Skip to main content
Log in

Atmospheric-pressure electric discharge as an instrument of chemical activation of water solutions

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Results of experimental studies and numerical simulations of physicochemical characteristics of plasmas generated in different types of atmospheric-pressure discharges (pulsed streamer corona, gliding electric arc, dielectric barrier discharge, glow-discharge electrolysis, diaphragmatic discharge, and dc glow discharge) used to initiate various chemical processes in water solutions are analyzed. Typical reactor designs are considered. Data on the power supply characteristics, plasma electron parameters, gas temperatures, and densities of active particles in different types of discharges excited in different gases and their dependences on the external parameters of discharges are presented. The chemical composition of active particles formed in water is described. Possible mechanisms of production and loss of plasma particles are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Bruggeman and C. Leys, J. Phys. D 42, 053001 (2009).

    Article  ADS  Google Scholar 

  2. E. Tatarova, N. Bundaleska, L. Ph. Sarrette, and C. M. Ferreira, Plasma Sources Sci. Technol. 23, 063002 (2014).

    Article  ADS  Google Scholar 

  3. B. Jiang, J. Zheng, S. Qiu, M. Wu, Q. Zhang, Z. Yan, and Q. Xue, Chem. Eng. J. 236, 348 (2014).

    Article  Google Scholar 

  4. R. P. Joshi and S. M. Mededovic Thagard, Plasma Chem. Plasma Process. 33, 17 (2013).

    Article  Google Scholar 

  5. E. S. Bobkova, V. I. Grinevich, A. A. Isakina, and V. V. Rybkin, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 54 (6), 3 (2011).

    Google Scholar 

  6. A. Fridman, Plasma Chemistry (Cambridge University Press, Cambridge, 2008).

    Book  Google Scholar 

  7. H. S. Choi, T. G. Shikova, V. A. Titov, and V. V. Rybkin, J. Colloid. Interface Sci. 300, 640 (2006).

    Article  ADS  Google Scholar 

  8. P. J. Bruggeman, M. J. Kushner, B. R. Locke, J. G. E. Gardeniers, W. G. Graham, D. B. Graves, R. C. H. M. Hofman-Caris, D. Maric, J. P. Reid, E. Ceriani, D. Fernandez Rivas, J. E. Foster, S. C. Garrick, Y. Gorbanev, S. Hamaguchi, et al., Plasma Sources Sci. Technol. 25, 053002 (2016).

    Article  ADS  Google Scholar 

  9. H. S. Choi, V. V. Rybkin, V. A. Titov, T. G. Shikova, and T. A. Ageeva, Surf. Coat. Technol. 200, 4479 (2006).

    Article  Google Scholar 

  10. V. A. Titov, V. V. Rybkin, T. G. Shikova, T. A. Ageeva, O. A. Golubchikov, and H.-S. Choi, Surf. Coat. Technol. 199, 231 (2005).

    Article  Google Scholar 

  11. N. N. Misra, Trends Food Sci. Technol. 45, 229 (2015).

    Article  Google Scholar 

  12. R. Mu, Y. Liu, R. Li, G. Xue, and S. Ognier, Chem. Eng. J. 296, 356 (2016).

    Article  Google Scholar 

  13. M. A. Malik, Plasma Chem. Plasma Process. 30, 21 (2010).

    Article  ADS  Google Scholar 

  14. S. A. Smirnov, D. A. Shutov, E. S. Bobkova, and V. V. Rybkin, Plasma Chem. Plasma Process. 36, 415 (2016).

    Article  Google Scholar 

  15. S. A. Smirnov, D. A. Shutov, E. S. Bobkova, and V. V. Rybkin, Plasma Chem. Plasma Process. 35, 639 (2015).

    Article  Google Scholar 

  16. P. Bruggeman, D. Schram, M. A. Gonzalez, R. Rego, M. G. Kong, and C. Leys, Plasma Sources Sci. Technol. 18, 025017 (2009).

    Article  ADS  Google Scholar 

  17. D. A. Shutov, S. A. Smirnov, E. S. Bobkova, and V. V. Rybkin, Plasma Chem. Plasma Process. 35, 107 (2015).

    Article  Google Scholar 

  18. Q. Xiong, Z. Yang, and P. J. Bruggeman, J. Phys. D 48, 424008 (2015).

    Article  ADS  Google Scholar 

  19. S. Zhang, W. van Gaens, B. van Gessel, S. Hofmann, E. van Veldhuizen, A. Bogaerts, and P. Bruggeman, J. Phys. D 46, 205202 (2013).

