Skip to main content
Log in

Anacardic acid encapsulated solid lipid nanoparticles for Staphylococcus aureus biofilm therapy: chitosan and DNase coating improves antimicrobial activity

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Biofilm mediated bacterial infections are the key factors in the progression of infectious diseases due to the evolution of antimicrobial resistance. Traditional therapy involving antibiotics is not adequate enough for treatment of such infections due to the increased resistance triggered by biofilm. To overcome this challenge, we developed anacardic acid (Ana) loaded solid lipid nanoparticles (SLNs), further coated with chitosan and DNase (Ana-SLNs-CH-DNase). The DNase coating was hypothesized to degrade the e-DNA, while chitosan was coated to yield positively charged SLNs with additional adhesion to biofilms. The SLNs were developed using homogenization method and further evaluated for particle size, polydispersity index, zeta potential, and entrapment efficiency. Drug excipient compatibility was confirmed by using FT-IR study, while encapsulation of Ana in SLNs was confirmed by X-ray diffraction study. The SLNs demonstrated sustained release for up to 24 h and excellent stability at room temperature for up to 3 months. The developed SLNs were found non-toxic against human immortalized keratinocyte (HaCaT) cells while demonstrated remarkably higher antimicrobial efficacy against Staphylococcus aureus. Excellent effect of the developed SLNs on minimum biofilm inhibition concentration and minimum biofilm eradication concentration further confirmed the superiority of the developed formulation strategy. A significant (p < 0.05) reduction in biofilm thickness and biomass, as confirmed by confocal laser scanning microscopy, was observed in the case of developed SLNs in comparison with control. Cumulatively, the results suggest the enhanced efficacy of the developed formulation strategy to overcome the biofilm-mediated antimicrobial resistance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Baelo A, Levato R, Julián E, Crespo A, Astola J, Gavaldà J, et al. Disassembling bacterial extracellular matrix with DNase-coated nanoparticles to enhance antibiotic delivery in biofilm infections. J Control Release. 2015;209:150–8.

    Article  CAS  Google Scholar 

  2. Singh B, Vuddanda PR, V MR, Kumar V, Saxena PS, Singh S. Cefuroxime axetil loaded solid lipid nanoparticles for enhanced activity against S. aureus biofilm. Colloids Surf B: Biointerfaces. 2014;121:92–8. https://doi.org/10.1016/j.colsurfb.2014.03.046.

  3. Li P, Chen X, Shen Y, Li H, Zou Y, Yuan G, et al. Mucus penetration enhanced lipid polymer nanoparticles improve the eradication rate of Helicobacter pylori biofilm. J Control Release. 2019;300:52–63. https://doi.org/10.1016/j.jconrel.2019.02.039.

    Article  CAS  PubMed  Google Scholar 

  4. Tan Y, Ma S, Leonhard M, Moser D, Haselmann GM, Wang J, et al. Enhancing antibiofilm activity with functional chitosan nanoparticles targeting biofilm cells and biofilm matrix. Carbohydr Polym. 2018;200:35–42. https://doi.org/10.1016/j.carbpol.2018.07.072.

    Article  CAS  PubMed  Google Scholar 

  5. Alvarado-Gomez E, Martínez-Castañon G, Sanchez-Sanchez R, Ganem-Rondero A, Yacaman MJ, Martinez-Gutierrez F. Evaluation of anti-biofilm and cytotoxic effect of a gel formulation with Pluronic F-127 and silver nanoparticles as a potential treatment for skin wounds. Mater Sci Eng C. 2018;92:621–30. https://doi.org/10.1016/j.msec.2018.07.023.

    Article  CAS  Google Scholar 

  6. Mohammed YHE, Manukumar HM, Rakesh KP, Karthik CS, Mallu P, Qin H-L. Vision for medicine: Staphylococcus aureus biofilm war and unlocking key's for anti-biofilm drug development. Microb Pathog. 2018;123:339–47. https://doi.org/10.1016/j.micpath.2018.07.002.

