Skip to main content
Log in

HER2-Positive Breast Cancer

Current and Future Treatment Strategies

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

In the year 2006, breast cancer was estimated to affect >200 000 American women and cause nearly 56 000 deaths. Furthermore, breast cancer is the most common cancer diagnosed and second most common cause of cancer-related deaths in women. The current treatment armamentarium for breast cancer includes chemotherapy, endocrine therapy and biological therapy. Treatment has become more individualised based on characteristics of the tumour including overexpression of the human epidermal growth factor receptor (HER)-2. Between 20 and 30% of all breast cancers overexpress HER2, which means 40 000–60 000 patients will have this type of cancer.

Previously, overexpression of HER2 was a negative prognostic and predictive risk factor for survival; however, with the advent of trastuzumab, patients’ prognosis is improving in all treatment settings. Much controversy exists in the use of trastuzumab, including (i) the sequence of adjuvant trastuzumab (concurrent with chemotherapy or sequential); (ii) the treatment duration (<1 year, 1 year or 2 years); and (iii) the treatment choice upon disease progression (whether to continue or not with trastuzumab and add another cytotoxic agent). Current trials are ongoing to help answer these questions.

Furthermore, there has been interest in predicting which HER2-positive patients would require anthracycline therapy, and which could avoid anthra-cycline therapy and its toxicities. Novel therapeutics, such as lapatinib, an oral tyrosine kinase inhibitor, which blocks both the epidermal growth factor receptor and HER2 receptor has recently been approved by the US FDA. Whereas pertuzumab, a humanised monoclonal antibody, directed against heterodimerisation of HER2 and HER3 has entered phase II and III clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2006. CA Cancer J Clin 2006; 56 (2): 106–30

    Article  PubMed  Google Scholar 

  2. Reese DM, Slamon DJ. HER-2/neu signal transduction in human breast and ovarian cancer. Stem Cells 1997; 15 (1): 1–8

    Article  PubMed  CAS  Google Scholar 

  3. Slamon DJ, Godolphin W, Jones LA, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 244 (4905): 707–12

    Article  PubMed  CAS  Google Scholar 

  4. Pegram MD, Pauletti G, Slamon DJ. HER-2/neu as a predictive marker of response to breast cancer therapy. Breast Cancer Res Treat 1998; 52 (1–3): 65–77

    Article  PubMed  CAS  Google Scholar 

  5. Seshadri R, Firgaira FA, Horsfall DJ, et al. Clinical significance of HER-2/neu oncogene amplification in primary breast cancer: the South Australian Breast Cancer Study Group. J Clin Oncol 1993; 11 (10): 1936–42

    PubMed  CAS  Google Scholar 

  6. Carlomagno C, Perrone F, Gallo C, et al. C-erb B2 overexpression decreases the benefit of adjuvant tamoxifen in early-stage breast cancer without axillary lymph node metastases. J Clin Oncol 1996; 14 (10): 2702–8

    PubMed  CAS  Google Scholar 

  7. Pietras RJ, Arboleda J, Reese DM, et al. HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells. Oncogene 1995; 10 (12): 2435–46

    PubMed  CAS  Google Scholar 

  8. Pritchard KI, Shepherd LE, O’Malley FP, et al. HER2 and responsiveness of breast cancer to adjuvant chemotherapy. N Engl J Med 2006; 354 (20): 2103–11

    Article  PubMed  CAS  Google Scholar 

  9. Tetu B, Brisson J. Prognostic significance of HER-2/neu oncoprotein expression in node-positive breast cancer: the influence of the pattern of immunostaining and adjuvant therapy. Cancer 1994; 73 (9): 2359–65

    Article  PubMed  CAS  Google Scholar 

  10. Tiwari RK, Borgen PI, Wong GY, et al. HER-2/neu amplification and overexpression in primary human breast cancer is associated with early metastasis. Anticancer Res 1992; 12 (2): 419–25

    PubMed  CAS  Google Scholar 

  11. Pegram MD, Lipton A, Hayes DF, et al. Phase II study of receptor-enhanced chemosensitivity using recombinant humanized anti-pl85HER2/neu monoclonal antibody plus cis-platin in patients with HER2/neu-overexpressing metastatic breast cancer refractory to chemotherapy treatment. J Clin Oncol 1998; 16 (8): 2659–71