    Article  ADS  Google Scholar 

  20. L. Li, A. Nikiforov, Q. Xiong, X. Lu, L. Taghizadeh, and C. Leys, J. Phys. D 45, 125201 (2012).

    Article  ADS  Google Scholar 

  21. S. Zhang, A. F. H. van Gessel, S. C. van Grootel, and P. J. Bruggeman, Plasma Sources Sci. Technol. 23, 025012 (2014).

    Article  ADS  Google Scholar 

  22. A. Yu. Nikiforov, Ch. Leys, M. A. Gonzalez, and J. L. Walsh, Plasma Sources Sci. Technol. 24, 034001 (2015).

    Article  ADS  Google Scholar 

  23. V. L. Ginzburg and A. V. Gurevich, Sov. Phys. Usp. 3, 175 (1960).

    Article  ADS  Google Scholar 

  24. L. R. Grabowski, L. R. van Veldhuizen, A. J. M. Pemen, and W. R. Rutgers, Plasma Chem. Plasma Process. 26, 3 (2006).

    Article  Google Scholar 

  25. P. Sunka, V. Babicky, M. Clupek, P. Lukes, M. Simek, J. Schmidt, and M. Cernak, Plasma Sources Sci. Technol. 8, 258 (1999).

    Article  ADS  Google Scholar 

  26. P. Lukes and B. R. Locke, J. Phys. D 38, 4074 (2005).

    Article  ADS  Google Scholar 

  27. D. R. Grymonpre, A. K. Sharma, W. C. A. Finney, and B. R. Locke, Chem. Eng. J. 82, 189 (2001).

    Article  Google Scholar 

  28. A. M. Malik and K. H. Schoenbach, J. Phys. D 45, 132001 (2012).

    Article  ADS  Google Scholar 

  29. S. Mededovic Thagard, K. Takashima, and A. Mizuno, Plasma Chem. Plasma Process. 29, 455 (2009).

    Article  Google Scholar 

  30. Yu. S. Akishev, M. E. Grushin, V. B. Karal’nik, A. E. Monich, M. V. Pan’kin, N. I. Trushkin, V. P. Kholodenko, V. A. Chugunov, N. A. Zhirkova, I. A. Irkhina, and E. N. Kobzev, Plasma Phys. Rep. 32, 1052 (2006).

    Article  ADS  Google Scholar 

  31. Yu. Akishev, G. Aponin, M. Grushin, V. Karalnik, A. Petryakov, and N. Trushkin, J. Optoelectron. Adv. Mater. 10, 1917 (2008).

    Google Scholar 

  32. A. M. Malik, Plasma Sources Sci. Technol. 12, 26 (2003).

    Article  Google Scholar 

  33. X. L. Hao, M. H. Zhou, Y. Zhang, and L. C. Lei, Plasma Chem. Plasma Process. 26, 455 (2006).

    Article  Google Scholar 

  34. Yu. Akishev, F. Aref-Khonsari, A. Demir, M. Grushin, V. Karalnik, A. Petryakov, and N. Trushkin, Plasma Sources Sci. Technol. 24, 065021 (2015).

    Article  ADS  Google Scholar 

  35. J. Pawlat, K. Hensel, and S. Ihara, Czech. J. Phys. 56, B1174 (2006).

    Article  Google Scholar 

  36. E. E. Itay, A. Mizrahi, D. Gerrity, S. Snyder, A. Salveson, and O. Lahav, Desalinat. Water Treat. 11, 236 (2009).

    Article  Google Scholar 

  37. J. Nieto-Salazar, N. Bonifaci, A. Denat, and O. Lesaint, in Proceedings of the 15th IEEE International Conference on Dielectric Liquids, Coimbra, 2005, p.91.

    Google Scholar 

  38. T. Namihira, S. Sakai, T. Yamaguchi, K. Yamamoto, C. Yamada, T. Kiyan, T. Sakugawa, S. Katsuki, and H. Akiyama, IEEE Trans. Plasma Sci. 35, 614 (2007).

