Skip to main content

Advertisement

Log in

Luliconazole Nail Lacquer for the Treatment of Onychomycosis: Formulation, Characterization and In Vitro and Ex Vivo Evaluation

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Onychomycosis is the most common fungal infection of the nail affecting the skin under the fingertips and the toes. Currently, available therapy for onychomycosis includes oral and topical therapies, either alone or in combination. Oral antifungal medication has been associated with poor drug bioavailability and potential gastrointestinal and systemic side effects. The objective of this study was to prepare and evaluate the luliconazole nail lacquer (LCZ-NL) for the effective treatment of onychomycosis. In the current work, LCZ-NL was formulated in combination with penetration enhancers to overcome poor penetration. A 32 full factorial formulation design of experiment (DOE) was applied for optimization of batches with consideration of dependent (drying time, viscosity, and rate of drug diffusion) and independent (solvent ratio and film former ratio) variables. The optimized formulation was selected based on drying time, viscosity, and rate of drug diffusion. The optimized formulation was further evaluated for % non-volatile content assay, smoothness of flow, water resistance, drug content, scanning electron microscope (SEM), atomic force microscope (AFM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), in vitro drug release, ex vivo transungual permeation, antifungal efficacy, and stability study. The optimized LCZ-NL contained 70:30 solvent ratio and 1:1 film former ratio and was found to have ~ 1.79-fold higher rate of drug diffusion in comparison with LULY™. DSC and XRD studies confirmed that luliconazole retains its crystalline property in the prepared formulation. Antifungal study against Trichophyton spp. showed that LCZ-NL has comparatively higher growth inhibition than LULY™. Hence, developed LCZ-NL can be a promising topical drug delivery system for treating onychomycosis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

NL:

Nail lacquers

LCZ:

Luliconazole

LCZ-NL:

Luliconazole NL

AFM:

Atomic force microscope

SEM:

Scanning electron microscope

XRD:

X-ray diffraction

DSC:

Differential scanning calorimetry

T. rubrum :

Trichophyton rubrum

T. mentagrophytes :

Trichophyton mentagrophytes

USFDA:

United States Food and Drug Administration

HPC-EF:

Hydroxypropyl cellulose EF

HEF:

Hydration enhancement factor

References

  1. Kataria P, Sharma G, Thakur K, Bansal V, Dogra S, Katare OP. Emergence of nail lacquers as potential transungual delivery system in the management of onchomycosis. Expert Opin Drug Deliv. 2016;13:937–52. https://doi.org/10.1080/17425247.2016.1174691.

    Article  CAS  PubMed  Google Scholar 

  2. Lipner SR, Scher RK. Onychomycosis: Clinical overview and diagnosis. J Am Acad Dermatol. 2019;80:835–51. https://doi.org/10.1016/j.jaad.2018.03.062.

    Article  PubMed  Google Scholar 

  3. Akhtar N, Sharma H, Pathak K. Onychomycosis: potential of nail lacquers in transungual delivery of antifungals. Scientifica (Cairo). 2016;2016:1387936. https://doi.org/10.1155/2016/1387936.

    Article  CAS  Google Scholar 

  4. Ghannoum MA, Hajjeh RA, Scher R, Konnikov N, Gupta AK, Summerbell R, et al. A large-scale North American study of fungal isolates from nails: the frequency of onychomycosis, fungal distribution, and antifungal susceptibility patterns. J Am Acad Dermatol. 2000;43:641–8. https://doi.org/10.1067/mjd.2000.107754.

    Article  CAS  PubMed  Google Scholar 

  5. Beuscher TL, Kelechi TJ. Onychomycosis: diagnosis, treatment, and prevention. J Wound Ostomy Continence Nurs. 2019;46:333–5. https://doi.org/10.1097/won.0000000000000556.

