Skip to main content

Mechanism of Action of Anti-HER2 Monoclonal Antibodies: Scientific Update on Trastuzumab and 2C4

  • Chapter
New Trends in Cancer for the 21st Century

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 532))

Abstract

The HER family of transmembrane tyrosine kinase receptors is composed of four members, HER1 to HER4. HER2 is a ligand-orphan receptor expressed in many human tumors and overexpressed in 25-30% of breast cancers. HER2 amplifies the signal provided by other receptors of the HER family by forming heterodimers. The essential role of HER2 in the HER signaling network led to the development of anti-HER2 monoclonal antibodies (MAbs) for cancer therapy. In particular, the humanized MAb trastuzumab (Herceptin) has antitumor activity against HER2-overexpressing human breast tumor cells and is widely used for the treatment of women with HER2 overexpressing breast cancers. Trastuzumab induces HER2 receptor downmodulation and, as a result, inhibits critical signalling pathways (i.e. ras-Raf-MAPK and PI3K/Akt) and blocks cell cycle progression by inducing the formation of p27/Cdk2 complexes. Trastuzumab also inhibits HER2 cleavage, preceding antibody-induced receptor downmodulation, and this effect might contribute to its antitumor activity in some cancers.In vivotrastuzumab inhibits angiogenesis and induces antibody-dependent cellular cytotoxicity. A limitation of trastuzumab is that its activity is largely restricted to breast cancers with the highest level of HER2 overexpression or HER2 gene amplification. However, there is a large population of breast cancers and of many other tumors that have low or moderate HER2 expression. In such tumors, HER2 functions as a preferred coreceptor to form heterodimers with HER! (EGFR), HER3 or HER4. For this reason, a humanized monoclonal antibody, called 2C4, that targets the role of HER2 as a coreceptor is under active development. 2C4 binds to a different epitope of HER2 ectodomain than trastuzumab and sterically hinders HER2 recruitment in heterodimers with other HER receptors. This results in the inhibition of signalling by HER2-based heterodimers both in cells with low and high HER2 expression.In vitro andin vivo antitumor activity has been reported in a range of breast and prostate tumor models. Therefore, 2C4 may have potential against a wide variety of solid tumors. Phase I trials are underway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refences

  1. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001; 2:127–37.

    Article  PubMed  CAS  Google Scholar 

  2. Fendly BM, Winget M, Hudziak RM, Lipari MT, Napier MA, Ullrich A. Characterization of murine monoclonal antibodies reactive to either the human epidermal growth factor receptor or HER2/neu gene product. Cancer Res 1990; 50:1550–1558.

    PubMed  CAS  Google Scholar 

  3. Carter P, Presta L, Gorman CM, et al. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc.Natl.Acad.Sci.USA 1992; 89:4285–4289.

    Article  PubMed  CAS  Google Scholar 

  4. Baselga J, Tripathy D, Mendelsohn J, et al. Phase II study of weekly intravenous recombinant humanized anti-pl851ER2monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J.Clin.Oncol 1996; 14:737–744.

    PubMed  CAS  Google Scholar 

  5. Cobleigh MA, Vogel CL, Tripathy D, et al. Multinational study of the eficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. Journal of Clinical Oncology 2000; 17:2639–48.

    Google Scholar 

  6. Slamon D, Leyland-Jones B. Shak S, et al. Addition of HerceptinTM (humanized anti-HER2 antibody) to first line chemotherapy for HER2 overexpressing metastatic breast cancer (HER2+/MBC) markedly increases anticancer activity: a randomized, multinational controlled phase III trial. Proc. Am. Soc. C l i n.Onc o l. 1998.

    Google Scholar 

  7. Salomon D, Brandt R, Ciardiello F, Normanno N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 1995; 19:183–232.

    Article  PubMed  CAS  Google Scholar 

  8. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235:177–182.

    Article  PubMed  CAS  Google Scholar 

  9. Slamon DJ, Godolphin W, Jones LA, et al. Studies of the HER-2/neu Proto-oncogene in Human Breast and Ovarian Cancer. Science 1989; 244:707–712.

    Article  PubMed  CAS  Google Scholar 

  10. Albanell J, Bellmunt J, Molina R, et al. Node-negative breast cancers with p53(-)/HER2-neu(-) status may identify women with very good prognosis. Anticancer Res. 1996; 16:1027–1032.