    Article  ADS  Google Scholar 

  39. P. Sunka, Phys. Plasmas 8, 2587 (2001).

    Article  ADS  Google Scholar 

  40. W. An, K. Baumung, and H. Bluhm, J. Phys. D 101, 053302 (2007).

    Google Scholar 

  41. E. M. Veldhuizen and W. R. Rutgers, in Proceedings of the 15th International Symposium on Plasma Chemistry, Orleans, 2001, p. 3245.

    Google Scholar 

  42. N. Bonifaci, A. Denat, and P. E. Frayssines, J. Electrostat 64, 445 (2006).

    Article  Google Scholar 

  43. K. Y. Shih and B. R. Locke, Plasma Chem. Plasma Process. 30, 1 (2010).

    Article  Google Scholar 

  44. W. Bian, M. Zhou, and L. Lei, Plasma Chem. Plasma Process. 27, 337 (2007).

    Article  Google Scholar 

  45. S. Janca, A. Kuzmin, A. Maximov, Yu. Titova, and A. Czernichowski, Plasma Chem. Plasma Process. 19, 53 (1999).

    Article  Google Scholar 

  46. Ch. M. Du, Y. W. Sun, and X. F. Zhuang, Plasma Chem. Plasma Process. 28, 523 (2008).

    Article  Google Scholar 

  47. E. Njoyim, P. Ghogomu, S. Laminsi, S. Nzali, A. Doubla, and J.-L. Brisset, Indust. Eng. Chem. Res. 48, 9773 (2009).

    Article  Google Scholar 

  48. A. Fridman, S. Nester, L. Kennedy, A. Saveliev, and O. Mutaf-Yardimci, Prog. Energy Combust. Sci. 25, 211 (1999).

    Article  Google Scholar 

  49. A. G. Bubnov, E. Yu. Burova, V. I. Grinevich, V. V. Rybkin, J.-K. Kim, and H.-S. Choi, Plasma Chem. Plasma Process. 26, 19 (2006).