    Article  PubMed  Google Scholar 

  6. Elewski BE. Onychomycosis: pathogenesis, diagnosis, and management. Clin Microbiol Rev. 1998;11:415–29. https://doi.org/10.1128/cmr.11.3.415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kaul S, Yadav S, Dogra S. Treatment of dermatophytosis in elderly, children, and pregnant women. Indian Dermatol Online J. 2017;8:310–8. https://doi.org/10.4103/idoj.IDOJ_169_17.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Eba M, Njunda AL, Mouliom RN, Kwenti ET, Fuh AN, Nchanji GT, et al. Onychomycosis in diabetic patients in Fako Division of Cameroon: prevalence, causative agents, associated factors and antifungal sensitivity patterns. BMC Res Notes. 2016;9:494. https://doi.org/10.1186/s13104-016-2302-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gupta AK, Stec N, Summerbell RC, Shear NH, Piguet V, Tosti A, et al. Onychomycosis: a review. J Eur Acad Dermatol Venereol. 2020;34:1972–90. https://doi.org/10.1111/jdv.16394.

    Article  CAS  PubMed  Google Scholar 

  10. Tolstrup J, Jemec GB, Hare RK, Arendrup MC, Saunte DM. Diagnosing and treating of onychomycosis. Ugeskr Laeger. 2018;180:1–5.

  11. Negi S, Chaudhuri A, Kumar DN, Dehari D, Singh S, Agrawal AK. Nanotherapeutics in autophagy: a paradigm shift in cancer treatment. Drug Deliv Transl Res. 2022. https://doi.org/10.1007/s13346-022-01125-6.

    Article  PubMed  Google Scholar 

  12. Wiederhold NP, Fothergill AW, McCarthy DI, Tavakkol A. Luliconazole demonstrates potent in vitro activity against dermatophytes recovered from patients with onychomycosis. Antimicrob Agents Chemother. 2014;58:3553–5. https://doi.org/10.1128/aac.02706-13.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Vaezi A, Fakhim H, Arastehfar A, Shokohi T, Hedayati MT, Khodavaisy S, et al. In vitro antifungal activity of amphotericin B and 11 comparators against Aspergillus terreus species complex. Mycoses. 2018;61:134–42. https://doi.org/10.1111/myc.12716.

    Article  CAS  PubMed  Google Scholar 

  14. Anjum MM, Patel KK, Dehari D, Pandey N, Tilak R, Agrawal AK, et al. Anacardic acid encapsulated solid lipid nanoparticles for Staphylococcus aureus biofilm therapy: chitosan and DNase coating improves antimicrobial activity. Drug Deliv Transl Res. 2021;11:305–17. https://doi.org/10.1007/s13346-020-00795-4.

    Article  CAS  PubMed  Google Scholar 

  15. Dhamoon RK, Goyal RK, Popli H, Gupta M. Luliconazole-loaded thermosensitive hydrogel as aqueous based nail lacquer for the treatment of onychomycosis. Drug Deliv Lett. 2019;9:321–9.

    Article  CAS  Google Scholar 

  16. Elsayed MM. Development of topical therapeutics for management of onychomycosis and other nail disorders: a pharmaceutical perspective. J Control Release. 2015;199:132–44. https://doi.org/10.1016/j.jconrel.2014.11.017.

    Article  CAS  PubMed  Google Scholar 

  17. Gupta AK, Foley KA, Versteeg SG. New antifungal agents and new formulations against dermatophytes. Mycopathologia. 2017;182:127–41. https://doi.org/10.1007/s11046-016-0045-0.

    Article  CAS  PubMed  Google Scholar 

  18. Das S, Lee SH, Chia VD, Chow PS, Macbeath C, Liu Y, et al. Development of microemulsion based topical ivermectin formulations: pre-formulation and formulation studies. Colloids Surf B Biointerfaces. 2020;189: 110823. https://doi.org/10.1016/j.colsurfb.2020.110823.

    Article  CAS  PubMed  Google Scholar 

  19. Kumar DN, Chaudhuri A, Aqil F, Dehari D, Munagala R, Singh S, et al. Exosomes as emerging drug delivery and diagnostic modality for breast cancer: recent advances in isolation and application. Cancers (Basel). 2022;14. https://doi.org/10.3390/cancers14061435

  20. Nedyalkova MA, Madurga S, Tobiszewski M, Simeonov V. Calculating the partition coefficients of organic solvents in octanol/water and octanol/air. J Chem Inf Model. 2019;59:2257–63. https://doi.org/10.1021/acs.jcim.9b00212.