    PubMed  CAS  Google Scholar 

  11. Agus D, Akita R, Fox W, et al. Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell 2002; 2:127.

    Article  PubMed  CAS  Google Scholar 

  12. Olayioye MA, Neve RM, Lane HA, Hynes NE. The ErbB signaling network: receptor heterodimerization in development and cancer. Embo J 2000; 19:3159–67.

    Article  PubMed  CAS  Google Scholar 

  13. Lemmon MA, Schlessinger J. Regulation of signal transduction and signal diversity by receptor oligomerization. Trends Biochem Sci 1994; 19:459–463.

    Article  PubMed  CAS  Google Scholar 

  14. Thor AD, Liu S, Edgerton S, et al. Activation (tyrosine phosphorylation) of ErbB-2 (HER-2/neu): a study of incidence and correlation with outcome in breast cancer. J Clin Oncol 2000; 18:3230–9.

    PubMed  CAS  Google Scholar 

  15. Samanta A, LeVea CM, Dougall WC, Qian X, Greene MI. Ligand and p185c-neu density govern receptor interactions and tyrosine kinase activation. Proc Nat! Acad Sci U S A 1994; 91:1711–5.

    Article  CAS  Google Scholar 

  16. Hudziak RM, Schlessinger J, Ullrich A. Increased expression of the putative growth factor receptor p185HER2 causes transformation and tumorigenesis of NIH3T3 cell. Proc.Natl.Acad.Sci.USA 1987; 84:7159–7163.

    Article  PubMed  CAS  Google Scholar 

  17. Katsumata M, Okudaira T, Samanta A, et al. Prevention of breast tumour development in vivo by downregulation of the p185neu receptor. Nat Med 1995; 1:644–8.

    Article  PubMed  CAS  Google Scholar 

  18. Tzahar E, Waterman H, Chen X, et al. A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol Cell Biol 1996; 16:5276–5287.

    PubMed  CAS  Google Scholar 

  19. Tzahar E, Pinkas-Kramarski R, Moyer JD, et al. Bivalence of EGF-like ligands drives the ErbB signaling network. EMBO J 1997; 16:4938–4950.

    Article  PubMed  CAS  Google Scholar 

  20. Klapper LN, Glathe S, Vaisman N, et al. The ErbB-2/HER2 oncoprotein of human carcinomas may function solely as a shared coreceptor for multiple stroma-derived growth factors. Proc.Natl.Acad.Sci.USA 1999; 96:4995–5000.

    Article  PubMed  CAS  Google Scholar 

  21. Graus-Porta D, Beerli RR, Daly JM, Hynes NE. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. Embo J 1997; 16:1647–55.

    Article  PubMed  CAS  Google Scholar 

  22. Pinkas-Kramarski R, Soussan L, Waterman H, et al. Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBO J 1996; 15:24522467.

    Google Scholar 

  23. Pinkas-Kramarski R, Alroy I, Yarden Y. ErbB receptors and EGF-like ligands: cell lineage determination and oncogenesis through combinatorial signaling. J Mammary Gland Biol Neoplasia 1997; 2:97–107.

    Article  PubMed  CAS  Google Scholar 

  24. Lenferink AE, Pinkas-Kramarski R, van de Poll ML, et al. Differential endocytic routing of homo-and hetero-dimeric ErbB tyrosine kinases confers signaling superiority to receptor heterodimers. Embo J 1998; 17:3385–97.

    Article  PubMed  CAS  Google Scholar 

  25. Alimandi M, Romano A, Curia MC, et al. Cooperative signaling of ErbB3 and ErbB2 in neoplastic transformation and human mammary carcinomas. Oncogene 1995; 10:1813–21.

    PubMed  CAS  Google Scholar 

  26. Gee JM, Robertson JF, Ellis IO, Nicholson RI. Phosphorylation of ERK1/2 mitogen-activated protein kinase is associated with poor response to anti-hormonal therapy and decreased patient survival in clinical breast cancer. Int J Cancer 2001; 95:247–54.

    Article  PubMed  CAS  Google Scholar 

  27. Albanell J, Codony-Servat J, Rojo F, et al. Activated extracellular signal-regulated kinases: association with epidermal growth factor receptor/transforming growth factor alpha expression in head and neck squamous carcinoma and inhibition by anti-epidermal growth factor receptor treatments. Cancer Res 2001; 61:6500–6510.