    Article  Google Scholar 

  50. A. Czernichowski, Pure Appl. Chem. 66, 1301 (1994).

    Article  Google Scholar 

  51. O. Mutaf-Yardimci, A. V. Saveliev, A. Fridman, and L. A. Kennedy, Int. J. Hydrog. Energy 23, 1109 (1999).

    Article  Google Scholar 

  52. S. Pellerin, J.-M. Cormier, F. Richard, K. Musiol, and J. Chapelle, J. Phys. D 29, 726 (1996).

    Article  ADS  Google Scholar 

  53. Ya. Liu, H. Tian, and A. Si, Plasma Chem. Plasma Process. 32, 597 (2012).

    Article  Google Scholar 

  54. I. M. Piskarev, G. M. Spirov, V. D. Selemir, V. I. Karelin, and S. I. Shlepkin, Khim. Vys. Energ. 41, 334 (2007).

    Google Scholar 

  55. D. Iya-Sou, S. Laminsi, S. Cavadias, and S. Ognier, Plasma Chem. Plasma Process. 33, 97 (2013).

    Article  Google Scholar 

  56. K. Krawczyk and S. Mlotek, Appl. Catal. 30, 233 (2001).

    Article  Google Scholar 

  57. D. Moussa, J.-L. Brisset, E. Hnatiuc, and G. Decobert, Indust. Eng. Chem. Res. 45, 30 (2006).

    Article  Google Scholar 

  58. U. Kogelschats, Plasma Chem. Plasma Process. 23, 1 (2003).

    Article  Google Scholar 

  59. U. Kogelschats, IEEE Trans. Plasma Sci. 30, 1400 (2002).

    Article  ADS  Google Scholar 

  60. N. Gherargi, G. Gouda, E. Gat, A. Ricard, and F. Massines, Plasma Sources Sci. Technol. 9, 340 (2000).

    Article  ADS  Google Scholar 

  61. N. Gherardi and F. Massines, IEEE Trans. Plasma Sci. 29, 536 (2001).

    Article  ADS  Google Scholar 

  62. Yu. B. Golubovskii, V. A. Maiorov, J. Behnke, and J. F. Behnke, J. Phys. D 35, 751 (2002).

    Article  ADS  Google Scholar 

  63. Yu. B. Golubovskii, V. A. Maiorov, J. Behnke, and J. F. Behnke, J. Phys. D 36, 975 (2003).

    Article  ADS  Google Scholar 

  64. G. Z. Qu, N. Lu, J. Lia, Y. Wu, G.-F. Li, and D. Li, J. Hazard. Mater. 172, 472 (2009).

    Article  Google Scholar 

  65. E. S. Bobkova, V. I. Grinevich, N. A. Ivantsova, and V. V. Rybkin, Plasma Chem. Plasma Process. 32, 97 (2012).

    Article  Google Scholar 

  66. E. S. Bobkova and V. V. Rybkin, High Temp. 51, 747 (2013).

    Article  Google Scholar 

  67. A. G. Bubnov, V. I. Grinevich, O. N. Maslova, and V. V. Rybkin, Teoret. Osnovy Khim. Tekhnol. 41, 366 (2007).

    Google Scholar 

  68. Y. S. Mok, J.-O. Jo, N.-J. Lee, H. T. Ahn, and J. T. Kim, Plasma Chem. Plasma Process. 27, 51 (2007).

    Article  Google Scholar 

  69. B. Eliasson and U. Kogelschatz, IEEE Trans. Plasma Sci. 19, 309 (1991).

    Article  ADS  Google Scholar 

  70. Y. Matsui, N. Takeushi, K. Sasaki, R. Hayashi, and K. Yasuoka, Plasma Sources Sci. Technol. 20, 034015 (2011).

    Article  ADS  Google Scholar 

  71. B. Eliasson, M. Hirth, and U. Kogelschatz, J. Phys. D 20, 1421 (1987).

    Article  ADS  Google Scholar 

  72. E. S. Bobkova, V. V. Rybkin, and Ya. V. Khodor, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 55 (12), 59 (2012).

    Google Scholar 

  73. F. Thevenet, J. Couble, M. Brandhorst, J. L. Dubois, E. Puzenat, C. Guillard, and D. Bianchi, Plasma Chem. Plasma Process. 30, 489 (2010).

    Article  Google Scholar 

  74. E. S. Bobkova, Ya. V. Khodor, O. N. Kornilova, and V. V. Rybkin, High Temp. 52, 511 (2014).

    Article  Google Scholar 

  75. A. Hickling and M. D. Ingram, Trans. Faraday Soc. 60, 783 (1964).

    Article  Google Scholar 

  76. A. Fridman, A. Gutsol, and Y. Cho, Adv. Heat Transfer 40, 570 (2007).

    Google Scholar 

  77. J. Gao, Y. Liu, W. Yang, L. Pu, J. Yu, and Q. Lu, Plasma Sources Sci. Technol. 12, 533 (2003).

    Article  ADS  Google Scholar 

  78. L. Wang, Plasma Chem. Plasma Process. 29, 241 (2009).

    Article  ADS  Google Scholar 

  79. A. Y. Nikiforov and C. Leys, Plasma Sources Sci. Technol. 16, 273 (2007).

    Article  ADS  Google Scholar 

  80. F. De. Baerdemaeker, M. Simek, J. Schmidt, and C. Leys, Plasma Sources Sci. Technol. 16, 341 (2007).

    Article  ADS  Google Scholar 

  81. P. Bruggeman, C. Leys, and J. Vierendeels, J. Phys. D 40, 1937 (2007).

    Article  ADS  Google Scholar 

  82. A. I. Maksimov and A. Yu. Nikiforov, Khim. Vys. Energ. 44, 272 (2010).

    Google Scholar 

  83. P. Bruggeman, J. J. Liu, J. Degroote, M. G. Kong, J. Vierendeels, and C. Leys, J. Phys. D 41, 215201 (2008).

    Article  ADS  Google Scholar 

  84. V. A. Titov, V. V. Rybkin, A. I. Maximov, and H.-S. Choi, Plasma Chem. Plasma Process. 25, 503 (2005).

    Article  Google Scholar 

  85. T. Cserfalvi and P. Mezei, Fresenius J. Anal. Chem. 355, 813 (1996).

    Google Scholar 

  86. A. R. Gaisin and E. E. Son, High Temp. 43, 1 (2005).

    Article  Google Scholar 

  87. P. Bruggeman, E. Rubezl, A. Maslani, J. Degroote, A. Malesevic, R. Rego, J. Vierendeels, and C. Leys, Plasma Sources Sci. Technol. 17, 025012 (2008).