    PubMed  CAS  Google Scholar 

  12. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, et al. Tras-tuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 2005; 353 (16): 1659–72

    Article  PubMed  CAS  Google Scholar 

  13. Romond EH, Perez EA, Bryant J, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 2005; 353 (16): 1673–84

    Article  PubMed  CAS  Google Scholar 

  14. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001; 344 (11): 783–92

    Article  PubMed  CAS  Google Scholar 

  15. Carter P, Presta L, Gorman CM, et al. Humanization of an anti-pl85HER2 antibody for human cancer therapy. Proc Natl Acad Sci U S A 1992; 89 (10): 4285–9

    Article  PubMed  CAS  Google Scholar 

  16. Albaneil J, Codony J, Rovira A, et al. Mechanism of action of anti-HER2 monoclonal antibodies: scientific update on trastuzumab and 2C4. Adv Exp Med Biol 2003; 532: 253–68

    Article  Google Scholar 

  17. Nahta R, Esteva FJ. Herceptin: mechanisms of action and resistance. Cancer Lett 2006; 232 (2): 123–38

    Article  PubMed  CAS  Google Scholar 

  18. Nagata Y, Lan KH, Zhou X, et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 2004; 6 (2): 117–27

    Article  PubMed  CAS  Google Scholar 

  19. Henson ES, Hu X, Gibson SB. Herceptin sensitizes ErbB2-overexpressing cells to apoptosis by reducing antiapoptotic Mcl-1 expression. Clin Cancer Res 2006; 12 (3 Pt 1): 845–53

    Article  PubMed  CAS  Google Scholar 

  20. Izumi Y, Xu L, di Tomaso E, et al. Tumour biology: herceptin acts as an anti-angiogenic cocktail. Nature 2002; 416 (6878): 279–80

    Article  PubMed  CAS  Google Scholar 

  21. Cooley S, Burns LJ, Repka T, et al. Natural killer cell cytotoxicity of breast cancer targets is enhanced by two distinct mechanisms of antibody-dependent cellular cytotoxicity against LFA-3 and HER2/neu. Exp Hematol 1999; 27 (10): 1533–41

    Article  PubMed  CAS  Google Scholar 

  22. Vogel CL, Cobleigh MA, Tripathy D, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 2002; 20 (3): 719–26

    Article  PubMed  CAS  Google Scholar 

  23. Pegram MD, Konecny GE, O’Callaghan C, et al. Rational combinations of trastuzumab with chemotherapeutic drugs used in the treatment of breast cancer. J Natl Cancer Inst 2004; 96 (10): 739–49

    Article  PubMed  CAS  Google Scholar 

  24. Pegram MD, Lopez A, Konecny G, et al. Trastuzumab and chemotherapeutics: drug interactions and synergies. Semin Oncol 2000; 27 (6 Suppl. 11): 21–5

    PubMed  CAS  Google Scholar 

  25. Esteva FJ, Valero V, Booser D, et al. Phase II study of weekly docetaxel and trastuzumab for patients with HER-2-overex-pressing metastatic breast cancer. J Clin Oncol 2002; 20 (7): 1800–8

    Article  PubMed  CAS  Google Scholar 

  26. Marty M, Cognetti F, Maraninchi D, et al. Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer administered as first-line treatment: the M77001 study group. J Clin Oncol 2005; 23 (19): 4265–74

    Article  PubMed  CAS  Google Scholar 

  27. Nabholtz JM, Gligorov J. Docetaxel/trastuzumab combination therapy for the treatment of breast cancer. Expert Opin Pharmacother 2005; 6 (9): 1555–64

    Article  PubMed  CAS  Google Scholar 

  28. Pusztai L, Esteva FJ. S0347: phase III (closed) [online]. Available from URL: http://www.swog.org/Visitors/ViewProtocolDetails.asp?.ProtocolID=1969 [Accessed 2006 Jun26]

  29. Schaller G, Bangemann N, Gonsch T, et al. Capecitabine and trastuzumab: a phase II study in HER2-overexpressing metastatic breast cancer (MBC) patients pretreated with anthra-cylines and/or taxanes [abstract no. 2033]. Breast Cancer Res Treat 2005; 94 Suppl. 1: S94

