Skip to main content
Log in

TALYS: modeling of nuclear reactions

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

An Erratum to this article was published on 05 July 2023

This article has been updated

Abstract

TALYS is a software package for the simulation of nuclear reactions below 200 MeV. It is used worldwide for the analysis and prediction of nuclear reactions and is based on state-of-art nuclear structure and nuclear reaction models. A general overview of the implemented physics and capabilities of TALYS is given. The general nuclear reaction mechanisms described are the optical model, direct reactions, compound nucleus model, pre-equilibrium reactions and fission. The most important nuclear structure models are those for masses, discrete levels, level densities, photon strength functions and fission barriers. A wide variety of nuclear reactions simulated with TALYS will be demonstrated, ranging from low-energy neutron cross sections, astrophysics, high-energy charged particle reactions and other reactions. TALYS is a nuclear reaction software which aims to give a complete description of nuclear reaction observables, and to be an important link between fundamental nuclear physics and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There is no additional data for this paper. All figures are in the manuscript.]

Change history

References

  1. P.G. Young, E.D. Arthur, M.B. Chadwick, The GNASH nuclear model code. Workshop on Computation and Analysis of Nuclear Data Relevant to Nuclear Energy and Safety, edited by M.K. Mehta and J.J. Schmidt, Feb. 10 - March 13 1992, Trieste, Italy, 622 (1993)

  2. M. Blann, Recent progress and current status of pre-equilibrium reaction theories and computer code ALICE. Workshop on Computation and Analysis of Nuclear Data Relevant to Nuclear Energy and Safety, edited by M.K. Mehta and J.J. Schmidt, Feb. 10 - March 13 1992, Trieste, Italy, 622 (1993)

  3. M. Uhl, B. Strohmaier, Computer code for particle induced activation cross sections and related quantities. IRK Vienna report 76/01 (1976)

  4. M. Herman, R. Capote, B.V. Carlson, P. Oblozinsky, M. Sin, A. Trkov, H. Wienke, V. Zerkin, EMPIRE: Nuclear reaction model code system for data evaluation. Nucl. Data Sheets 108, 2655 (2007)

    ADS  Google Scholar 

  5. J. Raynal, Notes on ECIS94. CEA Saclay Report CEA-N-2772 (1994)

  6. T. Kawano, CoH3: The coupled-channels and Hauser-Feshbach code. Proceedings of the 6th International Workshop on Compound-Nuclear Reactions and Related Topics CNR*18 (2021)

  7. O. Iwamoto, N. Iwamoto, S. Kunieda, F. Minato, K. Shibata, The CCONE code system and its application to nuclear data evaluation for fission and other reactions. Nuclear Data Sheets 131, 259–288 (2016). https://doi.org/10.1016/j.nds.2015.12.004. Special Issue on Nuclear Reaction Data

  8. W.E. Ormand, K. Kravvaris, YAHFC: A code framework to model nuclear reactions and estimate correlated uncertainties. LLNL-TR-821653, Lawrence Livermore Nationa Laboratory (2021)

  9. R. Capote, M. Herman, P. Oblozinsky, P.G. Young, S. Goriely, T. Belgya, A.V. Ignatyuk, A.J. Koning, S. Hilaire, V.A. Plujko, M. Avrigeanu, O. Bersillon, M.B. Chadwick, T. Fukahori, Z. Ge, Y. Han, S. Kailas, J. Kopecky, V.M. Maslov, G. Reffo, M. Sin, E.S. Soukhovitskii, P. Talou, RIPL - Reference Input Parameter Library for calculation of nuclear reactions and nuclear data evaluations. Nucl. Data Sheets 110, 3107 (2009)

    ADS  Google Scholar 

  10. A. Trkov, M. Herman, D.A. Brown, ENDF-6 Formats Manual, Data Formats and Procedures for the Evaluated Nuclear Data Files ENDF/B-VI, ENDF/B-VII and ENDF/B-VIII. CSEWG Document ENDF-102, Report BNL-203218-2018-INRE, SVN Commit: revision 215 (2012)

  11. A.J. Koning, D. Rochman, J.-C. Sublet, N. Dzysiuk, M. Fleming, S. van der Marck, TENDL: Complete nuclear data library for innovative nuclear science and technology. Nucl. Data Sheets 155, 1 (2019)

    ADS  Google Scholar 

  12. A.M. Baldin, Kinematics of Nuclear Reactions (Oxford University Press, Oxford, 1961)

    MATH  Google Scholar 

  13. M.B. Chadwick, P.G. Young, S. Chiba, S.C. Frankle, G.M. Hale, H.G. Hughes, A.J. Koning, R.C. Little, R.E. MacFarlane, R.E. Prael, L.S. Waters, Cross-Section Evaluations to 150 MeV for Accelerator-Driven Systems and Implementation in MCNPX. Nucl. Sci. Eng. 131(3), 293–328 (1999). https://doi.org/10.13182/NSE98-48

    Article  ADS  Google Scholar 

  14. M.B. Chadwick, P.G. Young, R.E. Macfarlane, A.J. Koning, High energy nuclear data libraries for accelerator-driven technologies: Calculational method for heavy recoils. Second International Conference on Accelerator-Driven Transmutation Technologies and Applications, Kalmar, Sweden, June 3-7 1996, 483 (1996)

  15. A.J. Koning, J.P. Delaroche, Local and global nucleon optical models from 1 keV to 200 MeV. Nucl. Phys. A 713(3), 231–310 (2003). https://doi.org/10.1016/S0375-9474(02)01321-0

    Article  ADS  Google Scholar 

  16. C. Mahaux, H. Ngo, G.R. Satchler, Causality and the threshold anomaly of the nucleus-nucleus potential. Nucl. Phys. A 449(2), 354–394 (1986). https://doi.org/10.1016/0375-9474(86)90009-6

    Article  ADS  Google Scholar 

  17. C. Mahaux, R., S., Single-particle motion in nuclei. Adv. Nucl. Phys. 20, 1–223 (1991)

  18. C. Mahaux, R. Sartor, Dispersion relation approach to the mean field and spectral functions of nucleons in 40Ca. Nucl. Phys. A 528(2), 253–297 (1991). https://doi.org/10.1016/0375-9474(91)90090-S

    Article  ADS  Google Scholar 

  19. B. Morillon, P. Romain, Dispersive and global spherical optical model with a local energy approximation for the scattering of neutrons by nuclei from 1 keV to 200 MeV. Phys. Rev. C 70, 014601 (2004). https://doi.org/10.1103/PhysRevC.70.014601

    Article  ADS  Google Scholar 

  20. B. Morillon, P. Romain, Bound single-particle states and scattering of nucleons on spherical nuclei with a global optical model. Phys. Rev. C 76, 044601 (2007). https://doi.org/10.1103/PhysRevC.76.044601

    Article  ADS  Google Scholar 

  21. J.P. Jeukenne, A. Lejeune, C. Mahaux, Many-body theory of nuclear matter. Phys. Rep. 25(2), 83–174 (1976). https://doi.org/10.1016/0370-1573(76)90017-X

    Article  ADS  Google Scholar 

  22. J.-P. Jeukenne, A. Lejeune, C. Mahaux, Optical-model potential in nuclear matter from Reid’s hard core interaction. Phys. Rev. C 10, 1391–1401 (1974). https://doi.org/10.1103/PhysRevC.10.1391

    Article  ADS  Google Scholar 

  23. J.-P. Jeukenne, A. Lejeune, C. Mahaux, Microscopic calculation of the symmetry and Coulomb components of the complex optical-model potential. Phys. Rev. C 15, 10–29 (1977). https://doi.org/10.1103/PhysRevC.15.10

    Article  ADS  Google Scholar 

  24. J.-P. Jeukenne, A. Lejeune, C. Mahaux, Optical-model potential in finite nuclei from Reid’s hard core interaction. Phys. Rev. C 16, 80–96 (1977). https://doi.org/10.1103/PhysRevC.16.80

    Article  ADS  Google Scholar 

  25. E. Bauge, J.P. Delaroche, M. Girod, Semimicroscopic nucleon-nucleus spherical optical model for nuclei with A \(>=\) 40 at energies up to 200 MeV. Phys. Rev. C 58, 1118 (1998)

    ADS  Google Scholar 

  26. E. Bauge, J.P. Delaroche, M. Girod, Lane-consistent, semimicroscopic nucleon-nucleus optical model. Phys. Rev. C 63, 024607 (2001). https://doi.org/10.1103/PhysRevC.63.024607

    Article  ADS  Google Scholar 

  27. S. Goriely, J.-P. Delaroche, The isovector imaginary neutron potential: a key ingredient for the r-process nucleosynthesis. Phys. Lett. B 653, 178 (2007)