    Article  ADS  Google Scholar 

  88. D. A. Babikov and E. E. Son, Poverkhnost’ 9, 47 (1997).

    Google Scholar 

  89. L. T. Bugaenko, M. G. Kuz’min, and L. S. Polak, High-Energy Chemistry (Khimiya, Moscow, 1988) [in_Russian].

    Google Scholar 

  90. A. K. Pikaev, Ts. A. Kabakchi, and I. E. Makarov, High-Temperature Radiolysis of Water and Water Solutions (Energoatomizdat, Moscow, 1988) [in_Russian].

    Google Scholar 

  91. P. Mezei and T. Cserfalvi, J. Phys. D 39, 2534 (2006).

    Article  ADS  Google Scholar 

  92. T. Verreysken, D. C. Schram, C. Leys, and P. Bruggeman, Plasma Sources Sci. Technol. 19, 045004 (2010).

    Article  ADS  Google Scholar 

  93. V. A. Titov, V. V. Rybkin, S. A. Smirnov, A. N. Kulentsan, and H.-S. Choi, Plasma Chem. Plasma Process. 26, 543 (2006).

    Article  Google Scholar 

  94. P. Jamroz and W. Zyrnicki, Plasma Chem. Plasma Process. 31, 681 (2011).

    Article  Google Scholar 

  95. E. Bobkova, S. Smirnov, Ya. Zalipaeva, and V. Rybkin, Plasma Chem. Plasma Process. 34, 721 (2014).

    Article  Google Scholar 

  96. V. V. Rybkin, S. A. Smirnov, V. A. Titov, and D. A. Arzhakov, High Temp. 48, 476 (2010).

    Article  Google Scholar 

  97. S. A. Smirnov, V. V. Rybkin, and I. V. Kholodkov, High Temp. 40, 323 (2002).

    Article  Google Scholar 

  98. Nonequilibrium Oscillatory Kinetics, Ed. by M. Capitelli (New York, Springer-Verlag, 1986).

    Google Scholar 

  99. D. A. Shutov, S. A. Smirnov, A. S. Konovalov, and A. N. Ivanov, High Temp. 54, 483 (2016).

    Article  Google Scholar 

  100. D. A. Shutov, A. S. Konovalov, and V. D. Dronik, High Temp. 52, 627 (2014).

    Article  Google Scholar 

  101. A. S. Konovalov, S. N. Golubev, A. N. Ivanov, D. A. Shutov, S. A. Smirnov, and V. V. Rybkin, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 55, 55 (2012).

    Google Scholar 

  102. V. V. Rybkin, S. A. Smirnov, and A. N. Ivanov, High Temp. 49, 755 (2011).

    Article  Google Scholar 

  103. A. S. Konovalov, V. V. Rybkin, and S. A. Smirnov, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 56, 44 (2013).

    Google Scholar 

  104. V. V. Rybkin, I. V. Kholodkov, and V. A. Titov, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 51, 3 (2008).

    Google Scholar 

  105. M. R. Webb, F. J. Andrade, G. Gamez, R. McCrindle, and G. H. Hieftje, J. Anal. At. Spectrom. 20, 1218 (2005).

    Article  Google Scholar 

  106. Yu. A. Barinov and S. M. Shkol’nik, Tech. Phys. 47, 313 (2002).

    Article  Google Scholar 

  107. Q. Chen, K. Sato, Y. Takemura, and H. Shirai, Thin Solid Films 516, 6688 (2008).

    Article  ADS  Google Scholar 

  108. Yu. A. Barinov, V. B. Kaplan, V. V. Rozhdestvenskii, and S. M. Shkol’nik, Tech. Phys. Lett. 24, 929 (1998).

    Article  ADS  Google Scholar 

  109. P. Mezei, T. Cserfaly, and M. Janossy, J. Phys. D 31, 14 (1998).

    Article  Google Scholar 

  110. E. S. Bobkova, D. S. Krasnov, A. V. Sungurova, V. V. Rybkin, and H.-S. Choi, Korean J. Chem. Eng. 33, 1620 (2016).

    Article  Google Scholar 

  111. A. I. Maksimov, V. A. Titov, and A. V. Khlyustova, Khim. Vys. Energ. 38, 227 (2004).

    Google Scholar 

  112. T. Cserfalvi, P. Mezei, and P. Apai, J. Phys. D 26, 1824(1993).

    Article  Google Scholar 

  113. A. Nikiforov, Q. Xiong, N. Britun, R. Snyders, X. P. Lu, and C. Leys, Appl. Phys. Express 4, 026102 (2011).

    Article  ADS  Google Scholar 

  114. A. Nikiforov, in Proceedings of the VI bInternational Symposium on Theoretical and Applied Plasma Chemistry, Ivanovo, 2011 (Izd. IGKhTU, Ivanovo, 2011), p.318.