    Google Scholar 

  30. Perez EA, Suman VJ, Rowland KM, et al. Two concurrent phase II trials of paclitaxel/carboplatin/trastuzumab (weekly or every-3-week schedule) as first-line therapy in women with HER2-overexpressing metastatic breast cancer: NCCTG study 983252. Clin Breast Cancer 2005; 6 (5): 425–32

    Article  PubMed  CAS  Google Scholar 

  31. Robert N, Leyland-Jones B, Asmar L, et al. Randomized phase III study of trastuzumab, paclitaxel, and carboplatin compared with trastuzumab and paclitaxel in women with HER-2-over-expressing metastatic breast cancer. J Clin Oncol 2006; 24 (18): 2786–92

    Article  PubMed  CAS  Google Scholar 

  32. Forbes JR, Kennedy J, Pienkowski T, et al. BCIRG 007: randomized phase III trial of trastuzumab plus docetaxel with or without carboplatin first line in HER2 positive metastatic breast cancer [abstract no. LBA516]. 42nd Annual Meeting of the American Society of Clinical Oncology; 2006 Jun 2–6; Atlanta (GA). Proc Am Soc Clin Oncol 2006; 24 (18S): 7s

    Google Scholar 

  33. Chan A, Martin M, Untch M, et al. Vinorelbine plus trastuzumab combination as first-line therapy for HER 2-positive metastatic breast cancer patients: an international phase II trial. Br J Cancer 2006; 95 (7): 788–93

    Article  PubMed  CAS  Google Scholar 

  34. Bartsch R, Wenzel C, Altorjai G, et al. Results from an observational trial with oral vinorelbine and trastuzumab in advanced breast cancer. Breast Cancer Res Treat 2006; 102 (3): 375–81

    Article  PubMed  Google Scholar 

  35. Chia S, Clemons M, Martin LA, et al. Pegylated liposomal doxorubicin and trastuzumab in HER-2 overexpressing metastatic breast cancer: a multi-center phase II trial. J Clin Oncol 2006; 24 (18): 2773–8

    Article  PubMed  CAS  Google Scholar 

  36. Slamon D, Pegram M. Rationale for trastuzumab (Herceptin) in adjuvant breast cancer trials. Semin Oncol 2001; 28 (1 Suppl. 3): 13–9

    Article  PubMed  CAS  Google Scholar 

  37. Bendell JC, Domchek SM, Burstein HJ, et al. Central nervous system metastases in women who receive trastuzumab-based therapy for metastatic breast carcinoma. Cancer 2003; 97 (12): 2972–7

    Article  PubMed  Google Scholar 

  38. Burstein HJ, Lieberman G, Slamon DJ, et al. Isolated central nervous system métastases in patients with HER2-overexpressing advanced breast cancer treated with first-line trastuzumab-based therapy. Ann Oncol 2005; 16 (11): 1772–7

    Article  PubMed  CAS  Google Scholar 

  39. Dawson RJ, Raniere NF, Snyder R. Trastuzumab (T) and CNS metastases in women with HER-2 positive metastatic breast cancer (MBC) [abstract no. 683]. 41st Annual Meeting of the American Society of Clinical Oncology; 2005 May 13–17; Orlando (FL). Proc Am Soc Clin Oncol 2005; 23 (16S): 49s

    Google Scholar 

  40. Mari V, Chamorey E, Italiano A, et al. Clinical significance of brain metastases occurence in HER2 overexpressing metastatic breast cancer treated with trastuzumab [abstract no. 10593]. 42nd Annual Meeting of the American Society of Clinical Oncology; 2006 Jun 2–6; Atlanta (GA). Proc Am Soc Clin Oncol 2006; 24 (18S): 575s

    Google Scholar 

  41. Melisko ME, Chew K, Baehner F, et al. Clinical characteristics and molecular makers predicting the development and outcome of breast cancer brain métastases [abstract no. 1049]. Breast Cancer Res Treat 2005; 94 Suppl. 1: S55

    Google Scholar 

  42. Paterson C, Mclntyre A, Canney PA. Does HER2 positive breast cancer have a prelediction to metastasise to the brain? [abstract no. 4086]. Breast Cancer Res Treat 2005; 94 Suppl. 1: S195