    ADS  Google Scholar 

  28. F. Maréchal, T. Suomijärvi, Y. Blumenfeld, A. Azhari, E. Bauge, D. Bazin, J.A. Brown, P.D. Cottle, J.P. Delaroche, M. Fauerbach, M. Girod, T. Glasmacher, S.E. Hirzebruch, J.K. Jewell, J.H. Kelley, K.W. Kemper, P.F. Mantica, D.J. Morrissey, L.A. Riley, J.A. Scarpaci, H. Scheit, M. Steiner, Proton scattering by short lived sulfur isotopes. Phys. Rev. C 60, 034615 (1999). https://doi.org/10.1103/PhysRevC.60.034615

    Article  ADS  Google Scholar 

  29. H. Scheit, F. Maréchal, T. Glasmacher, E. Bauge, Y. Blumenfeld, J.P. Delaroche, M. Girod, R.W. Ibbotson, K.W. Kemper, J. Libert, B. Pritychenko, T. Suomijärvi, Proton scattering by the unstable neutron-rich isotopes \({}^{42,44}{{\rm Ar}}\). Phys. Rev. C 63, 014604 (2000). https://doi.org/10.1103/PhysRevC.63.014604

    Article  ADS  Google Scholar 

  30. E. Khan, T. Suomijärvi, Y. Blumenfeld, N.V. Giai, N. Alamanos, F. Auger, E. Bauge, D. Beaumel, J.P. Delaroche, P. Delbourgo-Salvador, A. Drouart, S. Fortier, N. Frascaria, A. Gilibert, M. Girod, C. Jouanne, K.W. Kemper, A. Lagoyannis, V. Lapoux, A. Lépine-Szily, I. Lhenry, J. Libert, F. Maréchal, J.M. Maison, A. Mussumara, S. Ottini-Hustache, P. Piattelli, S. Pita, E.C. Pollaco, P. Roussel-Chomaz, D. Santonocito, J.E. Sauvestre, J.A. Scarpacci, T. Zerguerras, Proton scattering from the unstable nuclei 30S and 34Ar: structural evolution along the sulfur and argon isotopic chains. Nucl. Phys A694, 103 (2001)

  31. E. Bauge, J.P. Delaroche, M. Girod, G. Haouat, J. Lachkar, Y. Patin, J. Sigaud, J. Chardine, Neutron scattering from the \({}^{155,156,157,158,160}{{\rm Gd}}\) isotopes: Measurements and analyses with a deformed, semimicroscopic optical model. Phys. Rev. C 61, 034306 (2000). https://doi.org/10.1103/PhysRevC.61.034306

    Article  ADS  Google Scholar 

  32. A.J. Koning, D. Rochman, S.C. van der Marck, Extension of TALYS to 1 GeV. Nucl. Data Sheets 118, 187–190 (2014). https://doi.org/10.1016/j.nds.2014.04.033

    Article  ADS  Google Scholar 

  33. S. Typel, O. Riedl, H.H. Wolter, Elastic proton-nucleus scattering and the optical potential in a relativistic mean field model. Nucl. Phys. A 709(1), 299–318 (2002). https://doi.org/10.1016/S0375-9474(02)01031-X

    Article  ADS  Google Scholar 

  34. S. Chiba, K. Niita, T. Fukahori, T. Maruyama, T. Maruyama, A. Iwamoto, The isovector/isoscalar ratio of the imaginary part of the intermediate-energy nucleon optical model potential studied by the quantum molecular dynamics. Spec. Meet. on the nucleon nucleus optical model up to 200 MeV, Bruyeres-le-Chatel (1996)

  35. R. Capote, S. Chiba, E.S. Soukhovitskii, J.M. Quesada, E. Bauge, A global dispersive coupled-channel optical model potential for actinides. J. Nucl. Sci. Tech. 45, 333–340 (2009)

    Google Scholar 

  36. S. Watanabe, High energy scattering of deuterons by complex nuclei. Nucl. Phys. 8, 484–492 (1958). https://doi.org/10.1016/0029-5582(58)90180-9

    Article  Google Scholar 

  37. D.G. Madland, Recent results in the development of a global medium-energy nucleon-nucleus optical model potential. Proceedings of a Specialists’ Meeting on preequilibrium nuclear reactions, Semmering, Austria, February 10-12 1988, 103

  38. W.W. Daehnick, J.D. Childs, Z. Vrcelj, Global optical model potential for elastic deuteron scattering from 12 to 90 MeV. Phys. Rev. C 21, 2253–2274 (1980). https://doi.org/10.1103/PhysRevC.21.2253

    Article  ADS  Google Scholar 

  39. J. Bojowald, H. Machner, H. Nann, W. Oelert, M. Rogge, P. Turek, Elastic deuteron scattering and optical model parameters at energies up to 100 MeV. Phys. Rev. C 38, 1153–1163 (1988). https://doi.org/10.1103/PhysRevC.38.1153

    Article  ADS  Google Scholar 

  40. Y. Han, Y. Shi, Q. Shen, Deuteron global optical model potential for energies up to 200 MeV. Phys. Rev. C 74, 044615 (2006). https://doi.org/10.1103/PhysRevC.74.044615

    Article  ADS  Google Scholar 

  41. H. An, C. Cai, Global deuteron optical model potential for the energy range up to 183 MeV. Phys. Rev. C 73, 054605 (2006). https://doi.org/10.1103/PhysRevC.73.054605

    Article  ADS  Google Scholar 

  42. L. McFadden, G.R. Satchler, Optical-model analysis of the scattering of 24.7 MeV alpha particles. Nucl. Phys. 84(1), 177–200 (1966). https://doi.org/10.1016/0029-5582(66)90441-X

    Article  Google Scholar 

  43. M. Nolte, H. Machner, J. Bojowald, Global optical potential for \({\alpha }\) particles with energies above 80 MeV. Phys. Rev. C 36, 1312–1316 (1987). https://doi.org/10.1103/PhysRevC.36.1312

    Article  ADS  Google Scholar 

  44. V. Avrigeanu, P.E. Hodgson, M. Avrigeanu, Global optical potentials for emitted alpha particles. Phys. Rev. C 49, 2136–2141 (1994). https://doi.org/10.1103/PhysRevC.49.2136

    Article  ADS  MATH  Google Scholar 

  45. P. Demetriou, C. Grama, S. Goriely, Improved global alpha-optical model potentials at low energies. Nucl. Phys. A 707(1), 253–276 (2002). https://doi.org/10.1016/S0375-9474(02)00756-X

    Article  ADS  Google Scholar 

  46. V. Avrigeanu, M. Avrigeanu, C. Mihaelescu, Further explorations of the \({\alpha }\)-particle optical model potential at low energies for the mass range A\({\approx }\) 45–209. Phys. Rev. C 90, 044612 (2014). https://doi.org/10.1103/PhysRevC.90.044612

    Article  ADS  Google Scholar 

  47. G.R. Satchler, Direct nuclear reactions (Clarendon Press, Oxford, 1983)

    Google Scholar 

  48. T. Tamura, Analyses of the scattering of nuclear particles by collective nuclei in terms of the coupled-channel calculation. Rev. Mod. Phys. 37, 679–708 (1965). https://doi.org/10.1103/RevModPhys.37.679

    Article  ADS  MathSciNet  Google Scholar 

  49. J.P. Delaroche, Use of coupled-channel optical model calculations in nuclear data evaluations for incident energies up to 1 GeV. Proceedings of the International Symposium on Nuclear Data Evaluation Methodology, C.L. Dunford (Ed.), October 12-16 1992, Brookhaven, USA, 347 (1992)

  50. N. Olsson, E. Ramström, B. Trostell, Neutron elastic and inelastic scattering from Mg, Si, S, Ca, Cr, Fe and Ni at En = 21.6 MeV. Nucl. Phys. A 513, 205–238 (1990). https://doi.org/10.1016/0375-9474(90)90096-5

    Article  ADS  Google Scholar 

  51. B.V. Carlsson, Optical model calculations with the code ECIS95. Workshop on Nuclear Reaction Data and Nuclear Reactors: Physics, Design and Safety, edited by N. Paver, M. Herman and A. Gandini, March 13 - April 14 2000, Trieste Italy, 61 (2001)

  52. E.S. Soukhovitskii, R. Capote, J.M. Quesada, S. Chiba, D.S. Martyanov, Nucleon scattering on actinides using a dispersive optical model with extended couplings. Phys. Rev. C 94, 064605 (2016). https://doi.org/10.1103/PhysRevC.94.064605