    Article  CAS  PubMed  Google Scholar 

  7. Suresh MK, Biswas R, Biswas L. An update on recent developments in the prevention and treatment of Staphylococcus aureus biofilms. Int J Med Microbiol. 2019;309(1):1–12. https://doi.org/10.1016/j.ijmm.2018.11.002.

    Article  CAS  PubMed  Google Scholar 

  8. Okshevsky M, Regina VR, Meyer RL. Extracellular DNA as a target for biofilm control. Curr Opin Biotechnol. 2015;33:73–80. https://doi.org/10.1016/j.copbio.2014.12.002.

    Article  CAS  PubMed  Google Scholar 

  9. Khelissa SO, Jama C, Abdallah M, Boukherroub R, Faille C, Chihib N-E. Effect of incubation duration, growth temperature, and abiotic surface type on cell surface properties, adhesion and pathogenicity of biofilm-detached Staphylococcus aureus cells. AMB Express. 2017;7(1):191. https://doi.org/10.1186/s13568-017-0492-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Girish VM, Liang H, Aguilan JT, Nosanchuk JD, Friedman JM, Nacharaju P. Anti-biofilm activity of garlic extract loaded nanoparticles. Nanomedicine. 2019;20:102009. https://doi.org/10.1016/j.nano.2019.04.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shakeri M, Razavi SH, Shakeri S. Carvacrol and astaxanthin co-entrapment in beeswax solid lipid nanoparticles as an efficient nano-system with dual antioxidant and anti-biofilm activities. LWT. 2019;107:280–90. https://doi.org/10.1016/j.lwt.2019.03.031.

    Article  CAS  Google Scholar 

  12. Lin C-H, Chen C-H, Lin Z-C, Fang J-Y. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. J Food Drug Anal. 2017;25(2):219–34. https://doi.org/10.1016/j.jfda.2017.02.001.

    Article  CAS  PubMed  Google Scholar 

  13. Bolla PK, Kalhapure RS, Rodriguez VA, Ramos DV, Dahl A, Renukuntla J. Preparation of solid lipid nanoparticles of furosemide-silver complex and evaluation of antibacterial activity. J Drug Deliv Sci Technol. 2019;49:6–13. https://doi.org/10.1016/j.jddst.2018.10.035.

    Article  CAS  Google Scholar 

  14. Gordillo-Galeano A, Mora-Huertas CE. Solid lipid nanoparticles and nanostructured lipid carriers: a review emphasizing on particle structure and drug release. Eur J Pharm Biopharm. 2018;133:285–308. https://doi.org/10.1016/j.ejpb.2018.10.017.

    Article  CAS  PubMed  Google Scholar 

  15. Garcês A, Amaral MH, Sousa Lobo JM, Silva AC. Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: a review. Eur J Pharm Sci. 2018;112:159–67. https://doi.org/10.1016/j.ejps.2017.11.023.

    Article  CAS  PubMed  Google Scholar 

  16. Fulaz S, Vitale S, Quinn L, Casey E. Nanoparticle–biofilm interactions: the role of the EPS matrix. Trends Microbiol. 2019;27(11):915–26. https://doi.org/10.1016/j.tim.2019.07.004.

    Article  CAS  PubMed  Google Scholar 

  17. Parasa LS, Tumati S, Prasad C, Kumar LCAJIJoPS. In vitro antibacterial activity of culinary spices aniseed, star anise and cinnamon against bacterial pathogens of fish. 2012;4:667–70.

  18. Hamad FB, Mubofu EB. Potential biological applications of bio-based anacardic acids and their derivatives. Int J Mol Sci. 2015;16(4):8569–90. https://doi.org/10.3390/ijms16048569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Muroi H, Nihei K-I, Tsujimoto K, Kubo IJB. Chemistry m. Synergistic effects of anacardic acids and methicillin against methicillin resistant Staphylococcus aureus. Bioorg Med Chem. 2004;12(3):583–7.

