Skip to main content
Log in

Oxygen-Rich Side-Blown Bath Smelting of Copper Dross: A Process Study

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

A complex copper dross containing Bi, Pb, Cu, As and Sb was processed in a 3.6 m2 industrial-scale oxygen-rich side-blown bath smelting furnace (OSBF). The products were collected and analyzed by chemical and mineralogical methods. Industrial statistical data showed that recoveries of Cu, Pb, Bi and Sb reached 87%, 96%, 97% and 60%, respectively. Slag composition indicated that the process can be divided into 2 steps, i.e., oxidative smelting and reductive smelting, due to the use of different oxygen-rich gas flow rate and enrichment. The effect of oxygen partial pressure (PO2) on the element partitioning was simulated by Factsage. The results indicated that increase of PO2 between 10–5 atm and 10–7 atm would significantly increase the partitioning of Cu, Pb, As and Sb to the slag; while element partitioning became almost independent of PO2 between 10–7.5 atm to 10–9.5 atm. Phase analysis for the slag indicated that the bath in the furnace was a “FeO”–CaO–SiO2–Al2O3–ZnO slag coexisting with solid spinels.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bates C, DiMartini C (1986) Sodium treatment of copper dross. JOM 38(8):43–45. https://doi.org/10.1007/bf03257788

    Article  CAS  Google Scholar 

  2. Ohmsen GS (2001) Characterization of fugitive material within a primary lead smelter. J Air Waste Manag Assoc 51(10):1443–1451. https://doi.org/10.1080/10473289.2001.10464371

    Article  CAS  Google Scholar 

  3. Xu B, Guo X, Deng Y, Xiong H, Yang B, Liu D, Jiang W (2018) Removal of sulfur from copper dross generated by refining lead. In: J-Y Hwang, T Jiang, MW Kennedy, D Gregurek, S Wang, B Zhao, O Yücel, E Keskinkilic, JP Downey, Z Peng, R Padilla (eds) 9th International symposium on high-temperature metallurgical processing, The Minerals, Metals & Materials Society, pp 259–267.

  4. Klochko K (2020) Lead. mineral commodity summaries, U. S. Geol. Surv., USA, pp 94–95. https://pubs.usgs.gov/periodicals/mcs2020/mcs2020-lead.pdf

  5. Xiao H, Xie B, Chen L, Wang Z, Liu W, Zhang D, Yang T (2019) Metal Distribution behavior in copper dross smelting for enrichment. J Cent South Univ 50(7):1527–1536. https://doi.org/10.11817/j.issn.1672-7207.2019.07.004

    Article  Google Scholar 

  6. Guo X, Tian M, Wang S, Yan S, Wang Q, Yuan Z, Tian Q, Tang D, Li Z (2019) Element distribution in oxygen-enriched bottom-blown smelting of high-arsenic copper dross. JOM 71(11):3941–3948. https://doi.org/10.1007/s11837-019-03767-3

    Article  CAS  Google Scholar 

  7. Yang C, Xu N, Jiang W, Liu D, Yang B, Liu F (2016) Recycling of copper dross by distillation and two-stage condensation in vacuum. Chin J Vac Sci Technol 36(1):57–63. https://doi.org/10.13922/j.cnki.cjovst.2016.01.11

    Article  CAS  Google Scholar 

  8. Yang M, Di J-C (2012) Pilot test on treatment of copper scum by bottom-blown furnace. China Nonferrous Metall 4:22–24

    Google Scholar 

  9. Zhang L, Wang Y-Y, Li X-B, Lu G-C, Wang Q-J (2016) Production practice of copper dross treatment with oxygen side-blowing furnace. China Nonferrous Metall 3:13–15

    Google Scholar 

  10. Chen L, Yang T, Bin S, Liu W, Zhang D, Bin W, Zhang L (2014) An efficient reactor for high-lead slag reduction process: oxygen-rich side blow furnace. JOM 66(9):1664–1669. https://doi.org/10.1007/s11837-014-1057-1

    Article  CAS  Google Scholar 

  11. Cao L-B, Yang W (2017) Measures of improving the production index of copper scum reverberatory. Hunan Nonferrous Met 33(6):32–33

    Google Scholar 

  12. Bao C-J, Jia Z-H, Wu H-L, Ren Z-Y, Wei X, Wu Z-Y (2009) Industrial test for treating copper dross with converter. China Nonferrous Metall 3:27–28

    Google Scholar 

  13. Chen L, Hao Z, Yang T, Xiao H, Liu W, Zhang D, Bin S, Bin W (2015) An efficient technology for smelting low grade bismuth-lead concentrate: oxygen-rich side blow process. JOM 67(9):1997–2004. https://doi.org/10.1007/s11837-015-1491-8

    Article  CAS  Google Scholar 

  14. Vernon PN, Burks SF (1997) The application of Ausmelt technology to base metal smelting, now and in the future. J S Afr Inst Min Metall 97(3):89–98

    CAS  Google Scholar 

  15. Chen L, Bin W, Yang T, Liu W, Bin S (2013) Research and industrial application of oxygen-rich side-blow bath smelting technology. In: Tao J, Hwang J-Y, Mackey PJ, Yucel O, Zhou G (eds) 4th international symposium on high-temperature metallurgical processing, The Minerals, Metals & Materials Society, pp 49–55

    Google Scholar 

  16. Zhang HL, Zhou CQ, Bing WU, Chen YM (2015) Numerical simulation of multiphase flow in a Vanyukov furnace. J Southern Afr Inst Mining Metall 115(5):457–463. https://doi.org/10.17159/2411-9717/2015/v115n5a14