    Google Scholar 

  115. S. A. Smirnov, D. A. Shutov, E. S. Bobkova, and V. V. Rybkin, Plasma Phys. Rep. 42, 74 (2016).

    Article  ADS  Google Scholar 

  116. E. S. Bobkova and V. V. Rybkin, Khim. Vys. Energ. 50, 144 (2016).

    Google Scholar 

  117. B. R. Locke and K.-Y. Shih, Plasma Sources Sci. Technol. 20, 034006 (2011).

    Article  ADS  Google Scholar 

  118. T. Maehara, K. Nishiyama, S. Onishi, S. Mukasa, H. Toyota, M. Kuramoto, S. Nomura, and A. Kawashima, J. Hazard. Mater. 174, 473 (2010).

    Article  Google Scholar 

  119. K.-Y. Shih and B. R. Locke, Plasma Chem. Plasma Process. 30, 1 (2010).

    Article  Google Scholar 

  120. S. Ognier, D. Iya-sou, C. Fourmond, and S. Cavadias, Plasma Chem. Plasma Process. 29, 261 (2009).

    Article  Google Scholar 

  121. T. H. Dang, A. Denat, O. Lesaint, and G. Teissedre, Plasma Sources Sci. Technol. 17, 024013 (2008).

    Article  ADS  Google Scholar 

  122. Z. Stara and F. Krcma, Czech. J. Phys. 54, 1050 (2006).

    Article  Google Scholar 

  123. N. A. Aristova, I. M. Piskarev, A. V. Ivanovskii, V. D. Selemir, G. M. Spirov, and S. I. Shlepkin, Russ. J. Phys. Chem 78, 1144 (2004).

    Google Scholar 

  124. R. Burlica, K.-Y. Shih, and B. R. Locke, Indust. Eng. Chem. Res. 49, 6342 (2010).

    Article  Google Scholar 

  125. P. Lukes, A. Appleton, and B. R. Locke, IEEE Trans. Indust. Appl. 47, 60 (2004).

    Article  Google Scholar 

  126. V. A. Titov, V. V. Rybkin, S. A. Smirnov, A. L. Kulentsan, and H.-S. Choi, High Temp. Mater. Processes 11, 515 (2007).

    Article  Google Scholar 

  127. B. G. Ershov, Usp. Khim.73, 107 (2004).

    Article  Google Scholar 

  128. L. Wang, Plasma Chem. Plasma Process. 29, 241 (2009).

    Article  ADS  Google Scholar 

  129. S. Kanazawa, H. Kawano, S. Watanabe, T. Furuki, S. Akamine, R. Ichiki, T. Ohkubo, M. Kocik, and J. Mizeraczyk, Plasma Sources Sci. Technol. 20, 043010 (2011).

    Article  Google Scholar 

  130. M. Sahni and B. R. Locke, Indust. Eng. Chem. Res. 45, 5819 (2006).

    Article  Google Scholar 

  131. U. Gangal, M. Srivastava, and S. K. Sen Gupta, Plasma Chem. Plasma Process. 30, 299 (2010).

    Article  Google Scholar 

  132. R. Singh, U. Gangal, and S. Sen-Gupta, Plasma Chem. Plasma Process. 33, 609 (2012).

    Article  Google Scholar 

  133. A. Hickling, in Modern Aspects of Electrochemistry, Ed. by J. O’M. Bockris and B. E. Conway (Plenum, New York, 1971), Vol. 7, p.329.

    Google Scholar 

  134. A. Khlyustova, N. Khomyakova, N. Sirotkin, and Yu. Marfin, Plasma Chem Plasma Process. 36, 1229 (2016).

    Article  Google Scholar 

  135. L. T. Molina, S. T. Schinke, and M. J. Molina, Geophys. Rev. Lett. 4, 580 (1977).

    Article  ADS  Google Scholar 

  136. E. S. Bobkova, T. G. Shikova, V. I. Grinevich, and V. V. Rybkin, Khim. Vys. Energ. 46, 60 (2012).

    Google Scholar 

  137. M. J. Kirkpatric and B. R. Locke, Indust. Eng. Chem. Res. 44, 4243 (2005).

    Article  Google Scholar 

  138. M. Sahni and B. R. Locke, Plasma Processes Polym. 3, 342 (2006).

    Article  Google Scholar 

  139. A. G. Bubnov, E. Yu. Burova, V. I. Grinevich, V. V. Rybkin, J.-K. Kim, and H.-S. Choi, Plasma Chem. Plasma Process. 26, 19 (2006).