    Article  CAS  PubMed  Google Scholar 

  21. Harde H, Agrawal AK, Jain S. Tetanus toxoid-loaded layer-by-layer nanoassemblies for efficient systemic, mucosal, and cellular immunostimulatory response following oral administration. Drug Deliv Transl Res. 2015;5:498–510. https://doi.org/10.1007/s13346-015-0247-x.

    Article  CAS  PubMed  Google Scholar 

  22. Jain S, Sharma JM, Agrawal AK, Mahajan RR. Surface stabilized efavirenz nanoparticles for oral bioavailability enhancement. J Biomed Nanotechnol. 2013;9(11):1862–74. https://doi.org/10.1166/jbn.2013.1683.

    Article  CAS  PubMed  Google Scholar 

  23. Gade S, Patel KK, Gupta C, Anjum MM, Deepika D, Agrawal AK, et al. An Ex Vivo evaluation of moxifloxacin nanostructured lipid carrier enriched in situ gel for transcorneal permeation on goat cornea. J Pharm Sci. 2019;108:2905–16. https://doi.org/10.1016/j.xphs.2019.04.005.

    Article  CAS  PubMed  Google Scholar 

  24. Patel KK, Gade S, Anjum M, Singh SK, Maiti P, Agrawal AK, et al. Effect of penetration enhancers and amorphization on transdermal permeation flux of raloxifene-encapsulated solid lipid nanoparticles: an ex vivo study on human skin. Appl Nanosci. 2019;9:1383–94.

    Article  CAS  Google Scholar 

  25. Khengar RH, Jones SA, Turner RB, Forbes B, Brown MB. Nail swelling as a pre-formulation screen for the selection and optimisation of ungual penetration enhancers. Pharm Res. 2007;24:2207–12. https://doi.org/10.1007/s11095-007-9368-3.

    Article  CAS  PubMed  Google Scholar 

  26. Chouhan P, Saini TR. Hydration of nail plate: a novel screening model for transungual drug permeation enhancers. Int J Pharm. 2012;436:179–82. https://doi.org/10.1016/j.ijpharm.2012.06.020.

    Article  CAS  PubMed  Google Scholar 

  27. Carvajal-Vidal P, González-Pizarro R, Araya C, Espina M, Halbaut L, Gómez de Aranda I, et al. Nanostructured lipid carriers loaded with halobetasol propionate for topical treatment of inflammation: development, characterization, biopharmaceutical behavior and therapeutic efficacy of gel dosage forms. Int J Pharm. 2020;585:119480.

    Article  CAS  PubMed  Google Scholar 

  28. Aggarwal R, Targhotra M, Sahoo P, Chauhan MK. Efinaconazole nail lacquer for the transungual drug delivery: Formulation, optimization, characterization and in vitro evaluation. Journal of Drug Delivery Science Technology. 2020;60: 101998. https://doi.org/10.1016/j.jddst.2020.101998.

    Article  CAS  Google Scholar 

  29. Thatai P, Sapra B. Transungual Gel of Terbinafine hydrochloride for the management of onychomycosis: formulation, optimization, and evaluation. AAPS PharmSciTech. 2017;18:2316–28. https://doi.org/10.1208/s12249-017-0711-7.

    Article  CAS  PubMed  Google Scholar 

  30. Patel MM, Vora ZM. Formulation development and optimization of transungual drug delivery system of terbinafine hydrochloride for the treatment of onychomycosis. Drug Deliv Transl Res. 2016;6:263–75. https://doi.org/10.1007/s13346-016-0287-x.

    Article  CAS  PubMed  Google Scholar 

  31. Souza AMS, Ribeiro RCA, Pinheiro G, Pinheiro FI, Oliveira WN, Souza L, et al. Polishing the therapy of onychomycosis induced by candida spp.: amphotericin B-Loaded Nail Lacquer. Pharmaceutics. 2021;13. https://doi.org/10.3390/pharmaceutics13060784

  32. Rahman A, Aqil M, Ahad A, Imam SS, Qadir A, Ali A. Application of central composite design for the optimization of itraconazole loaded nail lacquer formulation. 3 Biotech. 2021;11:324.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Joshi M, Sharma V, Pathak K. Matrix based system of isotretinoin as nail lacquer to enhance transungal delivery across human nail plate. Int J Pharm. 2015;478:268–77. https://doi.org/10.1016/j.ijpharm.2014.11.050.