    Google Scholar 

  43. Tham YL, Sexton K, Kramer R, et al. Breast cancer phenotype associated with a propensity for central nervous system (CNS) metastases [abstract no. 3020]. Breast Cancer Res Treat 2005; 94 Suppl. 1: S131

    Google Scholar 

  44. Tan-Chiu E, Yothers G, Romond E, et al. Assessment of cardiac dysfunction in a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel, with or without trastuzumab as adjuvant therapy in node-positive, human epidermal growth factor receptor 2-overexpressing breast cancer: NSABP B-31. J Clin Oncol 2005; 23 (31): 7811–9

    Article  PubMed  CAS  Google Scholar 

  45. Halard MY, Pisansky TM, Solin LJ, et al. Adjuvant radiotherapy (RT) and trastuzumab in stage I-IIa breast cancer: toxicity data from North Cancer Treatment Group phase III trial N9831 [abstract no. 523]. 42nd Annual Meeting of the American Society of Clinical Oncology; 2006 Jun 2–6; Atlanta (GA). Proc Am Soc Clin Oncol 2006; 24 (18S): 8s

    Google Scholar 

  46. Perez EA, Suman VJ, Davidson NE,et al. Interim cardiac safety analysis of NCCTG N9831 Intergroup adjuvant tratuzumab trial [abstract no. 556]. 41st Annual Meeting of the American Society of Clinical Oncology; 2005 May 13–17; Orlando (FL). Proc Am Soc Clin Oncol 2006; 23 (16S): 49s

    Google Scholar 

  47. Slamon DJ, Eiermann W, Robert N, et al. Phase III randomized trial comparing doxorubicin and cyclophosphamide followed by docetaxel with doxorubicin and cyclophosphamide followed by docetaxel and trastuzumab with docetaxel, carboplatin and trastuzumab in HER2 positive early breast cancer patients: BCIRG 006 study [abstract no. 1]. Breast Cancer Res Treat 2005; 94 Suppl. 1: S5

    Google Scholar 

  48. Joensuu H, Kellokumpu-Lehtinen PL, Bono P, et al. Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. N Engl J Med 2006; 354 (8): 809–20

    Article  PubMed  CAS  Google Scholar 

  49. The HERA Study Team. Trastuzumab (Herceptin) following adjuvant chemotherapy significantly improves disease-free survival in HER2-positive early breast cancer: the HERA trial [abstract no. 11]. Breast Cancer Res Treat 2005; 94 Suppl. 1: S9

    Google Scholar 

  50. Pegram MD, Pienkowski T, Northfelt DW, et al. Results of two open-label, multicenter phase II studies of docetaxel, platinum salts, and trastuzumab in HER2-positive advanced breast cancer. J Natl Cancer Inst 2004; 96 (10): 759–69

    Article  PubMed  CAS  Google Scholar 

  51. Slamon D, Eiermann W, Robert N, et al. Phase III trial comparing AC-T with AC-TH with TCH in the adjuvant treatment of HER2 positive early breast cancer patients: first interim efficacy analysis [online]. Available from URL: http://www.bcirg.org [Accessed 2006 Jul 19]

  52. Joensuu H, Kellokumpu-Lehtinen P-L, Bono P, et al. Trastuzumab in combination with docetaxel or vinorelbine as adjuvant treatment of breast cancer: the FinHer Trial [abstract no. 2]. Breast Cancer Res Treat 2005; 94 Suppl. 1: S5

    Google Scholar 

  53. Press MF, Bernstein L, Sauter G, et al. Topoisomerase II-alpha gene amplification as a predictor of responsiveness to anthra-cyline-containing chemotherapy in the Cancer International Research Group 006 clinical trial of trastuzumab (herceptin) in the adjuvant setting [abstract no. 1045]. Breast Cancer Res Treat 2005; 94 Suppl. 1: S54

    Google Scholar 

  54. Kalogeraki A, Ieromonachou P, Kafousi M, et al. Topoisomerase II alpha expression in breast ductal invasive carcinomas and correlation with clinicopathological variables. In Vivo 2005; 19 (5): 837–40

    PubMed  CAS  Google Scholar 

  55. Popescu NC, King CR, Kraus MH. Localization of the human erbB-2 gene on normal and rearranged chromosomes 17 to bands q12–21.32. Genomics 1989; 4 (3): 362–6

