptosis through activation of caspase-8 (FLICE) and caspase-3 (CPP32). J Virol 73:702–708

    PubMed  CAS  Google Scholar 

  23. Han J, Il Yeom Y (2000) Specific gene transfer mediated by galactosylated poly-l-lysine into hepatoma cells. Int J Pharm 202:151–160

    Article  PubMed  CAS  Google Scholar 

  24. Aramaki Y, Lee I, Arima H et al (2003) Efficient gene transfer to hepatoblastoma cells through asialoglycoprotein receptor and expression under the control of the glycin A promoter. Biol Pharm Bull 26:357–360

    Article  PubMed  CAS  Google Scholar 

  25. Aden D, Fogel A, Plotkin S et al (1979) Controlled synthesis of HbsAg in a differentiated human liver carcinoma-derived cell line. Nature 282:615–617

    Article  PubMed  CAS  Google Scholar 

  26. Warmann S, Armeanu S, Frank H, Buck H, Graepler F, Lemken ML, Heitmann H, Seitz G, Lauer UM, Bitzer M, Fuchs J (2006) In vitro gene targeting in human Hepatoblastoma. Pediatr Surg Int 22:16–23

    Article  PubMed  Google Scholar 

  27. Warmann SW, Fuchs J, Seitz G, Ruck P, Treuner C, Mahrt J, Muller GA, Wessels JT (2005) New trends in tumor biology: transfection of a human hepatoblastoma cell line with green fluorescent protein. J Pediatr Surg 40:653–657

    Article  PubMed  Google Scholar 

  28. Gray SG, Hartmann W, Eriksson T et al (2000) Expression of genes involved with cell cycle control, cell growth and chromatin modification are altered in hepatoblastomas. Int J Mol Med 6:161–169

    PubMed  CAS  Google Scholar 

  29. Schmitz V, Wang L, Barajas M, Gomar C, Prieto J, Qian C (2004) Treatment of colorectal and hepatocellular carcinomas by adenoviral mediated gene transfer of endostatin and angiostatin-like molecule in mice. Gut 53:561–567

    Article  PubMed  CAS  Google Scholar 

  30. Armeanu S, Lauer UM, Smirnow I, Schenk M, Weiss TS, Gregor M, Bitzer M (2003) Adenoviral gene transfer of tumor necrosis factor-related apoptosis-inducing ligand overcomes an impaired response of hepatoma cells but causes severe apoptosis in primary human hepatocytes. Cancer Res 63:2369–2372

    PubMed  CAS  Google Scholar 

  31. Pei Z, Chu L, Zou W, Zhang Z, Qiu S, Qi R, Gu J, Qian C, Liu X (2004) An oncolytic adenoviral vector of Smac increases antitumor activity of TRAIL against HCC in human cells and in mice. Hepatology 39:1371–1381

    Article  PubMed  CAS  Google Scholar 

  32. Taki M, Kagawa S, Nishizaki M, Mizuguchi H, Hayakawa T, Kyo S, Nagai K, Urata Y, Tanaka N, Fujiwara T (2005) Enhanced oncolysis by a tropism-modified telomerase-specific replication-selective adenoviral agent OBP-405 (‘Telomelysin-RGD’). Oncogene 24:3130–3140

    Article  PubMed  CAS  Google Scholar 

  33. Li GC, Yang JM, Nie MM, Su CG, Sun LC, Qian YZ, Fang GE, Sham J, Wu MC, Qian QJ (2005) Potent antitumoral effects of a novel gene-viral therapeutic system CNHK300-mEndostatin in hepatocellular carcinoma. Chin Med J (Engl) 118:179–185

    CAS  Google Scholar 

  34. Staba MJ, Mauceri HJ, Kufe DW et al (1998) Adenoviral TNF-α gene therapy and radiation damage tumor vasculature in a human malignant glioma xenograft. Gene Ther 5:293–300

    Article  PubMed  CAS  Google Scholar 

  35. Dilley J, Reddy S, Ko D, Nguyen N, Rojas G, Working P, Yu DC (2005) Oncolytic adenovirus CG7870 in combination with radiation demonstrates synergistic enhancements of antitumor efficacy without loss of specificity. Cancer Gene Ther 12:715–722

    Article  PubMed  CAS  Google Scholar 

  36. Armeanu S, Ungerechts G, Bernloehr C, Bossow S, Gregor M, Neubert WJ, Lauer UM, Bitzer M (2003) Cell cycle independent infection and gene transfer by recombinant sendai viruses. J Virol Methods 108:229–233

    Article  PubMed  CAS  Google Scholar 

  37. Nakaya H, Ishizu A, Ikeda H et al (2003) In vitro model of suicide gene therapy for alpha-fetoprotein-producing gastric cancer. Anticancer Res 23:3795–3800

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven W. Warmann.

Additional information

S. W. Warmann and S. Armeanu shared equally in the authorship of this paper and J. Fuchs and M. Bitzer share the senior authorship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warmann, S.W., Armeanu, S., Heitmann, H. et al. Optimizing vector application for gene transfer into human hepatoblastoma cells. Pediatr Surg Int 22, 733–742 (2006). https://doi.org/10.1007/s00383-006-1727-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-006-1727-3

Keywords

Navigation