    Article  ADS  Google Scholar 

  53. P.P. Guss, R.C. Byrd, C.R. Howell, R.S. Pedroni, G. Tungate, R.L. Walter, J.P. Delaroche, Optical model description of the neutron interaction with \(^{116}{{\rm Sn}}\) and \(^{120}{{\rm Sn}}\) over a wide energy range. Phys. Rev. C 39, 405–414 (1989). https://doi.org/10.1103/PhysRevC.39.405

    Article  ADS  Google Scholar 

  54. M.J.L. Jimenez, B. Morillon, P. Romain, Triple-humped fission barrier model for a new 238U neutron cross-section evaluation and first validations. Ann. Nucl. Energy 32(2), 195–213 (2005). https://doi.org/10.1016/j.anucene.2004.08.005

    Article  Google Scholar 

  55. P. Romain, B. Morillon, H. Duarte, Bruyères-le-Châtel neutron evaluations of actinides with the TALYS code: The fission channel. Nuclear Data Sheets 131, 222–258 (2016). https://doi.org/10.1016/j.nds.2015.12.003. Special Issue on Nuclear Reaction Data

  56. P.E. Hodgson, Nuclear reactions and nuclear structure (Clarendon Press, Oxford, 1971)

    Google Scholar 

  57. A. van der Woude, Electric and magnetic giant resonances in nuclei, 99–232 (1991)

  58. C. Kalbach, Surface and collective effects in preequilibrium reactions. Phys. Rev. C 62, 044608 (2000). https://doi.org/10.1103/PhysRevC.62.044608

    Article  ADS  Google Scholar 

  59. W. Hauser, H. Feshbach, The inelastic scattering of neutrons. Phys. Rev. 87, 366–373 (1952). https://doi.org/10.1103/PhysRev.87.366

    Article  ADS  MATH  Google Scholar 

  60. J.M. Blatt, L.C. Biedenharn, The angular distribution of scattering and reaction cross sections. Rev. Mod. Phys. 24, 258–272 (1952). https://doi.org/10.1103/RevModPhys.24.258

    Article  ADS  MATH  Google Scholar 

  61. T. Kawano, R. Capote, S. Hilaire, P. Chau Huu-Tai, Statistical Hauser-Feshbach theory with width-fluctuation correction including direct reaction channels for neutron-induced reactions at low energies. Phys. Rev. C 94, 014612 (2016). https://doi.org/10.1103/PhysRevC.94.014612

    Article  ADS  Google Scholar 

  62. T. Kawano, Unified description of the coupled-channels and statistical Hauser-Feshbach nuclear reaction theories for low energy neutron incident reactions. European Physical Journal A 57, 1–16 (2021)

    Google Scholar 

  63. J.W. Tepel, H.M. Hofmann, H.A. Weidenmueller, Hauser-Feshbach formulas for medium and strong absorption. Phys. Lett. B 49(1), 1–4 (1974). https://doi.org/10.1016/0370-2693(74)90565-6

    Article  ADS  Google Scholar 

  64. H.M. Hofmann, J. Richert, J.W. Tepel, H.A. Weidenmueller, Direct reactions and Hauser-Feshbach theory. Ann. Phys. 90(2), 403–437 (1975). https://doi.org/10.1016/0003-4916(75)90005-6

    Article  ADS  MathSciNet  Google Scholar 

  65. H.M. Hofmann, T. Mertelmeier, M. Herman, J.W. Tepel, Hauser-Feshbach calculations in the presence of weakly absorbing channels with special reference to the elastic enhancement factor and the factorization assumption. Zeit. Phys. A 297, 153 (1980)

    ADS  Google Scholar 

  66. P.A. Moldauer, Evaluation of the fluctuation enhancement factor. Phys. Rev. C 14, 764–766 (1976). https://doi.org/10.1103/PhysRevC.14.764

    Article  ADS  Google Scholar 

  67. P.A. Moldauer, Statistics and the average cross section. Nucl. Phys. A 344(2), 185–195 (1980). https://doi.org/10.1016/0375-9474(80)90671-5

    Article  ADS  Google Scholar 

  68. J.J.M. Verbaarschot, H.A. Weidenmueller, M.R. Zirnbauer, Grassmann integration in stochastic quantum physics: The case of compound-nucleus scattering. Phys. Rep. 129(6), 367–438 (1985). https://doi.org/10.1016/0370-1573(85)90070-5

    Article  ADS  MathSciNet  Google Scholar 

  69. S. Hilaire, C. Lagrange, A.J. Koning, Comparisons between various width fluctuation correction factors for compound nucleus reactions. Ann. Phys. 306(2), 209–231 (2003). https://doi.org/10.1016/S0003-4916(03)00076-9

    Article  ADS  MATH  Google Scholar 

  70. M. Ernebjerg, M. Herman, Assessment of approximate methods for width fluctuation corrections. AIP Conf. Proc. 769, 1233–1236 (2005)

    ADS  Google Scholar 

  71. T. Kawano, P. Talou, Numerical simulations for low energy nuclear reactions to validate statistical models. Nucl. Data Sheets 118, 183–186 (2014). https://doi.org/10.1016/j.nds.2014.04.032

    Article  ADS  Google Scholar 

  72. H. Gruppelaar, G. Reffo, Some properties of the width fluctuation factor. Nucl. Sci. Eng. 62(4), 756–763 (1977). https://doi.org/10.13182/NSE77-A15219

    Article  ADS  Google Scholar 

  73. D. Rochman, J.-C.S.A.J. Koning, A statistical analysis of evaluated neutron resonances with TARES for JEFF-3.3, JENDL-4.0, ENDF/B-VIII.0 and TENDL-2019. Nucl. Data Sheets 163, 163 (2020)

    ADS  Google Scholar 

  74. J. Kopecky, M.G. Delfini, H.A.J. van der Kamp, D. Nierop, Revisions and extensions of neutron capture cross-sections in the European Activation File EAF-3. ECN-C–92-051, July 1992 (1992)

  75. S.F. Mughabghab, Atlas of Neutron Resonances, 6th edn. (Elsevier, The Netherlands, 2018)

    Google Scholar 

  76. S.I. Sukhoruchkin, Z.N. Soroko, Neutron Resonance Parameters, 5th edn. (Landolt-Bornstein, Germany, 2015)

    Google Scholar 

  77. D.E. Cullen, PREPRO 2021 - ENDF/B6 Pre-processing codes. Technical report IAEA-NDS-0238, IAEA (2021)

  78. D. Rochman, S. Goriely, A.J. Koning, H. Ferroukhi, Radiative neutron capture: Hauser Feshbach vs. statistical resonances. Phys. Lett. B 764, 109–113 (2017). https://doi.org/10.1016/j.physletb.2016.11.018

    Article  ADS  Google Scholar 

  79. C. Kalbach, Systematics of continuum angular distributions: Extensions to higher energies. Phys. Rev. C 37, 2350–2370 (1988). https://doi.org/10.1103/PhysRevC.37.2350

    Article  ADS  Google Scholar 

  80. N. Otuka, E. Dupont, V. Semkova, B. Pritychenko, A.I. Blokhin, M. Aikawa, S. Babykina, M. Bossant, G. Chen, S. Dunaeva et al., Towards a more complete and accurate experimental nuclear reaction data library (EXFOR): International collaboration between nuclear reaction data centres (NRDC). Nucl. Data Sheets 120, 272–276 (2014)

    ADS  Google Scholar 

  81. A.J. Koning, M.C. Duijvestijn, A global pre-equilibrium analysis from 7 to 200 MeV based on the optical model potential. Nucl. Phys. A 744, 15–76 (2004). https://doi.org/10.1016/j.nuclphysa.2004.08.013

    Article  ADS  Google Scholar 

  82. H. Gruppelaar, P. Nagel, P.E. Hodgson, Pre-equilibrium processes in nuclear reaction theory. Riv. Nuovo Cimento 9(7), 1 (1986)

    MathSciNet  Google Scholar 

  83. E. Gadioli, P.E. Hodgson, Pre-equilibrium nuclear reactions (1992)

  84. C. Kalbach, Two-component exciton model: Basic formalism away from shell closures. Phys. Rev. C 33, 818–833 (1986). https://doi.org/10.1103/PhysRevC.33.818

    Article  ADS  Google Scholar 

  85. C.K. Cline, M. Blann, The pre-equilibrium statistical model: Description of the nuclear equilibration process and parameterization of the model. Nucl. Phys. A 172(2), 225–259 (1971). https://doi.org/10.1016/0375-9474(71)90713-5