    PubMed  CAS  Google Scholar 

  28. Yu D, Jing T, Liu B, et al. Overexpression of ErbB2 blocks taxol-induced apoptosis by upregulation of p21611which inhibits p34“1`2 kinase. Molecular Cell 1998; 2:581–591.

    Article  PubMed  CAS  Google Scholar 

  29. Lane HA, Beuvink I, Motoyama AB, Daly JM, Neve RM, Hynes NE. ErbB2 potentiates breast tumor proliferation through modulation of p27KP’/Cdk2 complex formation: receptor overexpression does not determine growth dependency. Molecular Cell Biology 2000; 20:3210–3223.

    Article  CAS  Google Scholar 

  30. Viglietto G, Motti ML, Bruni P, et al. Cytoplasmic relocalization and inhibition of the cyclindependent kinase inhibitor p27Kipl by PKB/Akt-mediated phosphorylation in breast cancer. Nat Med 2002; 8:1136–44.

    Article  PubMed  CAS  Google Scholar 

  31. Liang J, Zubovitz J, Petrocelli T, et al. PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat Med 2002; 8:1153–60.

    Article  PubMed  CAS  Google Scholar 

  32. Shin I, Yakes FM, Rojo F, et al. PKB/Akt mediates cell-cycle progression by phosphorylation of p27Kipl at threonine 157 and modulation of its cellular localization. Nat Med 2002; 8:1145–52.

    Article  PubMed  CAS  Google Scholar 

  33. Lewis GD, Figari I, Fendly B, et al. Differential responses of human tumor cell lines to antip185HER2 monoclonal antibodies. Cancer Immunol Immunother 1993; 37:255–263.

    Article  PubMed  CAS  Google Scholar 

  34. Baselga J, Norton L, Albanell J, Kim YM, Mendelsohn J. Recombinant humanized anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts. Cancer Res. 1998; 58:2825–2831.

    PubMed  CAS  Google Scholar 

  35. Sliwkowski MX, Logfren JA, Lewis GD, et al. Nonclinical studies addressing the mechanism of action of Trastuzumab (Herceptiñ). Semin.Oncol. 1999; 26 (suppl. 12):60–70.

    PubMed  CAS  Google Scholar 

  36. Baselga J, Albanell J, Molina MA, Arribas J. Mechanism of action of trastuzumab and scientific update. Semin.Oncol. 2001; 28:4–11.

    Article  PubMed  CAS  Google Scholar 

  37. Baulida J, Kraus MH, Alimandi M, Di Fiore PP, Carpenter G. All ErbB receptors other than the epidermal growth factor receptor are endocytosis impaired. J Biol Chem 1996; 271:5251–7.

    Article  PubMed  CAS  Google Scholar 

  38. Molina MA, Codony-Servat J, Albanell J, Rojo F, Arribas J, Baselga J. Trastuzumab (herceptin), a humanized anti-Her2 receptor monoclonal antibody, inhibits basal and activated Her2 ectodomain cleavage in breast cancer cells. Cancer Res. 2001; 61:4744–4749.

    PubMed  CAS  Google Scholar 

  39. Lee S, Yang W, Lan KH, et al. Enhanced Sensitization to Taxol-induced Apoptosis by Herceptin Pretreatment in ErbB2-overexpressing Breast Cancer Cells. Cancer Res 2002; 62:5703–10.

    PubMed  CAS  Google Scholar 

  40. Yarden Y. Biology of HER2 and its importance in breast cancer. Oncology 2001; 61:1–13.

    Article  PubMed  CAS  Google Scholar 

  41. Drebin JA, Link VC, Stern DF, Weinberg RA, Greene MI. Down-modulation of an oncogene protein product and reversion of the transformed phenotype by monoclonal antibodies. Cell 1985; 41:695706.

    Google Scholar 

  42. Klapper LN, Vaisman N, Hurwitz E, Pinkas-Kramarski R, Yarden Y, Sela M. A subclass of tumor-inhibitory monoclonal antibodies to ErbB-2/HER2 blocks crosstalk with growth factor receptors. Oncogene 1997; 14:2099–2109.

    Article  PubMed  CAS  Google Scholar 

  43. Klapper LN, Waterman H, Sela M, Yarden Y. Tumor-inhibitory Antibodies to HER-2/ErbB-2 May Act by Recruiting c-Cbl and Enhancing Ubiquitination of HER-2. Cancer Res 2000; 60:3384–3388.