    Article  Google Scholar 

  17. Zhou S, Wei Y, Zhang S, Li B, Wang H, Yang Y, Barati M (2019) Reduction of copper smelting slag using waste cooking oil. J Clean Prod. https://doi.org/10.1016/j.jclepro.2019.117668

    Article  Google Scholar 

  18. Chen L, Hao Z, Yang T, Liu W, Zhang D, Zhang L, Bin S, Bin W (2015) A comparison study of the oxygen-rich side blow furnace and the oxygen-rich bottom blow furnace for liquid high lead slag reduction. JOM 67(5):1123–1129. https://doi.org/10.1007/s11837-015-1375-y

    Article  CAS  Google Scholar 

  19. Taskinen P, Seppala K, Laulumaa J, Poijarvi J (2001) Oxygen pressure in the Outokumpu flash smelting furnace—Part 1: copper flash smelting settler. Trans Inst Min Metall Sect C-Miner Process Extr Metall 110:C94–C100

    Article  CAS  Google Scholar 

  20. Matousek JW (2011) Oxidation potentials in lead and zinc smelting. JOM 63(12):63–67. https://doi.org/10.1007/s11837-011-0209-9

    Article  Google Scholar 

  21. Bale CW, Bélisle E, Chartrand P, Decterov SA, Eriksson G, Gheribi AE, Hack K, Jung IH, Kang YB, Melançon J, Pelton AD, Petersen S, Robelin C, Sangster J, Spencer P, Van Ende MA (2016) FactSage thermochemical software and databases, 2010–2016. Calphad. https://doi.org/10.1016/j.calphad.2016.05.002

    Article  Google Scholar 

  22. Shishin D, Chen J, Hidayat T, Jak E (2019) Thermodynamic modeling of the Pb-As and Cu-Pb-As systems supported by experimental study. J Phase Equilibria Diffus 40(6):758–767. https://doi.org/10.1007/s11669-019-00764-6

    Article  CAS  Google Scholar 

  23. Swinbourne DR, Kho TS (2012) Computational thermodynamics modeling of minor element distributions during copper flash converting. Metall Mater Trans B 43(4):823–829. https://doi.org/10.1007/s11663-012-9652-4

    Article  CAS  Google Scholar 

  24. Coursol P, Cardona Valencia N, Mackey P, Bell S, Davis B (2012) Minimization of copper losses in copper smelting slag during electric furnace treatment. JOM 64(11):1305–1313. https://doi.org/10.1007/s11837-012-0454-6

    Article  CAS  Google Scholar 

  25. Liu H, Cui Z, Chen M, Zhao B (2016) Phase equilibria study of the ZnO-“FeO”-SiO2-Al2O3 system at PO2 10–8 atm. Metall Mater Trans B 47(2):1113–1123. https://doi.org/10.1007/s11663-016-0596-y

    Article  CAS  Google Scholar 

  26. Zhao B, Hayes PC, Jak E (2010) Phase equilibria studies in the system ZnO-“FeO”-Al2O3-CaO-SiO2 relevant to imperial smelting furnace slags: Part I. Metall Mater Trans B 41(2):374–385. https://doi.org/10.1007/s11663-010-9342-z

    Article  CAS  Google Scholar 

  27. Zhao B, Hayes PC, Jak E (2010) Phase equilibria studies in the system ZnO-“FeO”-Al2O3-CaO-SiO2 relevant to imperial smelting furnace slags: Part II. Metall Mater Trans B 41(2):386–395. https://doi.org/10.1007/s11663-010-9343-y

    Article  CAS  Google Scholar 

  28. Zhao B, Hayes PC, Jak E (2011) Effects of Al2O3 and CaO/SiO2 ratio on phase equilibria in the ZnO-“FeO”-Al2O3-CaO-SiO2 system in equilibrium with metallic iron. Metall Mater Trans B 42(1):50–67. https://doi.org/10.1007/s11663-010-9443-8

    Article  CAS  Google Scholar 

  29. Shevchenko M, Jak E (2019) Experimental liquidus study of the binary PbO-CaO and ternary PbO-CaO-SiO2 systems. J Phase Equilibria Diffus 40(2):148–155. https://doi.org/10.1007/s11669-019-00705-3

    Article  CAS  Google Scholar 

  30. Shevchenko M, Jak E (2019) Experimental liquidus study of the binary PbO-ZnO and ternary PbO-ZnO-SiO2 systems. Ceramics Int 45(6):6795–6803. https://doi.org/10.1016/j.ceramint.2018.12.172

    Article  CAS  Google Scholar 

  31. Shevchenko M, Jak E (2018) Experimental liquidus studies of the Pb-Fe-Si-O system in equilibrium with metallic Pb. Metall Mater Trans B 49(1):159–180. https://doi.org/10.1007/s11663-017-1136-0

    Article  CAS  Google Scholar 

  32. Chen M, Zhao B (2013) Viscosity measurement for copper smelting slags. Copper 2013: copper international conference. Santiago, Chile, pp 799–811

    Google Scholar 

Download references

Acknowledgement

The financial support from National Key Research and Development Program of China (2018YFC1901604), Natural Science Foundation of Hunan province (No. 2018JJ3662), China Scholarship Council (No. 201706375005), and China Postdoctoral Science Foundation (No. 2018M632988) are gratefully acknowledged. Hunan Jinwang Bismuth Industrial Co., Ltd. is acknowledged for the industrial trial.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Chen.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

The contributing editor for this article was Sharif Jahanshahi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Xiao, H., Chen, J. et al. Oxygen-Rich Side-Blown Bath Smelting of Copper Dross: A Process Study. J. Sustain. Metall. 6, 344–354 (2020). https://doi.org/10.1007/s40831-020-00278-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-020-00278-3

Keywords

Navigation