    Article  ADS  Google Scholar 

  86. J. Dobeš, E. Běták, Two-component exciton model. Zeit. Phys. A310, 329 (1983)

    ADS  Google Scholar 

  87. E. Běták, J. Dobeš, The finite depth of the nuclear potential well in the exciton model of preequilibrium decay. Zeit. Phys. A 279, 319 (1976)

    ADS  Google Scholar 

  88. C.Y. Fu, Implementation of on advanced pairing correction for particle-hole state densities in precompound nuclear reaction theory. Nucl. Sci. Eng. 86, 344 (1984)

    ADS  Google Scholar 

  89. C. Kalbach, Surface effects in the exciton model of preequilibrium nuclear reactions. Phys. Rev. C 32, 1157–1168 (1985). https://doi.org/10.1103/PhysRevC.32.1157

    Article  ADS  Google Scholar 

  90. M.B. Fox, A.S. Voyles, J.T. Morrell, L.A. Bernstein, A.M. Lewis, A.J. Koning, J.C. Batchelder, E.R. Birnbaum, C.S. Cutler, D.G. Medvedev, F.M. Nortier, E.M. O’Brien, C. Vermeulen, Investigating high-energy proton-induced reactions on spherical nuclei: Implications for the preequilibrium exciton model. Phys. Rev. C 103, 034601 (2021). https://doi.org/10.1103/PhysRevC.103.034601

    Article  ADS  Google Scholar 

  91. J.M. Akkermans, H. Gruppelaar, Analysis of continuum gamma-ray emission in precompound-decay reactions. Phys. Lett. B 157(2), 95–100 (1985). https://doi.org/10.1016/0370-2693(85)91524-2

    Article  ADS  Google Scholar 

  92. H. Gruppelaar, Level density in unified preequilibrium and equilibrium models. IAEA Advisory Group Meeting on Basic and Applied Problems on Nuclear Level Densities, (Brookhaven National Laboratory report, Report BNL-NCS-51694), 143 (1983)

  93. M. Kerveno, M. Dupuis, A. Bacquias, F. Belloni, D. Bernard, C. Borcea, M. Boromiza, R. Capote, C. De Saint Jean, P. Dessagne, J.C. Drohé, G. Henning, S. Hilaire, T. Kawano, P. Leconte, N. Nankov, A. Negret, M. Nyman, A. Olacel, A.J.M. Plompen, P. Romain, C. Rouki, G. Rudolf, M. Stanoiu, R. Wynants, Measurement of \(^{238}{{\rm U}}(n,{n}^{{^{\prime }}}{\gamma }\)) cross section data and their impact on reaction models. Phys. Rev. C 104, 044605 (2021). https://doi.org/10.1103/PhysRevC.104.044605

  94. C. Kalbach, Preequilibrium reactions with complex particle channels. Phys. Rev. C 71, 034606 (2005). https://doi.org/10.1103/PhysRevC.71.034606

    Article  ADS  Google Scholar 

  95. C. Kalbach, Phenomenological model for light-projectile breakup. Phys. Rev. C 95, 014606 (2017). https://doi.org/10.1103/PhysRevC.95.014606

    Article  ADS  Google Scholar 

  96. M. Avrigeanu, V. Avrigeanu, Additive empirical parametrization and microscopic study of deuteron breakup. Phys. Rev. C 95, 024607 (2017). https://doi.org/10.1103/PhysRevC.95.024607

    Article  ADS  Google Scholar 

  97. A.J. Koning, J.M. Akkermans, Randomness in multi-step direct reactions. Ann. Phys. 208(1), 216–250 (1991). https://doi.org/10.1016/0003-4916(91)90345-9

    Article  ADS  Google Scholar 

  98. G.R. Satchler, Introduction to Nuclear Reactions (Macmillan press ltd., USA, 1980)

    Google Scholar 

  99. A. Mengoni, T. Otsuka, M. Ishihara, Direct radiative capture of p-wave neutrons. Phys. Rev. C 52, 2334 (1995)

    ADS  Google Scholar 

  100. P. Descouvemont, Theoretical Models for Nuclear Astrophysics (Nova Science Publishers, New York, USA, 2003)

    Google Scholar 

  101. P. Descouvemont, Cluster models in nuclear astrophysics. J. Phys. G: Nucl. Part. Phys. 35, 014006 (2008)

    ADS  Google Scholar 

  102. Y. Xu, S. Goriely, Systematic study of direct neutron capture. Phys. Rev. C 86, 045801 (2012). https://doi.org/10.1103/PhysRevC.86.045801

    Article  ADS  Google Scholar 

  103. Y. Xu, S. Goriely, A.J. Koning, S. Hilaire, Systematic study of neutron capture including the compound, pre-equilibrium, and direct mechanisms. Phys. Rev. C 90, 024604 (2014). https://doi.org/10.1103/PhysRevC.90.024604

    Article  ADS  Google Scholar 

  104. S. Goriely, Direct neutron captures and the r-process nucleosynthesis. Astron. Astrophys. 325, 414 (1997)

    ADS  Google Scholar 

  105. S. Goriely, Radiative neutron captures by neutron-rich nuclei and the r-process nucleosynthesis. Phys. Lett. B 436, 10 (1998)

    ADS  Google Scholar 

  106. S. Goriely, S. Hilaire, A.J. Koning, Improved microscopic nuclear level densities within the Hartree-Fock-Bogoliubov plus combinatorial method. Phys. Rev. C 78, 064307 (2008). https://doi.org/10.1103/PhysRevC.78.064307

    Article  ADS  Google Scholar 

  107. K. Sieja, S. Goriely, Shell-model based study of the direct capture in neutron-rich nuclei. Eur. Phys. J. A 57, 110 (2021)

    ADS  Google Scholar 

  108. M. Blann, M.B. Chadwick, New precompound decay model: Angular distributions. Phys. Rev. C 57, 233–243 (1998)

    ADS  Google Scholar 

  109. M.B. Chadwick, P.G. Young, D.C. George, Y. Watanabe, Multiple preequilibrium emission in Feshbach-Kerman-Koonin analyses. Phys. Rev. C 50, 996–1005 (1994). https://doi.org/10.1103/PhysRevC.50.996

    Article  ADS  Google Scholar 

  110. A.J. Koning, M.B. Chadwick, Microscopic two-component multistep direct theory for continuum nuclear reactions. Phys. Rev. C 56, 970–994 (1997). https://doi.org/10.1103/PhysRevC.56.970

    Article  ADS  Google Scholar 

  111. M. Wang, W.J. Huang, F.G. Kondev, G. Audi, S. Naimi, The AME2020 atomic mass evaluation (II). Chin. Phys. C 45, 030003 (2021)

    ADS  Google Scholar 

  112. D. Lunney, J.M. Pearson, C. Thibault, Recent trends in the determination of nuclear masses. Rev. Mod. Phys. 75(3), 1021 (2003)

    ADS  Google Scholar 

  113. K. Blaum, S. Eliseev, S. Goriely, Masses of exotic nuclei. In: Toki, H. Tanihata, T. Kajino, (eds.) Handbook of Nuclear Physics, pp. 1–38. Springer, (2023)

  114. S. Goriely, N. Chamel, J.M. Pearson, Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XIII. the 2012 atomic mass evaluation and the symmetry coefficient. Phys. Rev. C 88, 024308 (2013)

    ADS  Google Scholar 

  115. S. Goriely, S. Hilaire, M. Girod, S. Péru, First Gogny Hartree-Fock-Bogoliubov nuclear mass model. Phys. Rev. Lett. 102, 242501–242504 (2009)

    ADS  Google Scholar 

  116. P. Moller, A.J. Sierk, T. Ichikawa, H. Sagawa, Nuclear ground-state masses and deformations: FRDM(2012). Chin. Phys. 109, 1–204 (2016)

    Google Scholar 

  117. J. Duflo, A.P. Zuker, Microscopic mass formulas. Phys. Rev. C 52, 23–27 (1995). https://doi.org/10.1103/PhysRevC.52.R23

    Article  ADS  Google Scholar 

  118. N. Wang, M. Liu, X. Wu, J. Meng, Surface diffuseness correction in global mass formula. Phys. Lett. B 734, 215 (2014)

    ADS  Google Scholar 

  119. ENSDF: Evaluated Nuclear Structure Data File. Source: Nuclear Structure and Decay Data Evaluators Network. https://www.nndc.bnl.gov/ensdf/

  120. F.G. Kondev, M. Wang, W.J. Huang, S. Naimi, G. Audi, The NUBASE2020 evaluation of nuclear physics properties. Chin. Phys. C 45(3), 030001 (2021). https://doi.org/10.1088/1674-1137/abddae