    PubMed  CAS  Google Scholar 

  44. Yakes FM, Chinratanalab W, Ritter CA, King W, Seelig S, Arteaga CL. Herceptin-induced inhibition of phosphatidylinositol-3 kinase and Akt Is required for antibody-mediated effects on p27, cyclin D1, and antitumor action. Cancer Res 2002; 62:4132–41.

    PubMed  CAS  Google Scholar 

  45. Anido J, Albanell J, Rojo F, Codony-Servat J, Arribas J, Baselga J. Inhibition by ZD1839 (Iressa) of Epidermal Growth Factor (EGF) and heregulin Induced signaling pathways in human breast cancer cells. Proc Am Soc Clin Oncol 2001; 20:1712A.

    Google Scholar 

  46. Petit AM, Rak J, Hung MC, et al. Neutralizing antibodies against epidermal growth factor and ErbB2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors. Am J Pathol 1997; 151:1523–1530.

    PubMed  CAS  Google Scholar 

  47. Izumi Y, Xu L, di Tomaso E, Fukumura D, Jain RK. Tumour biology: herceptin acts as an antiangiogenic cocktail. Nature 2002; 416:279–80.

    Article  PubMed  CAS  Google Scholar 

  48. Codony-Servat J, Albanell J, Lopez-Talavera JC, Arribas J, Baselga J. Cleavage of the HER2 ectodomain is a pervanadate-activable process that is inhibited by the tissue inhibitor of metalloproteases-1 in breast cancer cells. Cancer Res. 1999; 59:1196–1201.

    PubMed  CAS  Google Scholar 

  49. Christianson TA, Doherty JK, Lin YJ, et al. NH2-terminally truncated HER-2/neu protein: relationship with shedding of the extracellular domain and with prognostic factors in breast cancer. Cancer Res 1998; 15:5123–5129.

    Google Scholar 

  50. Albanell J, Molina MA, Codony-Servat J, et al. The production of cleaved intracellular HERZ fragment is inducible in breast cancer cells and this fragment is phosphorylated in breast tumors. Biological Therapy of Breast Cancer 2001; 2:10–13.

    Google Scholar 

  51. Molina MA, Saez R, Ramsey EE, et al. NH(2)-terminal truncated HER-2 protein but not full-length receptor is associated with nodal metastasis in human breast cancer. Clin.Cancer Res. 2002; 8:347353.

    Google Scholar 

  52. Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nature Med. 2000; 6:443–446.

    Article  PubMed  CAS  Google Scholar 

  53. Pegram MD, Baly D, Wirth C, et al. Antibody dependent cell-mediated cytotoxicity in breast cancer patients in Phase III clinical trials of a humanized anti-HER2 antibody (Meeting abstract). Proc Annu Meet Am Assoc Cancer Res 1997; 38:A4044.

    Google Scholar 

  54. Jurianz K, Maslak S, Garcia-Schuler H, Fishelson Z, Kirschfink M. Neutralization of complement regulatory proteins augments lysis of breast carcinoma cells targeted with rhumAb anti-HER2. Immunopharmacology 1999; 42:209–18.

    Article  PubMed  CAS  Google Scholar 

  55. Pegram M, Hsu S, Lewis G, et al. Inhibitory effects of combinations of HER-2/neu antibody and chemotherapeutic agents used for the treatment of human breast cancers. Oncogene 1999; 18:22412251.

    Google Scholar 

  56. Ligibel JA, Winer EP. Trastuzumab/chemotherapy combinations in metastatic breast cancer. Semin Oncol 2002; 29:38–43.

    PubMed  CAS  Google Scholar 

  57. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001; 344:783–792.

    Article  PubMed  CAS  Google Scholar 

  58. Albanell J, Baselga J. Unraveling resistance to trastuzumab (Herceptin): insulin-like growth factor-I receptor, a new suspect. J.Natl.Cancer Inst. 2001; 93:1830–1832.

    Article  PubMed  CAS  Google Scholar 

  59. Lu Y, Zi X, Zhao Y, Mascarenhas D, Pollak M. Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst 2001; 93:1852–7.

    Article  PubMed  CAS  Google Scholar 

  60. Dugger D, Hollingshead P, Wong D, Romero M, Erickson S, Schwall R. Acquisition of Herceptin [reg] (Trastuzumab) resistance by HER2 mutation in a HER2-transgenic mouse breast cancer. Proc Am Assoc Cancer Res 2002; 43:LB 12 (meeting abstract).