    Article  PubMed  CAS  Google Scholar 

  56. Tsai-Pflugfelder M, Liu LF, Liu AA, et al. Cloning and sequencing of cDNA encoding human DNA topoisomerase II and localization of the gene to chromosome region 17q21–22. Proc Natl Acad Sci U S A 1988; 85 (19): 7177–81

    Article  PubMed  CAS  Google Scholar 

  57. Kim C, Bryant J, Home Z, et al. Trastuzumab sensitivity of breast cancer with coamplification of HER2 and cMYC suggests proapoptotic function of dysregulated cMYC in vivo [abstract no. 46]. Breast Cancer Res Treat 2005; 94 Suppl. 1: S6

    Google Scholar 

  58. Cobleigh MA, Vogel CL, Tripathy D, et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpres-sing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 1999; 17 (9): 2639–48

    PubMed  CAS  Google Scholar 

  59. Prempree T, Wongpaksa C. Mutations of HER2 gene in HER2-positive metastatic breast cancer [abstract no. 13118]. 42nd Annual Meeting of the American Society of Clinical Oncology; 2006 Jun 2–6; Atlanta (GA). Proc Am Soc Clin Oncol 2006; 24 (18S): 611s

    Google Scholar 

  60. Nahta R, Yu D, Hung MC, et al. Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat Clin Pract Oncol 2006; 3 (5): 269–80

    Article  PubMed  CAS  Google Scholar 

  61. Nahta R, Yuan LX, Zhang B, et al. Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heter-odimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res 2005; 65 (23): 11118–28

    Article  PubMed  CAS  Google Scholar 

  62. Lu Y, Zi X, Zhao Y, et al. Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst 2001; 93 (24): 1852–7

    Article  PubMed  CAS  Google Scholar 

  63. Fujita T, Doihara H, Kawasaki K, et al. PTEN activity could be a predictive marker of trastuzumab efficacy in the treatment of ErbB2-overexpressing breast cancer. Br J Cancer 2006; 94 (2): 247–52

    Article  PubMed  CAS  Google Scholar 

  64. Nahta R, Takahashi T, Ueno NT, et al. P27(kip1) down-regulation is associated with trastuzumab resistance in breast cancer cells. Cancer Res 2004; 64 (11): 3981–6

    Article  PubMed  CAS  Google Scholar 

  65. Burris HA, Hurwitz HI, Dees EC, et al. Phase I safety, pharmacokinetics, and clinical activity study of lapatinib (GW572016), a reversible dual inhibitor of epidermal growth factor receptor tyrosine kinases, in heavily pretreated patients with metastatic carcinomas. J Clin Oncol 2005; 23 (23): 5305–13

    Article  PubMed  CAS  Google Scholar 

  66. Konecny GE, Pegram MD, Venkatesan N, et al. Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Res 2006; 66 (3): 1630–9

    Article  PubMed  CAS  Google Scholar 

  67. Xia W, Gerard CM, Liu L, et al. Combining lapatinib (GW572016), a small molecule inhibitor of ErbB1 and ErbB2 tyrosine kinases, with therapeutic anti-ErbB2 antibodies enhances apoptosis of ErbB2-overexpressing breast cancer cells. Oncogene 2005; 24 (41): 6213–21

    Article  PubMed  CAS  Google Scholar 

  68. Geyer GE, Forster JM, Lindquist D, et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 2006; 355 (26): 2733–43

    Article  PubMed  CAS  Google Scholar 

  69. Perez EA, Bryne JA, Hammond IW, et al. Results of an analysis of cardiac function in 2,812 patients treated with lapatinib [abstract no. 583]. 42nd Annual Meeting of the American Society of Clinical Oncology; 2006 Jun 2–6; Atlanta (GA). Proc Am Soc Clin Oncol 2006; 24 (18S): 23s

    Google Scholar 

  70. Lin NU, Carey LA, Liu MC, et al. Phase II trial of lapatinib for brain metastases in patients with HER2+ breast cancer [abstract no. 503]. 42nd Annual Meeting of the American Society of Clinical Oncology; 2006 Jun 2–6; Atlanta (GA). Proc Am Soc Clin Oncol 2006; 24 (18S): 3s

    Google Scholar 

  71. Bianco AR. Targeting c-erbB2 and other receptors of the c-erbB family: rationale and clinical applications. J Chemother 2004; 16 Suppl. 4: 52–4