    Article  ADS  Google Scholar 

  121. S. Goriely, S. Hilaire, M. Girod, S. Péru, The Gogny-Hartree-Fock-Bogoliubov nuclear-mass model. European Physical Journal A 52, 202 (2016)

    ADS  Google Scholar 

  122. A.J. Koning, S. Hilaire, S. Goriely, Global and local level density models. Nucl. Phys. A 810(1), 13–76 (2008). https://doi.org/10.1016/j.nuclphysa.2008.06.005

    Article  ADS  Google Scholar 

  123. A.V. Ignatyuk, G.N. Smirenkin, A.S. Tishin, Phenomenological description of energy dependence of the level density parameter. Sov. J. Nucl. Phys. 21(3), 255 (1975)

    Google Scholar 

  124. A.V. Ignatyuk, K.K. Istekov, G.N. Smirenkin, The role of collective effects in the systematics of nuclear level densities. Sov. J. Nucl. Phys. 29(4), 450 (1979)

    Google Scholar 

  125. T. Ericson, The statistical model and nuclear level densities. Adv. Phys. 9, 425–511 (1960)

    ADS  Google Scholar 

  126. H. Baba, A shell-model nuclear level density. Nucl. Phys. A 159(2), 625–641 (1970). https://doi.org/10.1016/0375-9474(70)90862-6

    Article  ADS  Google Scholar 

  127. A. Mengoni, Y. Nakajima, Fermi-gas model parametrization of nuclear level density. J. Nucl. Sci. Techn. 31, 151–162 (1994)

    Google Scholar 

  128. A. Gilbert, A.G.W. Cameron, A composite nuclear-level density formula with shell corrections. Can. J. Phys. 43, 1446–1496 (1965)

    ADS  Google Scholar 

  129. W. Dilg, W. Schantl, H. Vonach, M. Uhl, Level density parameters for the Back-Shifted Fermi gas model in the mass range 40 \(<\) A \(<\) 250. Nucl. Phys. A 217(2), 269–298 (1973). https://doi.org/10.1016/0375-9474(73)90196-6

    Article  ADS  Google Scholar 

  130. M.K. Grossjean, H. Feldmeier, Level density of a Fermi gas with pairing interactions. Nucl. Phys. A 444(1), 113–132 (1985). https://doi.org/10.1016/0375-9474(85)90294-5

    Article  ADS  Google Scholar 

  131. P. Demetriou, S. Goriely, Microscopic nuclear level densities for practical applications. Nucl. Phys. A 695(1), 95–108 (2001). https://doi.org/10.1016/S0375-9474(01)01095-8

    Article  ADS  Google Scholar 

  132. O.T. Grudzevich, A.V. Ignatyuk, V.I. Plyaskin, A.V. Zelenetsky, Consistent systematics of level density for medium and heavy nuclei. Proc. Nuclear Data for Science and Technology (Mito, JAERI), 187 (1988)

  133. S. Hilaire, S. Goriely, Global microscopic nuclear level densities within the HFB plus combinatorial method for practical applications. Nucl. Phys. A 779, 63–81 (2006). https://doi.org/10.1016/j.nuclphysa.2006.08.014

    Article  ADS  Google Scholar 

  134. A.S. Iljinov, M.V. Mebel, N. Bianchi, E. De Sanctis, C. Guaraldo, V. Lucherini, V. Muccifora, E. Polli, A.R. Reolon, P. Rossi, Phenomenological statistical analysis of level densities, decay widths and lifetimes of excited nuclei. Nucl. Phys. A 543(3), 517–557 (1992). https://doi.org/10.1016/0375-9474(92)90278-R

    Article  ADS  Google Scholar 

  135. A.R. Junghans, M. de Jong, H.-G. Clerc, A.V. Ignatyuk, G.A. Kudyaev, K.-H. Schmidt, Projectile-fragment yields as a probe for the collective enhancement in the nuclear level density. Nucl. Phys. A 629(3), 635–655 (1998). https://doi.org/10.1016/S0375-9474(98)00658-7

    Article  ADS  Google Scholar 

  136. G. Hansen, A.S. Jensen, Energy dependence of the rotational enhancement factor in the level density. Nucl. Phys. A 406(2), 236–256 (1983). https://doi.org/10.1016/0375-9474(83)90459-1

    Article  ADS  Google Scholar 

  137. S. Hilaire, M. Girod, S. Goriely, A.J. Koning, Temperature-dependent combinatorial level densities with the D1M Gogny force. Phys. Rev. C 86, 064317 (2012). https://doi.org/10.1103/PhysRevC.86.064317

    Article  ADS  Google Scholar 

  138. M.N. Harakeh, A. Van der Woude, Giant Resonances: Fundamental High-frequency Modes of Nuclear Excitation. Oxford studies in nuclear physics. Oxford Univ. Press, Oxford (2002). https://cds.cern.ch/record/579269

  139. S. Goriely, P. Dimitriou, M. Wiedeking, T. Belgya, R. Firestone, J. Kopecky, M. Krticka, V. Plujko, R. Schwengner, S. Siem, H. Utsunomiya, S. Hilaire, S. Péru, Y.S. Cho, D.M. Filipescu, N. Iwamoto, T. Kawano, V. Varlamov, R. Xu, Reference database for photon strength functions. Eur. Phys. J. A 55, 172 (2019)

    ADS  Google Scholar 

  140. S. Goriely, S. Hilaire, S. Péru, K. Sieja, Gogny-HFB+QRPA dipole strength function and its application to radiative nucleon capture cross section. Phys. Rev. C 98, 014327 (2018). https://doi.org/10.1103/PhysRevC.98.014327

    Article  ADS  Google Scholar 

  141. D.M. Brink, Individual particle and collective aspects of the nuclear photoeffect. Nucl. Phys. 4, 215–220 (1957). https://doi.org/10.1016/0029-5582(87)90021-6

    Article  Google Scholar 

  142. S.G. Kadmenskii, V.P. Markushev, V.I. Furmann, Dynamical enhancement of parity violation effects for compound states and giant 0- resonances. Sov. J. Nucl. Phys. 37, 165 (1983)

    Google Scholar 

  143. M. Guttormsen, A.C. Larsen, A. Görgen, T. Renstrøm, S. Siem, T.G. Tornyi, G.M. Tveten, Validity of the generalized Brink-Axel hypothesis in 238Np. Phys. Rev. Lett. 116, 012502 (2016)

    ADS  Google Scholar 

  144. ...D. Martin, P. von Neumann-Cosel, A. Tamii, N. Aoi, S. Bassauer, C.A. Bertulani, J. Carter, L. Donaldson, H. Fujita, Y. Fujita, T. Hashimoto, K. Hatanaka, T. Ito, A. Krugmann, B. Liu, Y. Maeda, K. Miki, R. Neveling, N. Pietralla, I. Poltoratska, V.Y. Ponomarev, A. Richter, T. Shima, T. Yamamoto, M. Zweidinger, Test of the Brink-Axel hypothesis for the Pygmy dipole resonance. Phys. Rev. Lett. 119(18), (2017). https://doi.org/10.1103/PhysRevLett.119.182503

  145. C.T. Angell, S.L. Hammond, H.J. Karwowski, J.H. Kelley, M. Krtička, E. Kwan, A. Makinaga, G. Rusev, Evidence for radiative coupling of the Pygmy dipole resonance to excited states. Phys. Rev. C 86, 051302 (2012)

    ADS  Google Scholar 

  146. J. Isaak, D. Savran, M. Krtička, M.W. Ahmed, J. Beller, E. Fiori, J. Glorius, J.H. Kelley, B. Loher, N. Pietralla, C. Romig, G. Rusev, M. Scheck, L. Schnorrenberger, J. Silva, K. Sonnabend, A.P. Tonchev, W. Tornow, H.R. Weller, M. Zweidinger, Constraining nuclear photon strength functions by the decay properties of photo-excited states. Phys. Lett. B 727, 361 (2013)

    ADS  Google Scholar 

  147. J. Isaak, D. Savran, B. Löher, T. Beck, M. Bhike, U. Gayer, Pietralla, N. Krishichayan, M. Scheck, W. Tornow, V. Werner, A. Zilges, M. Zweidinger, The concept of nuclear photon strength functions: A model-independent approach via \((\gamma ,\gamma ^{\prime } \gamma ^{\prime \prime })\) reactions. Phys. Lett. B 788, 225 (2019)

  148. V.A. Plujko, O.M. Gorbachenko, R. Capote, P. Dimitriou, Giant dipole resonance parameters of ground-state photoabsorption: Experimental values with uncertainties. At. Data Nucl. Data Tables 123, 1 (2018)