    Article  CAS  PubMed  Google Scholar 

  34. Baghel S, Nair VS, Pirani A, Sravani AB, Bhemisetty B, Ananthamurthy K, et al. Luliconazole-loaded nanostructured lipid carriers for topical treatment of superficial Tinea infections. Dermatol Ther. 2020;33: e13959. https://doi.org/10.1111/dth.13959.

    Article  CAS  PubMed  Google Scholar 

  35. Gregorí Valdes BS, Serro AP, Gordo PM, Silva A, Gonçalves L, Salgado A, et al. New polyurethane nail lacquers for the delivery of terbinafine: formulation and antifungal activity evaluation. J Pharm Sci. 2017;106:1570–7. https://doi.org/10.1016/j.xphs.2017.02.017.

    Article  CAS  PubMed  Google Scholar 

  36. Agrawal P, Singh RP, Sonali Kumari L, Sharma G, Koch B, et al. TPGS-chitosan cross-linked targeted nanoparticles for effective brain cancer therapy. Mater Sci Eng C Mater Biol Appl. 2017;74:167–76. https://doi.org/10.1016/j.msec.2017.02.008.

    Article  CAS  PubMed  Google Scholar 

  37. Patel KK, Surekha DB, Tripathi M, Anjum MM, Muthu MS, Tilak R, et al. Antibiofilm Potential of silver sulfadiazine-loaded nanoparticle formulations: a study on the effect of dnase-i on microbial biofilm and wound healing activity. Mol Pharm. 2019;16:3916–25. https://doi.org/10.1021/acs.molpharmaceut.9b00527.

    Article  CAS  PubMed  Google Scholar 

  38. Repka MA, O’Haver J, See CH, Gutta K, Munjal M. Nail morphology studies as assessments for onychomycosis treatment modalities. Int J Pharm. 2002;245:25–36. https://doi.org/10.1016/s0378-5173(02)00321-6.

    Article  CAS  PubMed  Google Scholar 

  39. Pawde DM, Viswanadh MK, Mehata AK, Sonkar R, Narendra Poddar S, et al. Mannose receptor targeted bioadhesive chitosan nanoparticles of clofazimine for effective therapy of tuberculosis. Saudi Pharm J. 2020;28:1616–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shaikh MS, Kale MA, Shaikh MM, Mahaparale PR. Formulation, characterization and antimicrobial studies of lyophilized luliconazole nanosuspension for enhancing solubility using modified polymer. Int. J. Polym. Mater. Polym. Biomater. 2021;1–15. https://doi.org/10.1080/00914037.2021.1879077

  41. Kushwah V, Katiyar SS, Agrawal AK, Gupta RC, Jain S. Co-delivery of docetaxel and gemcitabine using PEGylated self-assembled stealth nanoparticles for improved breast cancer therapy. Nanomedicine. 2018;14:1629–41. https://doi.org/10.1016/j.nano.2018.04.009.

    Article  CAS  PubMed  Google Scholar 

  42. Kumar M, Shanthi N, Mahato AK, Soni S, Rajnikanth PS. Preparation of luliconazole nanocrystals loaded hydrogel for improvement of dissolution and antifungal activity. Heliyon. 2019;5: e01688. https://doi.org/10.1016/j.heliyon.2019.e01688.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mahmood A, Rapalli VK, Waghule T, Gorantla S, Singhvi G. Luliconazole loaded lyotropic liquid crystalline nanoparticles for topical delivery: QbD driven optimization, in-vitro characterization and dermatokinetic assessment. Chem Phys Lipids. 2021;234: 105028. https://doi.org/10.1016/j.chemphyslip.2020.105028.

    Article  CAS  PubMed  Google Scholar 

  44. Patel KK, Tripathi M, Pandey N, Agrawal AK, Gade S, Anjum MM, et al. Alginate lyase immobilized chitosan nanoparticles of ciprofloxacin for the improved antimicrobial activity against the biofilm associated mucoid P. aeruginosa infection in cystic fibrosis. Int J Pharm. 2019;563:30–42.