    Article  CAS  Google Scholar 

  20. Kubo J, Lee JR, Kubo IJJA, Chemistry F. Anti-Helicobacter pylori agents from the cashew apple. J Agric Food Chem. 1999;47(2):533–7.

    Article  CAS  Google Scholar 

  21. Kubo I, Muroi H, Himejima M, Yamagiwa Y, Mera H, Tokushima K et al. Structure-antibacterial activity relationships of anacardic acids. 1993;41(6):1016–9.

  22. Paramashivappa R, Kumar PP, Vithayathil PJ, Rao AS. Novel method for isolation of major phenolic constituents from cashew (Anacardium occidentale L.) nut shell liquid. J Agric Food Chem. 2001;49(5):2548–51. https://doi.org/10.1021/jf001222j.

    Article  CAS  PubMed  Google Scholar 

  23. Yuliana M, Bich TNT, Faika S, Huynh LH, Soetaredjo FE, Ju YH. Separation and purification of cardol, cardanol and anacardic acid from cashew (Anacardium occidentale L.) nut-shell liquid using a simple two-step column chromatography. J Taiwan Inst Chem Eng. 2014;45(5):2187–93. https://doi.org/10.1016/j.jtice.2014.07.012.

    Article  CAS  Google Scholar 

  24. Luo Y, Teng Z, Li Y, Wang Q. Solid lipid nanoparticles for oral drug delivery: chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake. Carbohydr Polym. 2015;122:221–9. https://doi.org/10.1016/j.carbpol.2014.12.084.

    Article  CAS  PubMed  Google Scholar 

  25. Islan GA, Tornello PC, Abraham GA, Duran N, Castro GR. Smart lipid nanoparticles containing levofloxacin and DNase for lung delivery. Design and characterization. Colloids Surf B: Biointerfaces. 2016;143:168–76. https://doi.org/10.1016/j.colsurfb.2016.03.040.

    Article  CAS  PubMed  Google Scholar 

  26. Butani D, Yewale C, Misra A. Topical amphotericin B solid lipid nanoparticles: design and development. Colloids Surf B: Biointerfaces. 2016;139:17–24. https://doi.org/10.1016/j.colsurfb.2015.07.032.

    Article  CAS  PubMed  Google Scholar 

  27. Ayan AK, Yenilmez A, Eroglu H. Evaluation of radiolabeled curcumin-loaded solid lipid nanoparticles usage as an imaging agent in liver-spleen scintigraphy. Mater Sci Eng C. 2017;75:663–70. https://doi.org/10.1016/j.msec.2017.02.114.

    Article  CAS  Google Scholar 

  28. Siewert M, Dressman J, Brown CK, Shah VP, Aiache J-M, Aoyagi N, et al. FIP/AAPS guidelines to dissolution/in vitro release testing of novel/special dosage forms. AAPS PharmSciTech. 2003;4(1):43–52. https://doi.org/10.1208/pt040107.

    Article  CAS  PubMed Central  Google Scholar 

  29. Silva AC, Kumar A, Wild W, Ferreira D, Santos D, Forbes B. Long-term stability, biocompatibility and oral delivery potential of risperidone-loaded solid lipid nanoparticles. Int J Pharm. 2012;436(1):798–805. https://doi.org/10.1016/j.ijpharm.2012.07.058.

    Article  CAS  PubMed  Google Scholar 

  30. Sharma M, Gupta N, Gupta S. Implications of designing clarithromycin loaded solid lipid nanoparticles on their pharmacokinetics, antibacterial activity and safety. RSC Adv. 2016;6(80):76621–31. https://doi.org/10.1039/C6RA12841F.