    Google Scholar 

  61. Moulder SL, Yakes FM, Muthuswamy SK, Bianco R, Simpson JF, Arteaga CL. Epidermal growth factor receptor (HER1) tyrosine kinase inhibitor ZD1839 (Iressa) inhibits HER2/neu (erbB2)overexpressing breast cancer cells in vitro and in vivo. Cancer Res. 2001; 61:8887–8895.

    PubMed  CAS  Google Scholar 

  62. Moasser MM, Basso A, Averbuch SD, Rosen N. The tyrosine kinase inhibitor ZD1839 (“Iressa”) inhibits HER2-driven signaling and suppresses the growth of HER2-overexpressing tumor cells. Cancer Res 2001; 61:7184–8.

    PubMed  CAS  Google Scholar 

  63. Ye D, Mendelsohn J, Fan Z. Augmentation of a humanized anti-HER2 mAb 4D5 induced growth inhibition by a human-mouse chimeric anti-EGF receptor mAb C225 Oncogene 1999; 18:731–738.

    Google Scholar 

  64. Albanell J, Rojo F, Averbuch S, et al. Pharmacodynamic studies of the epidermal growth factor receptor inhibitor ZD1839 in skin from cancer patients: histopathologic and molecular consequences of receptor inhibition. J.Clin.Oncol. 2002; 20:110–124.

    Article  PubMed  CAS  Google Scholar 

  65. Baselga J, Rischin D, Ranson M, et al. Phase I Safety, Pharmacokinetic, and Pharmacodynamic Trial of ZD1839, a Selective Oral Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor, in Patients With Five Selected Solid Tumor Types. J Clin Oncol 2002; 20:4292–4302.

    Article  PubMed  CAS  Google Scholar 

  66. Lee H, Akita RW, Sliwkowski MX, Maihle NJ. A naturally occurring secreted human ErbB3 receptor isoform inhibits heregulin-stimulated activation of ErbB2, ErbB3, and ErbB4. Cancer Res 2001; 61:4467–73.

    PubMed  CAS  Google Scholar 

  67. Mendoza N, Phillips GL, Silva J, Schwall R, Wickramasinghe D. Inhibition of Ligand-mediated HER2 Activation in Androgen-independent Prostate Cancer. Cancer Res 2002; 62:5485–8.

    PubMed  CAS  Google Scholar 

  68. Sliwkowski MX, Schaefer G, Akita RW, et al. Coexpression of erbB2 and erbB3 proteins reconstitutes a high affinity receptor for heregulin. J Biol Chem 1994; 269:14661–14665.

    PubMed  CAS  Google Scholar 

  69. Jackson J, St Clair P, Sliwkowski M, Brattain M. Blockade of ErbB2 activation with the anti-ErbB2 monoclonal antibody 2C4 has divergent downstream signaling and growth effects following stimulation by epidermal growth factor or heregulin. Proc Am Assoc Cancer Res 2002; 43:4123a.

    Google Scholar 

  70. Lewis-Phillips G, Totpal K, Kang K, Crocker L, Schwall R, Sliwkowski M. In vitro and in vivo efficacy of a novel HER2 antibody, rhuMAb 2C4, on human breast and lung tumor cells. Proc Am Assoc Cancer Res 2002; 43:3556 (meeting abstract).

    Google Scholar 

  71. Totpal K, Lewis G, Baiter I, Sliwkowski M. Augmentation of rhuMAb2C4 induced growth inhibition by TARCEVATM the EGFR tyrosine kinase inhibitor on human breast cancer cell line. Proc Am Assoc Cancer Res 2002; 43:3889 (meeting abstract).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Albanell, J., Codony, J., Rovira, A., Mellado, B., Gascón, P. (2003). Mechanism of Action of Anti-HER2 Monoclonal Antibodies: Scientific Update on Trastuzumab and 2C4. In: Llombart-Bosch, A., Felipo, V. (eds) New Trends in Cancer for the 21st Century. Advances in Experimental Medicine and Biology, vol 532. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0081-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0081-0_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4914-3

  • Online ISBN: 978-1-4615-0081-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics