Skip to main content
Log in

The Stern-Gerlach experiment revisited

  • Published:
The European Physical Journal H Aims and scope Submit manuscript

Abstract

The Stern-Gerlach-Experiment (SGE) performed in 1922 is a seminal benchmark experiment of quantum physics providing evidence for several fundamental properties of quantum systems. Based on the knowledge of today we illustrate the different benchmark results of the SGE for the development of modern quantum physics and chemistry. The SGE provided the first direct experimental evidence for angular momentum quantization in the quantum world and therefore also for the existence of directional quantization of all angular momenta in the process of measurement. Furthermore, it measured for the first time a ground state property of an atom, it produced for the first time a fully “spin-polarized” atomic beam, and it also revealed the electron spin, even though this was not realized at the time. The SGE was the first fully successful molecular beam experiment where the kinematics of particles can be determined with high momentum-resolution by beam measurements in vacuum. This technique provided a kind of new kinematic microscope with which inner atomic or nuclear properties could be investigated. Historical facts of the original SGE are described together with early attempts by Einstein, Ehrenfest, Heisenberg, and others to reveal the physical processes creating directional quantization in the SGE. Heisenberg’s and Einstein’s proposals of an improved multi-stage SGE are presented. The first realization of these proposed experiments by Stern, Phipps, Frisch and Segrè is described. The experimental set-up suggested by Einstein can be considered as an anticipation of a Rabi-apparatus with varying fields. Recent theoretical work by Wennerström and Westlund, by Devereux and others, is mentioned in which the directional quantization process and possible interference effects of the two different spin states are investigated. In full agreement with the results of the new quantum theory directional quantization appears as a general and universal feature of quantum measurements. One experimental example for such directional quantization in scattering processes is shown. Last not least, the early history of the “almost” discovery of the electron spin in the SGE is revisited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aaserud, F. and J.L. Heilbronn. 2013. Love, Literature, and the Quantum Atom. Oxford: Oxford University Press.

  2. Aston, F. 1919. A positive ray spectrograph. Phil. Mag. 38: 707-714.

    Article  Google Scholar 

  3. Bacciagaluppi, G. and A. Valentini. 2009. Quantum Theory at the Crossroads. Reconsidering the 1927 Solvay Conference. Cambridge: Cambridge University Press.

  4. Barnett, S. 1915. Magnetization by Rotation. Phys. Rev. 6: 239-270.

    Article  ADS  Google Scholar 

  5. Bernstein, J. 2010. The Stern-Gerlach Experiment. arXiv:1007.2435.

  6. Bohm, A. 1993. Quantum Mechanics. Foundations and Applications. New York: Springer.

  7. Bohm, D. 1951. Quantum theory. Englewood Cliffs, NJ: Prentice-Hall.

  8. Bohr, N. 1913a. On the Constitution of Atoms and Molecules. Phil. Mag. 26(151): 1-25.

    Article  MathSciNet  MATH  Google Scholar 

  9. Bohr, N. 1913b. On the Constitution of Atoms and Molecules. Part II. Systems containing only a Single Nucelus. Phil. Mag. 26(153): 476-502.

    Article  Google Scholar 

  10. Bohr, N. 1913c. On the Constitution of Atoms and Molecules. Part III. Systems containing Several Nuclei. Phil. Mag. 26: 857-875.

    Article  Google Scholar 

  11. Bohr, N. 1949. Discussion with Einstein on Epistemological Problems in Modern Physics. In Schilpp, P.A., editor, Albert Einstein Philosopher–Scientist, pp. 199-242. La Salle, Ill.: Open Court.

  12. Born, M. 1920. Die Relativitätstheorie Einsteins und ihre physikalischen Grundlagen. Berlin (u.a.): Springer.

  13. Compton, A.H. 1921. The magnetic electron. Frank. Inst. J. 192(2): 145-155.

    Article  Google Scholar 

  14. Dahms, H.-J. 2002. Appointment Politics and the Rise of Modern Theoretical Physics at Göttingen. In Rupke, N., editor, Göttingen and the Development of the Natural Sciences, pp. 143-157. Göttingen: Wallstein.

  15. Darrigol, O. 1992. From “c”-numbers to “q”-numbers: The classical analogy in the history of quantum theory. Berkeley: Univ. of California Press.

  16. Darwin, C. 1928. Free Motion in the Wave Dynamics. Proc. Royal Soc. London A 117: 258-293.

    Article  ADS  MATH  Google Scholar 

  17. Debye, P. 1916. Quantenhypothese und Zeeman-Effekt. Physikalische Zeitschrift 17(20): 507-512.

    Google Scholar 

  18. Dempster, A. 1918. A New Method of Positive Ray Analysis. Phys. Rev. 11(4): 316-325.

    Article  ADS  Google Scholar 

  19. Devereux, M. 2015. Reduction of the atomic wavefunction in the Stern-Gerlach experiment. Can. J. Phys. 93(11): 1382-1390.

    Article  ADS  Google Scholar 

  20. Eckert, M. 2013. Arnold Sommerfeld. Atomphysiker und Kulturbote 1868–1951. Eine Biografie. Göttingen: Wallstein.

  21. Einstein, A. 1905. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der Physik 17: 132-148. Reprinted in (Stachel, 1989, Doc. 14, pp. 150–169).

    Article  ADS  MATH  Google Scholar 

  22. Einstein, A. and P. Ehrenfest. 1922. Quantentheoretische Bemerkungen zum Experiment von Stern und Gerlach. Zeitschrift für Physik 11: 31-34. Reprinted in (Kormos Buchwald et al., 2012, Doc. 315).

    Article  ADS  Google Scholar 

  23. Einstein, A. and W.J. De Haas. 1915. Experimenteller Nachweis der Ampèreschen Molekularströme. Deutsche Physikalische Gesellschaft. Verhandlungen 17(8): 152-170.

    ADS  Google Scholar 

  24. Estermann, I. and O. Stern. 1933a. Über die magnetische Ablenkung von isotopen Wasserstoffmolekülen und das magnetische Moment des “Deutons”. Zeitschrift für Physik 86: 132-134.

    Article  ADS  Google Scholar 

  25. Estermann, I. and O. Stern. 1933b. Über die magnetische Ablenkung von Wasserstoffmolekülen und das magnetische Moment des Protons II. Zeitschrift für Physik 85: 17-24.

    Article  ADS  Google Scholar 

  26. Estermann, I. and O. Stern. 1933c. Magnetic moment of the deuton. Nature 133: 911.

    Article  ADS  Google Scholar 

  27. Feynman, R. 1963. The Feynman Lectures on Physics. Addison-Wesley.

  28. Franca, H.M. 2009. The Stern-Gerlach Phenomenon According to Classical Electrodynamics. Foundations Phys. 39: 1177-1190.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. French, A. and E.F. Taylor. 1978. An Introduction to Quantum Physics. Boca Raton, FL: CRC Press.

  30. Fricke, H. (n.d.). 150 Jahre Physikalischer Verein Frankfurt a.M. Ljubljana, Yugoslavia: CGB Delo.

  31. Friedrich, B. and D. Herschbach. 1998. Otto Stern’s Lucky Star. Daedalus 127(1): 165-191.

    Google Scholar 

  32. Friedrich, B. and D. Herschbach. 2003. Stern and Gerlach: How a Bad Cigar Helped Reorient Atomic Physics. Physics Today 56(12): 53-59.

    Article  ADS  Google Scholar 

  33. Friedrich, B. and D. Herschbach. 2005. Stern and Gerlach at Frankfurt: Experimental Proof of Space Quantization. In Trageser, W., editor, Stern-Stunden. Höhepunkte Frankfurter Physik. Frankfurt: University of Frankfurt, Fachbereich Physik.

  34. Frisch, O. and E. Segrè. 1933. Über die Einstellung der Richtungsquantelung. II. Zeitschrift für Physik 80: 610-616.

    Article  ADS  Google Scholar 

  35. Frisch, O. and O. Stern. 1933a. Über die magnetische Ablenkung von Wasserstoffmolekülen und das magnetische Moment des Protons. Leipziger Vorträge 6: 36-42.

    Google Scholar 

  36. Frisch, O. and O. Stern. 1933b. Über die magnetische Ablenkung von Wasserstoffmolekülen und das magnetische Moment des Protons I. Zeitschrift für Physik 85: 4-16.

    Article  ADS  Google Scholar 

  37. Füßl, W., editor 1998. Der wissenschaftliche Nachlaß von Walther Gerlach. München: Deutsches Museum.

  38. Gerlach, W. 1925. Über die Richtungsquantelung im Magnetfeld II. Annalen der Physik 76: 163-197.

    Article  ADS  Google Scholar 

  39. Gerlach, W. 1969a. Otto Stern zum Gedenken. Physikalische Blätter 25(9): 412-413.

    Article  Google Scholar 

  40. Gerlach, W. 1969b. Zur Entdeckung des “Stern-Gerlach-Effektes”. Physikalische Blätter 25(10): 472.

    Article  Google Scholar 

  41. Gerlach, W. and O. Stern. 1921. Der experimentelle Nachweis des magnetischen Moments des Silberatoms. Zeitschrift für Physik 8: 110-111.

    Article  ADS  Google Scholar 

  42. Gerlach, W. and O. Stern. 1922a. Das magnetische Moment des Silberatoms. Zeitschrift für Physik 9: 353-355.

    Article  ADS  Google Scholar 

  43. Gerlach, W. and O. Stern. 1922b. Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld. Zeitschrift für Physik 9: 349-352.

    Article  ADS  Google Scholar 

  44. Gerlach, W. and O. Stern. 1924. Über die Richtungsquantelung im Magnetfeld. Annalen der Physik 74: 673-699.

    Article  ADS  Google Scholar 

  45. Gomis, P. and A. Pérez. 2016. Decoherence effects in the Stern-Gerlach experiment using matrix Wigner functions. Phys. Rev. A 94: 012103.

    Article  ADS  Google Scholar 

  46. Gordon, J., H. Zeiger, and C. Townes. 1955. The Maser-New Type of Microwave Amplifier, Frequency Standard, and Spectrometer. Phys. Rev. 99(4): 1264-1274.

    Article  ADS  Google Scholar 

  47. Güttinger, P. 1932. Das Verhalten von Atomen im magnetischen Drehfeld. Zeitschrift für Physik 73: 169-184.

    Article  ADS  MATH  Google Scholar 

  48. Heinrich, R. and H.-R. Bachmann, editors 1989. Walther Gerlach. Physiker-Lehrer-Organisator. München: Deutsches Museum.

  49. Heisenberg, W. 1922. Zur Quantentheorie der Linienstruktur und der anomalen Zeemaneffekte. Zeitschrift für Physik 8: 273-297.

    Article  ADS  Google Scholar 

  50. Heisenberg, W. 1927. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik 43(3): 172-198.

    Article  ADS  Google Scholar 

  51. Hermansphan, N., H. Haffner, H.-J. Kluge, W. Quint, S. Stahl, J. Verdú and G. Werth. 2000. Observation of the continuous Stern-Gerlach effect on an electron bound in an atomic ion. Phys. Rev. Lett. 84: 427.

    Article  ADS  Google Scholar 

  52. Huber, J.G. 2014. Walther Gerlach (1888–1979) und sein Weg zum erfolgreichen Experimentalphysiker bis etwa 1925. PhD dissertation, LMU München. dated 6 August 2014.

  53. Inguscio, M. 2006. Comment on the scientific paper no. 6: ‘Oriented atoms in a variable magnetic field’. In Bassani, G., editor, Ettore Majorna. Scientific Papers, pp. 133-136. Bologna, Berlin: Società Italiana di Fisica and Springer.

  54. Kellogg, J., I. Rabi, N. Ramsey and J. Zacharias. 1939. The Magnetic Moments of the Proton and the Deuteron. The Radiofrequency Spectrum of H2 in Various Magnetic Fields. Phys. Rev. 56(8): 728-743.

    Article  ADS  Google Scholar 

  55. Kormos Buchwald, D., J. Illy, Z. Rosenkranz and T. Sauer, editors (2012). The Collected Papers of Albert Einstein. Vol.13. The Berlin Years: Writings & Correspondence, January 1922–March 1923. Princeton: Princeton University Press.

  56. Kormos Buchwald, D., J. Illy, Z. Rosenkranz, T. Sauer and O. Moses, editors 2015. The Collected Papers of Albert Einstein. Vol. 14. The Berlin Years: Writings & Correspondence, April 1923–May 1925. Princeton: Princeton University Press.

  57. Kormos Buchwald, D., Z. Rosenkranz, T. Sauer, J. Illy, V.I. Holmes, editors 2009. The Collected Papers of Albert Einstein. Vol. 12. The Berlin Years: Correspondence, January–December 1921. Princeton: Princeton University Press.

  58. Kormos Buchwald, D., T. Sauer, Z. Rosenkranz, J. Illy and V.I. Holmes, editors 2006. The Collected Papers of Albert Einstein. Vol. 10. The Berlin Years: Correspondence, May–December 1920; and Supplementary Correspondence, 1909–1920. Princeton: Princeton University Press.

  59. Kragh, H. 2012. Niels Bohr and the Quantum Atom. The Bohr Model of Atomic Structure 1913–1925. Oxford: Oxford University Press.

  60. Kuhn, T.S. 1978. Black-body theory and the quantum discontinuity, 1894–1912. New York: Oxford University Press.

  61. Landé, A. 1921a. Über den anomalen Zeemaneffekt (II. Teil). Zeitschrift für Physik 7(1): 398-405.

    Article  ADS  Google Scholar 

  62. Landé, A. 1921b. Über den anomalen Zeemaneffekt (Teil I). Zeitschrift für Physik 5(4): 231-241.

    Article  ADS  Google Scholar 

  63. Landé, A. 1924. Schwierigkeiten in der Quantentheore des Atombaues, besonders magnetischer Art. Physikalische Zeitschrift 24(1): 442-444.

    Google Scholar 

  64. Landé, A. 1929. Polarisation von Materiewellen. Die Naturwissenschaften 17(32): 634-637.

    Article  ADS  MATH  Google Scholar 

  65. Langmuir, I. 1925. Thermionic Effects Caused by Vapours of Alkali Metals. Proc. Royal Soc. London A 107: 61-79.

    Article  ADS  Google Scholar 

  66. Mackintosh, A.R. 1983. The Stern-Gerlach experiment, electron spin and intermediate quantum mechanics. Eur. J. Phys. 4: 97-106.

    Article  Google Scholar 

  67. Majorana, E. 1932. Atomi orientati in campo magnetico variabile. Nuevo Cimento 9: 43-50. No. 6 in “Scientific Papers”, ed. Bassani, 2007.

    Article  MATH  Google Scholar 

  68. Mehra, J. and H. Rechenberg, editors 1982. The Historical Development of Quantum Theory. Vol. 1 in 2 parts. The Quantum Theory of Planck, Einstein and Sommerfeld: Its Foundation and the Rise of Its Difficulties 1900–1925. New York, Heidelberg, Berlin: Springer Verlag.

  69. Nida-Rümelin, M., editor 1982. Bibliographie Walther Gerlach. Veröffentlichungen von 1912–1979. München: Deutsches Museum.

  70. Parson, A. 1915. A Magneton Theory of the Structure of the Atom. Smithsonian Miscellaneous Collections 65(11): 1-80. issued November 29, 1915, volume is dated 1916.

    Google Scholar 

  71. Pauli, W. 1979. Wissenschaftlicher Briefwechsel mit Bohr, Einstein Heisenberg u.a. Band 1: 1919–1929. New York: Springer.

  72. Phipps, T.E. and O. Stern. 1932. Über die Einstellung der Richtungsquantelung. Zeitschrift für Physik 73: 185-191.

    Article  ADS  MATH  Google Scholar 

  73. Pié i Valls, B. 2015. L’experiment d’Stern i Gerlach en el seu context teòric: la història d’una reorientació. Ph.D. thesis, Universitat de Barcelona. English summary and conclusions in Chap. 7, pp. 209-222.

  74. Planck, M. 1899. Über irreversible Strahlungsvorgänge (Fünfte Mittheilung/Schluss). Königlich Preußische Akademie der Wissenschaften (Berlin). Sitzungsberichte 25: 440-480.

    MATH  Google Scholar 

  75. Platt, D.E. 1990. A modern analysis of the Stern-Gerlach experiment. Amer. J. Phys. 60(4): 306-308.

    Article  ADS  Google Scholar 

  76. Popper, K. 1982. Quantum theory and the schism in physics. Totowa, NJ: Rowman and Littlefield (From the “Postscript to the Logic of Scientific Discovery”, pp. 22-23).

  77. Popper, K. 1989. The Logic of Scientific Discovery.: Hutchinson.

  78. Rabi, I. 1929. Zur Methode der Ablenkung von Molekülstrahlen. Zeitschrift für Physik 54: 190-197.

    Article  ADS  Google Scholar 

  79. Rabi, I., J. Kellogg and J. Zacharias. 1934. The Magnetic Moment of the Proton. Phys. Rev. 46(3): 157-163.

    Article  ADS  Google Scholar 

  80. Rabi, I., S. Millman, P. Kusch and J. Zacharias. 1939. The Molecular Beam Resonance Method for Measuring Nuclear Magnetic Moments. The Magnetic Moments of 3Li6, 3Li7 and 9F19. Phys. Rev. 55(6): 526-535.

    Article  ADS  Google Scholar 

  81. Reinisch, G. 1999. Stern-Gerlach experiment as the pioneer – and probably the simplest – quantum entanglement test? Phys. Lett. A 259: 427-430.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  82. Ribeiro, J.E.A. 2010. Was the Stern-Gerlach Phenomenon Classically Described? Foundations Phys. 40: 1779-1782.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  83. Sackur, O. 1911. Die Anwendung der kinetischen Theorie der Gase auf chemische Probleme. Annalen der Physik 36: 958-980.

    Article  ADS  MATH  Google Scholar 

  84. Sackur, O. 1913. Die universelle Bedeutung des sog. elementaren Wirkungsquantums. Annalen der Physik 40: 67-86.

    Article  ADS  MATH  Google Scholar 

  85. Sauer, T. 2016. Multiple Perspectives on the Stern-Gerlach Experiment. In Sauer, T. and Scholl, R., editors, The Philosophy of Historical Case Studies, pp. 251-263. Springer.

  86. Schmidt, L., C. Goihl, D. Metz, H. Schmidt-Böcking, R. Dörner, S. Ovchinnikov, J. Macek and D. Schultz. 2014. Vortices Associated with the Wave Function of a Single Electron Emitted in Slow Ion-Atom Collisions. Phys. Rev. Lett. 112: 083201.

    Article  ADS  Google Scholar 

  87. Schmidt-Böcking, H. and K. Reich. 2011. Otto Stern. Physiker, Querdenker, Nobelpreisträger. Frankfurt/Main: Societäts-Verlag.

  88. Schütz, W. 1969. Persönliche Erinnerungen an die Entdeckung des Stern-Gerlach-Effektes. Physikalische Blätter 25(8): 343-345.

    Article  Google Scholar 

  89. Schwinger, J. 2001. Quantum mechanics: symbolism of atomic measurements. Edited by Bertold-Georg Englert. Berlin: Springer.

  90. Scully, M.O., Lamb, Willis E., J., and A. Barut. 1987. On the Theory of the Stern-Gerlach Apparatus. Foundations Phys. 17(6): 575-583.

    Article  ADS  MathSciNet  Google Scholar 

  91. Scully, M.O., R. Shea, and J. McCullen. 1978. State reduction in quantum mechanics: a calculational example. Phys. Rep. 43(13): 485-498.

    Article  ADS  Google Scholar 

  92. Segrè, E. 1993. A mind always in motion. The autobiography of Emilio Segrè. Berkeley: University of California Press.

  93. Sommerfeld, A. 1916. Zur Theorie des Zeeman-Effekts der Wasserstofflinien, mit einem Anhang über den Stark. Physikalische Zeitschrift 17(20): 491-507.

    Google Scholar 

  94. Sommerfeld, A. 1920a. Allgemeine spektroskopische Gesetze, insbesondere ein magnetooptischer Zerlegungssatz. Annalen der Physik 63: 221-263.