    Article  CAS  Google Scholar 

  31. Patel KK, Tripathi M, Pandey N, Agrawal AK, Gade S, Anjum MM, et al. Alginate lyase immobilized chitosan nanoparticles of ciprofloxacin for the improved antimicrobial activity against the biofilm associated mucoid P. aeruginosa infection in cystic fibrosis. Int J Pharm. 2019;563:30–42. https://doi.org/10.1016/j.ijpharm.2019.03.051.

    Article  CAS  PubMed  Google Scholar 

  32. Anjum MM, Patel KK, Pandey N, Tilak R, Agrawal AK, Singh S. Development of anacardic acid/hydroxypropyl-β-cyclodextrin inclusion complex with enhanced solubility and antimicrobial activity. J Mol Liq. 2019;112085:112085. https://doi.org/10.1016/j.molliq.2019.112085.

    Article  CAS  Google Scholar 

  33. Patel KK, Surekha DB, Tripathi M, Anjum MM, Muthu MS, Tilak R, et al. Antibiofilm potential of silver sulfadiazine-loaded nanoparticle formulations: a study on the effect of DNase-I on microbial biofilm and wound healing activity. Mol Pharm. 2019;16(9):3916–25. https://doi.org/10.1021/acs.molpharmaceut.9b00527.

    Article  CAS  PubMed  Google Scholar 

  34. Patel KK, Agrawal AK, Anjum MM, Tripathi M, Pandey N, Bhattacharya S, et al. DNase-I functionalization of ciprofloxacin-loaded chitosan nanoparticles overcomes the biofilm-mediated resistance of Pseudomonas aeruginosa. Appl Nanosci. 2019;10:563–75. https://doi.org/10.1007/s13204-019-01129-8.

    Article  CAS  Google Scholar 

  35. Jain A, Thakur K, Sharma G, Kush P, Jain UK. Fabrication, characterization and cytotoxicity studies of ionically cross-linked docetaxel loaded chitosan nanoparticles. Carbohydr Polym. 2016;137:65–74. https://doi.org/10.1016/j.carbpol.2015.10.012.

    Article  CAS  PubMed  Google Scholar 

  36. Nafee N, Husari A, Maurer CK, Lu C, de Rossi C, Steinbach A, et al. Antibiotic-free nanotherapeutics: ultra-small, mucus-penetrating solid lipid nanoparticles enhance the pulmonary delivery and anti-virulence efficacy of novel quorum sensing inhibitors. J Control Release. 2014;192:131–40. https://doi.org/10.1016/j.jconrel.2014.06.055.

    Article  CAS  PubMed  Google Scholar 

  37. Shah P, Bush A, Canny G, Colin A, Fuchs H, Geddes D, et al. Recombinant human DNase I in cystic fibrosis patients with severe pulmonary disease: a short-term, double-blind study followed by six months open-label treatment. Eur Respir J. 1995;8(6):954–8.

    CAS  PubMed  Google Scholar 

  38. Messiaen A-S, Forier K, Nelis H, Braeckmans K, Coenye T. Transport of nanoparticles and tobramycin-loaded liposomes in Burkholderia cepacia complex biofilms. PLoS ONE. 2013;8(11):e79220. https://doi.org/10.1371/journal.pone.0079220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the Department of Science & Technology (DST), grant no: DST/SSTP/UP/2013-14/12TH PLAN/132, Government of India. The authors would also like to acknowledge the Central Instrument Facility Centre (CIFC), Indian Institute of Technology (Banaras Hindu University), Varanasi, for providing the instrument facilities

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ashish Kumar Agrawal or Sanjay Singh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in the present work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 134 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anjum, M.M., Patel, K.K., Dehari, D. et al. Anacardic acid encapsulated solid lipid nanoparticles for Staphylococcus aureus biofilm therapy: chitosan and DNase coating improves antimicrobial activity. Drug Deliv. and Transl. Res. 11, 305–317 (2021). https://doi.org/10.1007/s13346-020-00795-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-020-00795-4

Keywords

Navigation