    ADS  Google Scholar 

  149. S. Goriely, V. Plujko, Simple empirical E1 and M1 strength functions for practical applications. Phys. Rev. C 99, 014303 (2019)

    ADS  Google Scholar 

  150. T. Kawano, Y.S. Cho, P. Dimitriou, D. Filipescu, N. Iwamoto, V. Plujko, X. Tao, H. Utsunomiya, V. Varlamov, R. Xu, R. Capote, I. Gheorghe, O. Gorbachenko, Y.L. Jin, T. Renstrom, M. Sin, K. Stopani, Y. Tian, G.M. Tveten, J.M. Wang, T. Belgya, R. Firestone, S. Goriely, J. Kopecky, M. Krticka, R. Schwengner, S. Siem, M. Wiedeking, IAEA photonuclear data library 2019. Nucl. Data Sheets 163, 109–162 (2020). https://doi.org/10.1016/j.nds.2019.12.002

    Article  ADS  Google Scholar 

  151. IAEA: Photon Strength Function Database (2019). www-nds.iaea.org/PSFdatabase

  152. P. Axel, Electric dipole ground-state transition width strength function and 7-MeV photon interactions. Phys. Rev. 126, 671–683 (1962). https://doi.org/10.1103/PhysRev.126.671

    Article  ADS  Google Scholar 

  153. J. Kopecky, M. Uhl, Test of gamma-ray strength functions in nuclear reaction model calculations. Phys. Rev. C 41, 1941–1955 (1990). https://doi.org/10.1103/PhysRevC.41.1941

    Article  ADS  Google Scholar 

  154. J. Kopecky, M. Uhl, R.E. Chrien, Radiative strength in the compound nucleus \(^{157}\rm Gd \). Phys. Rev. C 47, 312–322 (1993). https://doi.org/10.1103/PhysRevC.47.312

    Article  ADS  Google Scholar 

  155. S. Goriely, Radiative neutron captures by neutron-rich nuclei and the r-process nucleosynthesis. Phys. Lett. B 436(1), 10–18 (1998). https://doi.org/10.1016/S0370-2693(98)00907-1

    Article  ADS  MathSciNet  Google Scholar 

  156. S. Goriely, E. Khan, Large-scale QRPA calculation of E1-strength and its impact on the neutron capture cross section. Nucl. Phys. A 706(1), 217–232 (2002). https://doi.org/10.1016/S0375-9474(02)00860-6

    Article  ADS  Google Scholar 

  157. S. Goriely, E. Khan, M. Samyn, Microscopic HFB + QRPA predictions of dipole strength for astrophysics applications. Nucl. Phys. A 739(3), 331–352 (2004). https://doi.org/10.1016/j.nuclphysa.2004.04.105

    Article  ADS  Google Scholar 

  158. I. Daoutidis, S. Goriely, Large-scale continuum random-phase approximation predictions of dipole strength for astrophysical applications. Phys. Rev. C 86, 034328 (2012). https://doi.org/10.1103/PhysRevC.86.034328

    Article  ADS  Google Scholar 

  159. K. Sieja, Electric and magnetic dipole strength at low energy. Phys. Rev. Lett. 119, 052502 (2017)

    ADS  Google Scholar 

  160. K. Sieja, Low energy dipole strength from large scale shell model calculations. EPJ Web of Conferences 146, 05004 (2017)

    Google Scholar 

  161. R. Schwengner, S. Frauendorf, B.A. Brown, Low-energy magnetic dipole radiation in open-shell nuclei. Phys. Rev. Lett. 118, 092502 (2017)

    ADS  Google Scholar 

  162. A. Voinov, E. Algin, U. Agvaanluvsan, T. Belgya, R. Chankova, M. Guttormsen, G.E. Mitchell, J. Rekstad, A. Schiller, S. Siem, Large enhancement of radiative strength for soft transitions in the quasicontinuum. Phys. Rev. Lett. 93, 142504 (2004)

    ADS  Google Scholar 

  163. M. Guttormsen, R. Chankova, U. Agvaanluvsan, E. Algin, L.A. Bernstein, F. Ingebretsen, T. Lönnroth, S. Messelt, G.E. Mitchell, J. Rekstad, A. Schiller, S. Siem, A.C. Sunde, A. Voinov, S. Ødegård, Radiative strength functions in Mo93-98. Phys. Rev. C 71, 044307 (2005)

    ADS  Google Scholar 

  164. J.E. Midtbø, A.C. Larsen, T. Renstrøm, F.L.B. Garrote, E. Lima, Consolidating the picture of low-energy magnetic dipole decay radiation. Phys. Rev. C 98, 064321 (2018)

    ADS  Google Scholar 

  165. M. Krtička, S. Goriely, S. Hilaire, S. Péru, S. Valenta, Constraints on the dipole photon strength functions from experimental multistep cascade spectra. Phys. Rev. C 99, 044308 (2019)

    ADS  Google Scholar 

  166. D. Savran, T. Aumann, A. Zilges, Experimental studies of the Pygmy dipole resonance. Prog. Part. Nucl. Phys. 70, 210 (2013)

    ADS  Google Scholar 

  167. A. Zilges, D.L. Balabanski, J. Isaak, N. Pietralla, Photonuclear reactions–from basic research to applications. Prog. Part. Nucl. Phys. 122, 103903 (2022)

    Google Scholar 

  168. D.G. Gardner, Neutron radiative capture, 62 (1984)

  169. M.B. Chadwick, P. Obloinský, P.E. Hodgson, G. Reffo, Pauli-blocking in the quasideuteron model of photoabsorption. Phys. Rev. C 44, 814–823 (1991). https://doi.org/10.1103/PhysRevC.44.814

    Article  ADS  Google Scholar 

  170. D. Robson, A. Richter, H.L. Harney, Consequences of isospin and other conserved quantum numbers for compound-nucleus reactions. Phys. Rev. C 8, 153–160 (1973). https://doi.org/10.1103/PhysRevC.8.153

    Article  ADS  Google Scholar 

  171. S.M. Grimes, Role of isospin in neutron- and alpha-induced reactions. Phys. Rev. C 46, 1064–1068 (1992). https://doi.org/10.1103/PhysRevC.46.1064

    Article  ADS  Google Scholar 

  172. J.A. Holmes, S.E. Woosley, W.A. Fowler, B.A. Zimmerman, Tables of thermonuclear-reaction-rate data for neutron-induced reactions on heavy nuclei. At. Data Nucl. Data Tables 18, 305 (1976)

    ADS  Google Scholar 

  173. S. Goriely, M. Samyn, M.J. Pearson, Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. VII. Simultaneous fits to masses and fission barriers. Phys. Rev. C 75, 064312 (2007)

    ADS  Google Scholar 

  174. S. Bjørnholm, J.E. Lynn, The double-humped fission barrier. Rev. Mod. Phys. 52, 725–931 (1980)

    ADS  Google Scholar 

  175. M. Sin, R. Capote, A. Ventura, M. Herman, P. Oblozinsky, Fission of light actinides: \(^{232}{{\rm Th}}(n,f)\) and \(^{231}{{\rm Pa}}(n,f)\) reactions. Phys. Rev. C 74, 014608 (2006). https://doi.org/10.1103/PhysRevC.74.014608

  176. S. Goriely, S. Hilaire, A.J. Koning, M. Sin, R. Capote, Towards a prediction of fission cross section on the basis of microscopic nuclear inputs. Phys. Rev. C 79, 024612 (2009)

    ADS  Google Scholar 

  177. S. Goriely, S. Hilaire, A.J. Koning, R. Capote, Towards an improved evaluation of neutron-induced fission cross sections on actinides. Phys. Rev. C 83, 034601 (2011). https://doi.org/10.1103/PhysRevC.83.034601

    Article  ADS  Google Scholar 

  178. A. Mamdouh, J.M. Pearson, M. Rayet, F. Tondeur, Fission barriers of neutron-rich and superheavy nuclei calculated with the ETFSI method. Nucl. Phys. A 679(3), 337–358 (2001). https://doi.org/10.1016/S0375-9474(00)00358-4

    Article  ADS  Google Scholar 

  179. A.J. Sierk, Macroscopic model of rotating nuclei. Phys. Rev. C 33, 2039–2053 (1986). https://doi.org/10.1103/PhysRevC.33.2039

    Article  ADS  Google Scholar 

  180. S. Cohen, F. Plasil, W.J. Swiatecki, Equilibrium configurations of rotating charged or gravitating liquid masses with surface tension. Ann. Phys. 82(2), 557–596 (1974). https://doi.org/10.1016/0003-4916(74)90126-2

    Article  ADS  Google Scholar 

  181. A. D’Arrigo, G. Giardina, M. Herman, A.V. Ignatyuk, A. Taccone, Semi-empirical determination of the shell correction temperature and spin dependence by means of nuclear fission. Journ. Phys. G 20, 365–376 (1994)

    ADS  Google Scholar 

  182. P. Romain, B. Morillon, A. Koning, Neutron actinides evaluations with the TALYS code. NEMEA-3 Neutron Measurements, Evaluations and Applications 25, 113 (2006)

    Google Scholar 

  183. E.V. Gai, A.V. Ignatyuk, N.S. Rabotnov, G.N. Smirenkin, Two-bump barrier and the neutron-induced nuclear fission. Physics and Chemistry of Fission, IAEA, Vienna, 337 (1969)

  184. M.C. Duijvestijn, A.J. Koning, F.-J. Hambsch, Mass distributions in nucleon-induced fission at intermediate energies. Phys. Rev. C 64, 014607 (2001). https://doi.org/10.1103/PhysRevC.64.014607

    Article  ADS  Google Scholar 

  185. K.-H. Schmidt, B. Jurado, Thermodynamics of nuclei in thermal contact. Phys. Rev. C 83, 014607 (2011). https://doi.org/10.1103/PhysRevC.83.014607

    Article  ADS  Google Scholar 

  186. F. Nordström, Benchmark of the fission channels in TALYS. UPTEC ES 21016, Uppsala University, 2021 (2021)

  187. S. Okumura, T. Kawano, P. Jaffke, P. Talou, S. Chiba, 235U(n, f) independent fission product yield and isomeric ratio calculated with the statistical Hauser-Feshbach theory. J. Nucl. Sci. Technol. 55, 1009–1023 (2018)

    Google Scholar 

  188. A. Wahl, Systematics of fission-product yields. Tech. Rep. LA-13928, Los Alamos National Laboratory, Los Alamos, NM, USA, May (2002) (2002)

  189. J.-F. Lemaitre, S. Goriely, S. Hilaire, J.-L. Sida, Fully microscopic scission-point model to predict fission fragment observables. Phys. Rev. C 99, 034612 (2019). https://doi.org/10.1103/PhysRevC.99.034612

    Article  ADS  Google Scholar 

  190. J.-F. Lemaître, S. Goriely, A. Bauswein, H.-T. Janka, Fission fragment distributions and their impact on the r-process nucleosynthesis in neutron star mergers. Phys. Rev. C 103, 025806 (2021)

    ADS  Google Scholar 

  191. S. Goriely, N. Chamel, J.M. Pearson, Hartree-Fock-Bogoliubov nuclear mass model with 0.50 MeV accuracy based on standard forms of Skyrme and pairing functionals. Phys. Rev. C 88, 061302 (2013)

    ADS  Google Scholar 

  192. K. Fujio, S. Okumura, A.J. Koning, New development in TALYS - fission fragment statistical decay model. Proceedings of the 2021 Symposium on Nuclear Data, November 16-18 2021, JAEA, Japan JAEA-Conf 2022-001, 6 (2022)

  193. D.A. Brown, M.B. Chadwick, R. Capote, A.C. Kahler et al., ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data. Nucl. Data Sheets 148, 1 (2018)

    ADS  Google Scholar 

  194. A.J.M. Plompen, O. Cabellos, C.D.S. Jean, M. Fleming, A. Algora, M. Angelone, P. Archier, E. Bauge, O. Bersillon, A. Blokhin, F. Cantargi, A. Chebboubi, C. Diez, H. Duarte, E. Dupont, J. Dyrda, B. Erasmus, L. Fiorito, U. Fischer, D. Flammini, D. Foligno, M.R. Gilbert, J.R. Granada, W. Haeck, F.-J. Hambsch, P. Helgesson, S. Hilaire, I. Hill, M. Hursin, R. Ichou, R. Jacqmin, B. Jansky, C. Jouanne, M.A. Kellett, D.H. Kim, H.I. Kim, I. Kodeli, A.J. Koning, A.Y. Konobeyev, S. Kopecky, B. Kos, A. Krasa, L.C. Leal, N. Leclaire, P. Leconte, Y.O. Lee, H. Leeb, O. Litaize, M. Majerle, J.I.M. Damian, F. Michel-Sendis, R.W. Mills, B. Morillon, G. Noguere, M. Pecchia, S. Pelloni, P. Pereslavtsev, R.J. Perry, D. Rochman, A. Roehrmoser, P. Romain, P. Romojaro, D. Roubtsov, P. Sauvan, P. Schillebeeckx, K.H. Schmidt, O. Serot, S. Simakov, I. Sirakov, H. Sjoestrand, A. Stankovskiy, J.C. Sublet, P. Tamagno, A. Trkov, S. van der Marck, F. Alvarez-Velarde, R. Villari, T.C. Ware, K. Yokoyama, G. Zerovnik, The joint evaluated fission and fusion nuclear data library. JEFF-3.3. European Physical Journal A 56, 181 (2020)

  195. U. Brosa, S. Grossmann, A. Müller, Nuclear scission. Phys. Rep. 197(4), 167–262 (1990). https://doi.org/10.1016/0370-1573(90)90114-H

    Article  ADS  Google Scholar 

  196. M. Arnould, S. Goriely, Astronuclear physics: A tale of the atomic nuclei in the skies. Prog. Part. Nucl. Phys. 112, 103766 (2020)

    Google Scholar 

  197. Y. Xu, S. Goriely, A. Jorissen, G. Chen, M. Arnould, Databases and tools for nuclear astrophysics applications: BRUSsels Nuclear LIBrary (BRUSLIB), Nuclear Astrophysics Compilation of REactions II (NACRE II) and Nuclear NETwork GENerator (NETGEN). A &A 549(10), A106 (2013)

    Google Scholar 

  198. T. Rauscher, F.-K. Thielemann, Table of cross sections and reaction rates. At. Data Nucl. Data Tables 79, 47 (2001)

    ADS  Google Scholar 

  199. S. Goriely, S. Hilaire, A.J. Koning, Improved predictions of nuclear reaction rates with the TALYS reaction code for astrophysical applications. Astronomy & Astrophysics 487(2), 767–774 (2008). https://doi.org/10.1051/0004-6361:20078825

    Article  ADS  Google Scholar 

  200. P.A. Moldauer, Statistics and the average cross section. Nucl. Phys. A 344, 185 (1980)

    ADS  Google Scholar 

  201. J.J.M. Verbaarschot, H.A. Weidenmüller, M.R. Zirnbauer, Grassmann integration in stochastic quantum physics: The case of compound-nucleus scattering. Phys. Rep. 129, 367 (1985)

    ADS  MathSciNet  Google Scholar 

  202. H.M. Hofmann, J. Richert, J.W. Tepel, H.A. Weidenmüller, Direct reactions and hauser-feshbach theory. Ann. Phys. 90(2), 403–437 (1975). https://doi.org/10.1016/0003-4916(75)90005-6

    Article  ADS  MathSciNet  Google Scholar 

  203. H.M. Hofmann, T. Mertelmeier, M. Herman, J.W. Tepel, Hauser-feshbach calculations in the presence of weakly absorbing channels with special reference to the elastic enhancement factor and the factorization assumption. Zeit. Phys. A 297, 153 (1980)

    ADS  Google Scholar 

  204. D.M. Filipescu, I. Gheorghe, H. Utsunomiya, S. Goriely, T. Renstrøm, H.-T. Nyhus, O. Tesileanu, T. Glodariu, T. Shima, K. Takahisa, S. Miyamoto, Y.-W. Lui, S. Hilaire, S. Péru, M. Martini, A.J. Koning, Photoneutron cross sections for samarium isotopes: Toward a unified understanding of \(({\gamma }, n)\) and \((n,{\gamma })\) reactions in the rare earth region. Phys. Rev. C 90, 064616 (2014). https://doi.org/10.1103/PhysRevC.90.064616

    Article  ADS  Google Scholar 

  205. P. Carlos, H. Beil, R. Bergere, A. Lepretre, A.D. Miniac, A. Veyssière, The giant dipole resonance in the transition region of the samarium isotope. Nucl. Phys. A 225, 171 (1974)

    ADS  Google Scholar 

  206. K.Y. Hara, H. Harada, F. Kitatani, S. Goko, S.-Y. Hohara, T. Kaihori, A. Makinaga, H. Utsunomiya, H. Toyokawa, K. Yamada, Measurements of the 152Sm(g, n) cross section with Laser-Compton scattering gamma-rays and the photon difference method. J. Nucl. Sci. Technol. 44(7), 938–945 (2007). https://doi.org/10.1080/18811248.2007.9711333