    Article  ADS  Google Scholar 

  95. Sommerfeld, A. 1920b. Ein Zahlenmysterium in der Theorie des Zeeman-Effektes. Die Naturwissenschaften 8(4): 61-64.

    Article  ADS  Google Scholar 

  96. Sommerfeld, A. 1921. Atombau und Spektrallinien. Braunschweig: Vieweg.

  97. Sommerfeld, A. 1924. Atombau und Spektrallinien. Braunschweig: Vieweg.

  98. Stern, O. 1920a. Eine direkte Messung der thermischen Molekulargeschwindigkeit. Zeitschrift für Physik 2: 49-56.

    Article  ADS  Google Scholar 

  99. Stern, O. 1920b. Eine direkte Messung der thermischen Molekulargeschwindigkeit. Physikalische Zeitschrift 21: 582.

    Google Scholar 

  100. Stern, O. 1920c. Nachtrag zu meiner Arbeit: “Eine direkte Messung der thermischen Molekulargeschwindigkeit”. Zeitschrift für Physik 3: 417-421.

    Article  ADS  Google Scholar 

  101. Stern, O. 1921. Ein Weg zur experimentellen Prüfung der Richtungsquantelung. Zeitschrift für Physik 7: 249-253.

    Article  ADS  Google Scholar 

  102. Stuewer, R.H. 1975. The Compton effect: turning point in physics. New York: Science History Publications.

  103. Tetrode, H. 1912a. Die chemische Konstante der Gase und das elementare Wirkungsquantum. Annalen der Physik 38: 434-442.

    Article  ADS  MATH  Google Scholar 

  104. Tetrode, H. 1912b. Die chemische Konstante der Gase und das elementare Wirkungsquantum II. Annalen der Physik 39: 255-256.

    Article  ADS  MATH  Google Scholar 

  105. Toennies, J.P., H. Schmidt-Böcking, B. Friedrich and J.C. Lower. 2011. Otto Stern (1888–1969): The founding father of experimental atomic physics. Annalen der Physik 523(12): 1045-1070.

    Article  ADS  MATH  Google Scholar 

  106. Tomonaga, S.-I. 1997. The Story of Spin. Chicago: The University of Chicago Press.

  107. Trageser, W. 2011. Der Stern-Gerlach-Effekt. Genese, Entwicklung und Rekonstruktion eines Grundexperimentes der Quantentheorie 1916–1926. Ph.D. Thesis, Johann Wolfgang Goethe-Universität Frankfurt.

  108. Unna, I. and T. Sauer. 2013. Einstein, Ehrenfest, and the quantum measurement problem. Annalen der Physik 525(1-2): A15-A19.

    Article  ADS  MATH  Google Scholar 

  109. Weinert, F. 1995. Wrong Theory – Right Experiment: The Significance of the Stern-Gerlach Experiments. Stud. Hist. Phil. Mod. Phys. 26(1): 75-86.

    Article  MathSciNet  MATH  Google Scholar 

  110. Wennerström, H. and P. Westlund. 2012. The Stern-Gerlach experiment and the effects of spin relaxation. Phys. Chem. Chem. Phys. 14: 1677-1684.

    Article  Google Scholar 

  111. Wennerström, H. and P. Westlund. 2013. On Stern-Gerlach coincidence measruements and their applications to Bell’s theorem. Physics Essays 26: 174-180.

    Article  ADS  Google Scholar 

  112. Wennerström, H. and P. Westlund. 2014. Interpretation versus explanation in the description of the Stern-Gerlach experiment. preprint.

  113. Zeeman, P. 1896. Over den Invloed eener Magnetisatie op den Aard van het door een Stof uitgezonden Licht. Koninklijke Akademie van Wetenschappen te Amsterdam. Section of Sciences. Proceedings.

  114. Zeeman, P. 1897. On the Influence of Magnetism on the Nature of the Light Emitted by a Substance. Phil. Mag. 43: 226-239.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Schmidt-Böcking.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt-Böcking, H., Schmidt, L., Lüdde, H.J. et al. The Stern-Gerlach experiment revisited. EPJ H 41, 327–364 (2016). https://doi.org/10.1140/epjh/e2016-70053-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjh/e2016-70053-2

Navigation