    Article  CAS  PubMed  Google Scholar 

  45. Koga H, Nanjoh Y, Makimura K, Tsuboi R. In vitro antifungal activities of luliconazole, a new topical imidazole. Med Mycol. 2009;47:640–7. https://doi.org/10.1080/13693780802541518.

    Article  CAS  PubMed  Google Scholar 

  46. Shimamura T, Hasegawa N, Kubota N. Antifungal activity of luliconazole nail solution on in vitro and in vivo onychomycosis model. Med Mycol J. 2016;57:J13–8. https://doi.org/10.3314/mmj.57.J13.

    Article  CAS  PubMed  Google Scholar 

  47. Drug-Bank. Luliconazole. DrugBank Accession Number: DB08933. 2021. https://go.drugbank.com/drugs/DB08933. Accessed 22 July 2021.

  48. Pragya V, Shikha A. Luliconazole emulgel: characterization, preparation, and evaluation. 2021;10:752–63. https://doi.org/10.20959/wjpr20217-20733

  49. Garg AK, Maddiboyina B, Alqarni MHS, Alam A, Aldawsari HM, Rawat P, et al. Solubility enhancement, formulation development and antifungal activity of luliconazole niosomal gel-based system. J Biomater Sci Polym Ed. 2021;32:1009–23. https://doi.org/10.1080/09205063.2021.1892471.

    Article  CAS  PubMed  Google Scholar 

  50. Thatai P, Sapra B. Terbinafine hydrochloride nail lacquer for the management of onychomycosis: formulation, characterization and in vitro evaluation. Ther Deliv. 2018;9:99–119. https://doi.org/10.4155/tde-2017-0069.

    Article  CAS  PubMed  Google Scholar 

  51. Hui X, Shainhouse Z, Tanojo H, Anigbogu A, Markus GE, Maibach HI, et al. Enhanced human nail drug delivery: nail inner drug content assayed by new unique method. J Pharm Sci. 2002;91:189–95. https://doi.org/10.1002/jps.10003.

    Article  CAS  PubMed  Google Scholar 

  52. Cutrin-Gomez E, Anguiano-Igea S, Delgado-Charro MB, Gomez-Amoza JL, Otero-Espinar FJ. Effect of penetration enhancers on drug nail permeability from cyclodextrin/poloxamer-soluble polypseudorotaxane-based nail lacquers. Pharm. 2018;10. https://doi.org/10.3390/pharmaceutics10040273

  53. Miyata Y, Masuda T. Luliconazole as anti-acanthamoeba agent and method for producing the same. WO2017094204A1. Google Patents. 2020. https://patents.google.com/patent/WO2017094204A1/en. Accessed 22 July 2021.

  54. Mehata AK, Dehari D, Ayyannan SR, Muthu MS. X-ray powder diffraction spectroscopy as a robust tool in early predicting bioavailability of pharmaceutical formulation containing polymorphic drug substance. Drug Deliv Lett. 2020;10:250–4. https://doi.org/10.2174/2210303110999200519074306.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi–221005, India, for providing the infrastructure for successful execution of the current project.

Author information

Authors and Affiliations

Authors

Contributions

Deepa Dehari: conceptualization, experimentation literature survey, original draft writing. Abhishesh Kumar Mehata: compilation of data and editing. Vishnu Priya: review and editing. Dharmnath Parbat: literature survey and editing. Deepak Kumar: helped in antimicrobial studies. Anand Kumar Srivastava: Project administration. Ashish Kumar Agrawal: Conceptualization, project administration, overall modification, and correction.

Corresponding authors

Correspondence to Anand Kumar Srivastava or Ashish Kumar Agrawal.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 340 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehari, D., Mehata, A.K., Priya, V. et al. Luliconazole Nail Lacquer for the Treatment of Onychomycosis: Formulation, Characterization and In Vitro and Ex Vivo Evaluation. AAPS PharmSciTech 23, 175 (2022). https://doi.org/10.1208/s12249-022-02324-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02324-7

Keywords

Navigation