    Article  Google Scholar 

  207. G.M. Gurevich, L.E. Lazareva, V.M. Mazur, S.Y. Merkulov, G.V. Solodukhov, V.A. Tyutin, Total nuclear photoabsorption cross sections in the region 150 \(<\) A \(<\) 190. Nucl. Phys. A 351(2), 257–268 (1981). https://doi.org/10.1016/0375-9474(81)90443-7

    Article  ADS  Google Scholar 

  208. IAEA: Handbook on photonuclear data for applications. cross-sections and spectra. TECDOC-1178 (2000)

  209. S. Goko, H. Utsunomiya, S. Goriely, A. Makinaga, T. Kaihori, S. Hohara, H. Akimune, T. Yamagata, Y.-W. Lui, H. Toyokawa, A.J. Koning, S. Hilaire, Partial photoneutron cross sections for the isomeric state 180Ta-m. Phys. Rev. Lett. 96, 192501 (2006)

    ADS  Google Scholar 

  210. H. Utsunomiya, H. Akimune, S. Goko, M. Ohta, H. Ueda, T. Yamagata, K. Yamasaki, H. Ohgaki, H. Toyokawa, Y.-W. Lui, T. Hayakawa, T. Shizuma, E. Khan, S. Goriely, Cross section measurements of the \({}^{181}{{\rm Ta}}{(\gamma ,n)}^{180}{{\rm Ta}}\) reaction near neutron threshold and the p-process nucleosynthesis. Phys. Rev. C 67, 015807 (2003). https://doi.org/10.1103/PhysRevC.67.015807

    Article  ADS  Google Scholar 

  211. N. Fotiades, G.D. Johns, R.O. Nelson, M.B. Chadwick, M. Devlin, M.S. Wilburn, P.G. Young, J.A. Becker, D.E. Archer, L.A. Bernstein, P.E. Garrett, C.A. McGrath, D.P. McNabb, W. Younes, Measurements and calculations of \(^{238}{{\rm U}}(n, xn{\gamma })\) partial \({\gamma }\)-ray cross sections. Phys. Rev. C 69, 024601 (2004). https://doi.org/10.1103/PhysRevC.69.024601

    Article  ADS  Google Scholar 

  212. I. Dillmann, T. Szücs, R. Plag, Z. Fülöp, F. Käppeler, A. Mengoni, T. Rauscher, The Karlsruhe Astrophysical Database of Nucleosynthesis in Stars Project - status and prospects. Nucl. Data Sheets 120, 171–174 (2014). https://doi.org/10.1016/j.nds.2014.07.038

    Article  ADS  Google Scholar 

  213. R.C. Barrall, J.E. Beaver, H.B. Hupf, F.F. Rubio, Production of Curie quantities of high purity I-123 with 15 MeV protons. Europ. J. of Nucl. Medicine and Molecular Imaging 6, 411 (1981)

    Google Scholar 

  214. I. Mahunka, L. Ando, P. Mikecz, A.N. Tcheltsov, I.A. Suvorov, Iodine-123 production at a small cyclotron for medical use. J. of Radioanalytical and Nucl. Chem. Letters 213, 135 (1996)

    Google Scholar 

  215. B. Scholten, S.M. Qaim, G. Stocklin, Excitation functions of proton induced nuclear reactions on natural tellurium and enriched Te-123: Production of I-123 via the Te-123(p, n)I-123 process at a low-energy cyclotron. Appl. Radiat. Isot. 40, 127 (1989)

    Google Scholar 

  216. O. Iwamoto, N. Iwamoto, S. Kunieda, F. Minato, S. Nakayama, Y. Abe, K. Tsubakihara, S. Okumura, C. Ishizuka, T. Yoshida, S. Chiba, N. Otuka, J.-C. Sublet, H. Iwamoto, K. Yamamoto, Y. Nagaya, K. Tada, C. Konno, N. Matsuda, K. Yokoyama, H. Taninaka, A. Oizumi, M. Fukushima, S. Okita, G. Chiba, S. Sato, M. Ohta, S. Kwon, Japanese evaluated nuclear data library version 5: JENDL-5. Journal of Nuclear Science and Technology 1–60, (2023). https://doi.org/10.1080/00223131.2022.2141903

  217. F.T. Tarkanyi, A.V. Ignatyuk, A. Hermanne, R. Capote, B.V. Carlson, J.W. Engle, M.A. Kellett, T. Kibedi, G.N. Kim, F.G. Kondev, M. Hussain, O. Lebeda, A. Luca, Y. Nagai, H. Naik, A.L. Nichols, F.M. Nortier, S.V. Suryanarayana, S. Takacs, M. Verpelli, Recommended nuclear data for medical radioisotope production: diagnostic positron emitters. J. Rad. Nucl. Chem. 319, 487–531 (2019)

    Google Scholar 

  218. M. Kellett, O. Bersillon, R. Mills, The JEFF-3.1/-3.1.1 radioactive decay data and fission yields sub-libraries. JEFF Report 20, NEA No. 6287, ISBN 978-64-99087-6 (2009)

  219. A.N. Smirnov, V.P. Eismont, N.P. Filatov, S.N. Kirillov, J. Blomgren, H. Conde, N. Olsson, M. Duijvestijn, A. Koning, Measurement of neutron-induced fission cross section for Bi-209, Pb-nat, Pb-208, Au-197, W-nat and Ta-181 in the intermediate energy range. Proceedings of the International on Nuclear Data for Science and Technology, Santa Fe 2004, 637 (2004)

    ADS  Google Scholar 

  220. A.J. Koning, D. Rochman, Towards sustainable nuclear energy: Putting nuclear physics to work. Ann. Nucl. Energy 35(11), 2024–2030 (2008). https://doi.org/10.1016/j.anucene.2008.06.004

    Article  Google Scholar 

  221. R. Firestone, G. Molnar, Z. Revay, T. Belgya, D. Mcnabb, B. Sleaford, The evaluated gamma-ray activation file (EGAF). AIP Conference Proceedings 769, (2005). https://doi.org/10.1063/1.1944994

  222. F. Becvar, Simulation of gamma cascades in complex nuclei with emphasis on assessment of uncertainties of cascade-related quantities. Nucl. Instrum. Methods Phys. Res., Sect. A 417(2), 434–449 (1998). https://doi.org/10.1016/S0168-9002(98)00787-6

    Article  ADS  Google Scholar 

  223. A.J. Koning, M.B. Chadwick, Microscopic two-component multistep direct theory for continuum nuclear reactions. Phys. Rev. C 56, 970–994 (1997). https://doi.org/10.1103/PhysRevC.56.970

    Article  ADS  Google Scholar 

  224. N.M. Larson, Updated users’ guide for SAMMY: Multilevel R-matrix fits to neutron data using Bayes’ equations. Technical Report ORNL/TM-9179/R6, Oak Ridge National Lab, TN (2003)

  225. C. De Saint Jean, P. Tamagno, P. Archier, G. Noguere, CONRAD - a code for nuclear data modeling and evaluation. EPJ Nuclear Sci. Technol. 7, 10 (2021)

    ADS  Google Scholar 

  226. I.J. Thompson, Coupled channels methods for nuclear physics. Computer Physics Reports 7, 167–212 (1988)

    ADS  Google Scholar 

  227. O.I. Shinsuke Nakayama, Y. Watanabe, Recent progress of a code system DEURACS toward deuteron nuclear data evaluation. EPJ Web of Conferences 239, 03014 (2020)

    Google Scholar 

  228. M. Sin, R. Capote, M.W. Herman, A. Trkov, Extended optical model for fission. Phys. Rev. C 93, 034605 (2016). https://doi.org/10.1103/PhysRevC.93.034605

Download references

Acknowledgements

It is impossible to list all the people who have in one way or another contributed to the current status of TALYS, so we will refrain from that. We wish to dedicate this paper to the memory of our friend and colleague Eric Bauge. SG is F.R.S.-FRNS research associate. This work has been supported by the Fonds de la Recherche Scientifique (FNRS, Belgium) and the Research Foundation Flanders (FWO, Belgium) under the EOS Project nr O022818F and O000422.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arjan Koning.

Additional information

Communicated by Nicolas Alamanos.

The original online version of this article was revised. The affiliation details for the author Stephane Hilare were incorrectly given as “DIF, CEA, Arpajon 91297, France”. The correct affiliation details are “CEA, DAM, DIF, Arpajon 91297, France.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koning, A., Hilaire, S. & Goriely, S. TALYS: modeling of nuclear reactions. Eur. Phys. J. A 59, 131 (2023). https://doi.org/10.1140/epja/s10050-023-01034-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01034-3

Navigation