    PubMed  CAS  Google Scholar 

  72. Franklin MC, Carey KD, Vajdos FF, et al. Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell 2004; 5 (4): 317–28

    Article  PubMed  CAS  Google Scholar 

  73. Willems A, Gauger K, Henrichs C, et al. Antibody therapy for breast cancer. Anticancer Res 2005; 25 (3A): 1483–9

    PubMed  CAS  Google Scholar 

  74. Fendly BM, Winget M, Hudziak RM, et al. Characterization of murine monoclonal antibodies reactive to either the human epidermal growth factor receptor or HER2/neu gene product. Cancer Res 1990; 50 (5): 1550–8

    PubMed  CAS  Google Scholar 

  75. Wang K, Ma Q, Ren Y, et al. Geldanamycin destabilizes HER2 tyrosine kinase and suppresses Wnt/beta-catenin signaling in HER2 overexpressing human breast cancer cells. Oncol Rep 2007; 17 (1): 89–96

    PubMed  Google Scholar 

  76. Agus DB, Terlizzi E, Stopfer P, et al. A phase I dose escalation study of BIBW 2992, an irreversible dual EGFR/HER2 receptor tyrosine kinase inhibitor, in a continuous schedule in patients with advanced solid tumours [abstract no. 2074]. 42nd Annual Meeting of the American Society of Clinical Oncology; 2006 Jun 2–6; Atlanta (GA). Proc Am Soc Clin Oncol 2006; 24 (18S): 97s

    Google Scholar 

  77. Shaw H, Plummer R, Vidal L, et al. A phase I dose escalation study of BIBW 2992, an irreversible dual EGFR/HER2 receptor tyrosine kinase inhibitor, in a continuous schedule in patients with advanced solid tumours [abstract no. 3027]. 42nd Annual Meeting of the American Society of Clinical Oncology; 2006 Jun 2–6; Atlanta (GA). Proc Am Soc Clin Oncol 2006; 24 (18S): 127s

    Google Scholar 

  78. Iwata H, Toi M, Fujiwara Y, et al. Phase II clinical study of lapatinib (GW572016) in patients with advanced or metastatic breast cancer [abstract no. 1091]. Breast Cancer Res Treat 2006; 100 Suppl. 1: S68

    Google Scholar 

  79. Spector NL, Blackwell K, Hurley J, et al. EGF103009, a phase II trial of lapatinib monotherapy in patients with relapsed/ refractory inflammatory breast cancer (IBC): Clinical activity and biologic predictors of resonse [abstract no. 502]. 42nd Annual Meeting of the American Society of Clinical Oncology; 2006 Jun 2–6; Atlanta (GA). Proc Am Soc Clin Oncol 2006; 24 (18S): 3s

    Google Scholar 

  80. Cristofanilli M, Boussen H, Baselga J, et al. A phase II combination study of lapatinib and paclitaxel as a neoadjuvant therapy in patients with newly diagnosed inflammatory breast cancer (IBC) [abstract no. 1]. Breast Cancer Res Treat 2006; 100 Suppl. 1: S5

    Google Scholar 

  81. Storniolo AM, Burris III H, Overmoyer B, et al. A phase I, open-label study of the safety, tolerability and pharmacokinetics of lapatinib (GW572016) in combination with trastuzumab [abstract no. 1073]. Breast Cancer Res Treat 2005; 94 Suppl. 1: S64

    Google Scholar 

  82. Nahta R, Hung MC, Esteva FJ. The HER-2-targeting antibodies trastuzumab and pertuzumab synergistically inhibit the survival of breast cancer cells. Cancer Res 2004; 64 (7): 2343–6

    Article  PubMed  CAS  Google Scholar 

  83. Agus DB, Gordon MS, Taylor C, et al. Phase I clinical study of pertuzumab, a novel HER dimerization inhibitor, in patients with advanced cancer. J Clin Oncol 2005; 23 (11): 2534–43

    Article  PubMed  CAS  Google Scholar 

  84. Walshe JM, Denduluri N, Berman AW, et al. A phase II trial with trastuzumab and pertuzumab in patients with HER2-overexpressed locally advanced and metastatic breast cancer. Clin Breast Cancer 2006; 6 (6): 535–9

