Skip to main content
Log in

Gliding Arc Discharge for Decolorization and Biodegradability of Azo Dyes and Printing and Dyeing Wastewater

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Gliding arc discharge process was used for the pretreatment of four azo dye solutions, which are classified to acidic, reactive and chemical indicator, as well as printing and dyeing wastewater with the objective of improving their overall biodegradability. The percentage color removal of all samples were found to be over 92% after 40 min treatment, and the color disappearance of four azo dyes followed the first-order kinetics completely. The biochemical oxygen demand (BOD5)/chemical oxygen demand (COD) ratio increased from 0.02 to 0.46 for acid orange II (AO7), 0.173 to 0.55 for methyl orange, 0.019 to 0.4 for direct fast black, 0 to 0.65 for reactive red K-2BP. The decolorization of printing and dyeing wastewater achieved 97.5% and the COD removal efficiency was 76.6%. The BOD5/COD ratio increased to 0.55 after 20 min treatment. The experimental results indicates it is possible to combine gliding arc discharge with conventional biological treatment for the remedy of wastewater containing generally non-biodegradable dye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang HJ, Li J, Quan X (2006) J Electrost 64:416–421

    Article  Google Scholar 

  2. Sugiartoa AT, Itoa S, Ohshima TJ (2003) J Electrostat 58:135–145

    Article  Google Scholar 

  3. Gao JZ, Wang XY, Hu ZG (2003) Water Res 37:267–272

    Article  Google Scholar 

  4. Fujikawa J, Sano N (2004) Chem Eng Technol 27:548–552

    Article  Google Scholar 

  5. Abdelmaleka F, Gharbia S, Benstaalia B (2004) Water Res 38:2338–2346

    Google Scholar 

  6. Lesueur H, Czernichowski A (1990) Patent FR2639172

  7. Yan JH, Liu YN, Li XD, Cen KF (2008) J Hazard Mater 157:441–447

    Article  Google Scholar 

  8. Burlica R, Kirkpatricka MJ, Finneya WC (2004) J Electrostat 62:309–321

    Article  Google Scholar 

  9. Yan JH, Du Ch M, Li XD, Cheron BG, Ni MJ (2006) Plasma Chem Plasma Process 26:31–41

    Article  Google Scholar 

  10. Yan JH, Du CM, Li XD (2005) Plasma Sources Sci Technol 14:637–644

    Article  ADS  Google Scholar 

  11. Moussa D, Brisset JL (2003) J Hazard Mater B 102:189–200

    Article  Google Scholar 

  12. Benstaali B, Boubert P, Cheron BG (2002) Plasma Chem Plasma Process 22:553–571

    Article  Google Scholar 

  13. Burlica R, Michael JK (2006) J Electrostat 64:35–43

    Article  Google Scholar 

  14. Krawczyk K, Mlotek M (2001) High Temp Mater Processes 5:349–353

    Google Scholar 

  15. Krawczyk K, Mlotek M (2001) Catal B Environ 30:233–245

    Article  Google Scholar 

  16. Antonius I, Choi JW, Lee HW (2006) J Environ Sci 18:83–89

    Google Scholar 

  17. Antonius I, Yang DR, Azhari CH (2007) Chem Eng J 131:37–41

    Google Scholar 

  18. Moussa D, Brisset JL, Hnatiuc E (2006) Ind Eng Chem Res 45:30–33

    Article  Google Scholar 

  19. Sun B, Sato M, Clements JS (1997) J Electrostat 39:189–202

    Article  Google Scholar 

  20. Sato M, Ohgiyama T, Clements JS (1996) IEEE Trans Ind Appl 32:106–112

    Article  Google Scholar 

  21. Janca J, Czernichowski A (1998) Surf Coat Technol 98:1112–1115

    Article  Google Scholar 

  22. Petr L, Austin TA, Bruce RL (2004) IEEE Trans Ind Appl 40:60–64

    Article  Google Scholar 

  23. Abdelmalek F, Ghezzar MR, Belhadj M, Addou A (2006) Ind Eng Chem Res 45:23–29

    Article  Google Scholar 

  24. Alaton IA, Teksoy S (2007) Dyes Pigm 73:31–39

    Article  Google Scholar 

  25. Momani FA (2006) J Photochem Photobio A 179:184–192

    Article  Google Scholar 

  26. Kajitvichyanukul P, Suntronvipart N (2006) J Hazard Mater B 138:384–391

    Article  Google Scholar 

  27. Andreasen K, Sigvardsen L (1996) Water Sci Technol 33:136–146

    Google Scholar 

Download references

Acknowledgments

Financial support from National Nature Science Foundation (N50476058) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-na Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Yn., Tian, H. & Si, Ah. Gliding Arc Discharge for Decolorization and Biodegradability of Azo Dyes and Printing and Dyeing Wastewater. Plasma Chem Plasma Process 32, 597–607 (2012). https://doi.org/10.1007/s11090-012-9360-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-012-9360-5

Keywords

Navigation