    Article  Google Scholar 

  140. J.-L. Brisset, B. Benstaali, D. Moussa, J. Fanmoe, and E. Njoyim-Tamungang, Plasma Sources Sci. Technol. 20, 034021 (2011).

    Article  ADS  Google Scholar 

  141. I. M. Piskarev, Khim. Vys. Energ. 50, 311 (2016).

    Google Scholar 

  142. D. A. Shutov, E. O. Ol’khova, A. N. Kostyleva, and E. S. Bobkova, Khim. Vys. Energ. 48, 393 (2014).

    Google Scholar 

  143. J.-L. Brisset and J. Pawlat, Plasma Chem. Plasma Process. 36, 355 (2016).

    Article  Google Scholar 

  144. P. Rumbach, D. M. Bartels, R. M. Sankaran, and D. B. Go, Nat. Commun. 6, 7248 (2011).

    Article  Google Scholar 

  145. S. M. Thagard, K. Takashima, and A. Mizuno, Plasma Chem. Plasma Process. 29,455 (2009).

    Article  Google Scholar 

  146. X. Z. Huang, X. X. Zhong, Y. Lu, Y. S. Li, A. E. Rider, S. A. Furman, and K. Ostrikov, Nanotecnology 24, 095604 (2013).

    Article  ADS  Google Scholar 

  147. X. Huang, Y. Li, and X. Zhong, Nanoscale Res. Lett. 9, 572 (2014).

    Article  ADS  Google Scholar 

  148. J. Hieda, N. Saito, and O. Takai, J. Vac. Sci. Technol. A 26, 854 (2008).

    Article  Google Scholar 

  149. N. Shirai, S. Uchida, and F. Tochikubo, Jpn. J. Appl. Phys. 53, 046202 (2014).

    Article  ADS  Google Scholar 

  150. H.-S. Kim, S.-H. Choi, and K.-D. Jung, Cryst. Growth Des. 16, 1387 (2016).

    Article  Google Scholar 

  151. G. V. Buxton, C. L. Greenstock, W. P. Helman, and A. B. Ross, J. Phys. Chem. Ref. Data 17, 513 (1988).

    Article  ADS  Google Scholar 

  152. R. Wang, S. Zuo, W. Zhu, J. Zhang, and J. Fang, Plasma Processes Polym. 11, 448 (2014).

    Article  Google Scholar 

  153. C. Du and M. Xiao, Sci. Rep. 4, 7339.

  154. D. A. Shutov, A. V. Sungurova, A. Choukourov, and V. V. Rybkin, Plasma Chem. Plasma Process. 36, 1253 (2016).

    Article  Google Scholar 

  155. D. A. Shutov, S. A. Smirnov, and V. V. Rybkin, Khim. Vys. Energ. 48, 502 (2014).

    Google Scholar 

  156. B. Ervens, G. Feingold, D. J. Frost, and S. M. Kreidenweis, J. Geophys. Res. Atmos. 109, D15025 (2004).

    Google Scholar 

  157. J. H. Yan, Ch. M. Du, X. D. Li, B. G. Cheron, M. J. Ni, and K. F. Cen, Plasma Chem. Plasma Process. 26, 31 (2006).

    Article  Google Scholar 

  158. Y. Liu, J. Hazard. Mater. 168, 992 (2009).

    Article  Google Scholar 

  159. Z. Ke, Q. Huang, H. Zhang, and Z. Yu, Environ. Sci. Technol. 45, 7841 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Rybkin.

Additional information

Original Russian Text © V.V. Rybkin, D.A. Shutov, 2017, published in Fizika Plazmy, 2017, Vol. 43, No. 11, pp. 929–954.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rybkin, V.V., Shutov, D.A. Atmospheric-pressure electric discharge as an instrument of chemical activation of water solutions. Plasma Phys. Rep. 43, 1089–1113 (2017). https://doi.org/10.1134/S1063780X17110071

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X17110071

Navigation