    Article  PubMed  CAS  Google Scholar 

  85. Gordon MS, Matei D, Aghajanian C, et al. Clinical activity of pertuzumab (rhuMAb 2C4), a HER dimerization inhibitor, in advanced ovarian cancer: potential predictive relationship with tumor HER2 activation status. J Clin Oncol 2006; 24 (26): 4324–32

    Article  PubMed  CAS  Google Scholar 

  86. Johnson BE, Janne PA. Rationale for a phase II trial of pertuzumab, a HER-2 dimerization inhibitor, in patients with non-small cell lung cancer. Clin Cancer Res 2006; 12 (14 Pt 2): 4436–40s

    Article  Google Scholar 

  87. Marcom PK, Isaacs C, Harris L, et al. The combination of letrozole and trastuzumab as first or second-line biological therapy produces durable responses in a subset of HER2 positive and ER positive advanced breast cancers. Breast Cancer Res Treat 2007; 102 (1): 43–9

    Article  PubMed  CAS  Google Scholar 

  88. Pegram M, Chan D, Dichmann RA, et al. Phase II combined biological therapy targeting the HER2 proto-oncogene and the vascular endothelial growth factor using trastuzumab (T) and bevacizumab (B) as first line treatment of HER 2-amplified breast cancer [abstract no. 301]. Breast Cancer Res Treat 2006; 100 Suppl. 1: S28

    Google Scholar 

  89. Liu X, Wang Q, Yang G, et al. Selective inhibition of ADAM metalloproteases blocks Her-2 extracellular domain (ECD) clevage and potentiates trastuzumab in blocking the growth of Her-2 overexpressing breast cancer cells [abstract no. 6051]. Breast Cancer Res Treat 2005; 94 Suppl. 1: S265

    Article  Google Scholar 

  90. Mittendorf EA, Khoo S, Starrer CE, et al. Early results of a phase I clinical trial of an Ii-Key/Her2/neu MHC class II peptide-based vaccine in breast cancer patients [abstract no. 2532]. 42nd Annual Meeting of the American Society of Clinical Oncology; 2006 Jun 2–6; Atlanta (GA). Proc Am Soc Clin Oncol 2006; 24 (18S): 108s

    Google Scholar 

  91. Webster DJ, Waisman J, Macleod B, et al. A phase I/II study of a HER2/neu (HER2) peptide vaccine plus concurrent trastuzumab [abstract no. 2528]. 42nd Annual Meeting of the American Society of Clinical Oncology; 2006 Jun 2–6; Atlanta (GA). Proc Am Soc Clin Oncol 2006; 24 (18S): 107s

    Google Scholar 

  92. Salazar LG, Murray JL, Disis ML, et al. A phase I vaccine trial of a HER-2/neu peptide incorporated into PLG microspheres in patients with advanced stage HER2-expressing cancers. [2572]. 42nd Annual Meeting of the American Society of Clinical Oncology; 2006 Jun 2–6; Atlanta (GA). Proc Am Soc Clin Oncol 2006; 24 (18S): 118s

    Google Scholar 

  93. Nicolini A, Carpi A, Tarro G. Biomolecular markers of breast cancer. Front Biosci 2006; 11: 1818–43

    Article  PubMed  CAS  Google Scholar 

  94. Cameron D, Stein S, Zaks T, et al. Lapatinib plus capecitabine shows superior efficacy compared to capecitabine alone in patients with ErbB2 positive advanced or metastatic breast cancer-initial biomarker data [abstract no. 2]. Breast Cancer Res Treat 2006; 100 Suppl. 1: S5

    Google Scholar 

  95. Saez R, Molina MA, Ramsey EE, et al. p95HER-2 predicts worse outcome in patients with HER-2-positive breast cancer. Clin Cancer Res 2006; 12 (2): 424-31

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. Dr Kaklamani has acted as a consultant for Genentech and received a grant from Glaxo SmithKline. Dr Engel has received an honorarium from Glaxo SmithKline for participation in an advisory board meeting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia G. Kaklamani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engel, R.H., Kaklamani, V.G. HER2-Positive Breast Cancer. Drugs 67, 1329–1341 (2007). https://doi.org/10.2165/00003495-200767090-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200767090-00006

Keywords

Navigation