Skip to main content
Log in

Element Distribution in the Oxygen-Rich Side-Blow Bath Smelting of a Low-Grade Bismuth-Lead Concentrate

  • Technical Communication
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Oxygen-rich side-blow bath smelting (OSBS) technology offers an efficient method for processing complex bismuth-lead concentrates; however, the element distributions in the process remain unclear. This work determined the distributions of elements, i.e., bismuth, lead, silver, copper, arsenic and antimony, in an industrial-scale OSBS process. The feed, oxidized slag and final products were collected from the respective sampling points and analyzed. For the oxidative smelting process, ~ 65% of bismuth and ~ 76% of silver in the concentrate report to the metal alloy, whereas less lead reports to the metal (~ 31%) than the oxidized slag (~ 44%). Approximately 50% of copper enters the matte, while more than 63% of arsenic and antimony report to the slag. For the reductive smelting process, less than 4.5% of bismuth, lead, silver and copper in the oxidized slag enter the reduced slag, indicating high recoveries of these metal values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. M. Mezbahul-Islam, F. Belanger, P. Chartrand, I.-H. Jung, and P. Coursol, Metall. Mater. Trans. B 48, 73 (2017).

    Article  Google Scholar 

  2. S.P. Singh, B.K. Deb Barman, and P. Kumar, Mater. Sci. Eng., A 677, 140 (2016).

    Article  Google Scholar 

  3. Y. Guo, Q. Zhao, Z. Yao, K. Si, Y. Zhou, and X. Xu, Nanotechnology 28, 335602 (2017).

    Article  Google Scholar 

  4. S.C. Anderson, Bismuth Mineral Commodity Summaries. (U.S. Geological Survey, 2017). https://minerals.usgs.gov/minerals/pubs/commodity/bismuth/index.html. Accessed 30 Sept 2017.

  5. L. Wang, Bismuth Metallurgy, 1st ed. (Beijing: Metallurgical industry press, 1986), pp. 14–95.

    Google Scholar 

  6. D.-C. Zhang, X.-W. Zhang, T.-Z. Yang, J.-F. Wen, W.-F. Liu, L. Chen, S. Rao, Q.-K. Xiao, Z.-D. Hao, and J. Cent, South Univ. 23, 1326 (2016).

    Article  Google Scholar 

  7. L. Chen, T. Yang, S. Bin, W. Liu, D. Zhang, W. Bin, and L. Zhang, JOM 66, 1664 (2014).

    Article  Google Scholar 

  8. P. Coursol, P.J. Mackey, J.P.T. Kapusta, and N.C. Valencia, JOM 67, 1066 (2015).

    Article  Google Scholar 

  9. W. Li, J. Zhan, Y. Fan, C. Wei, C. Zhang, and J.-Y. Hwang, JOM 69, 784 (2017).

    Article  Google Scholar 

  10. L. Chen, Z. Hao, T. Yang, H. Xiao, W. Liu, D. Zhang, S. Bin, and W. Bin, JOM 67, 1997 (2015).

    Article  Google Scholar 

  11. G. Yu, X. Wu, and X. Zhou, Nonferrous Met. Eng. 4, 75 (2014).

    Google Scholar 

  12. K. Avarmaa, H. Johto, and P. Taskinen, Metall. Mater. Trans. B 47, 244 (2016).

    Article  Google Scholar 

  13. N. Dosmukhamedov and V. Kaplan, JOM 69, 381 (2017).

    Article  Google Scholar 

  14. S. Nakazaw, A. Yazawa, and F.R.A. Jorgensen, Metall. Mater. Trans. B 30, 393 (1999).

    Article  Google Scholar 

  15. D.R. Swinbourne and T.S. Kho, Metall. Mater. Trans. B 43, 823 (2012).

    Article  Google Scholar 

  16. A. Yazawa, Metall. Trans. B 10, 307 (1979).

    Article  Google Scholar 

  17. K. Yamaguchi, D. R. Swinbourne, and A. Yazawa, Proceeding of International Symposium on LeadZinc, ed. by T. Fujisawa. (TMS, 2005), p. 1231.

  18. W. Chen, Central South University, Changsha, Master degree thesis, 2017.

  19. J.W. Matousek, JOM 63, 63 (2011).

    Article  Google Scholar 

  20. L. Chen, Z. Hao, T. Yang, W. Liu, D. Zhang, L. Zhang, S. Bin, and W. Bin, JOM 67, 1123 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the National Science Foundation of China (no. 21306231), the China Scholarship Council (no. 2017063750005) and Natural Science Foundation of Hunan province (no. 2018JJ3662) are gratefully acknowledged. The effort of Mr. Wang Zhixiong in helping with the sampling and sharing his experiences regarding the OSBS process is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 523 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Xiao, H., Chen, L. et al. Element Distribution in the Oxygen-Rich Side-Blow Bath Smelting of a Low-Grade Bismuth-Lead Concentrate. JOM 70, 1005–1010 (2018). https://doi.org/10.1007/s11837-018-2813-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2813-4

Navigation