Skip to main content
Log in

Thermodynamic Modeling of the Pb-As and Cu-Pb-As Systems Supported by Experimental Study

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Assessment of literature data, experimental study and thermodynamic modeling of the Pb-As and Cu-Pb-As systems are presented. These chemical systems are of importance for metallic lead refining at 330-500 °C (603-773 K), and for separation of copper from lead in complex polymetallic processes at 1000-1150 °C (1273-1423 K). Few studies are available for the solubility of solid copper arsenide in lead at low temperature. At high temperature, significant discrepancies between available experimentally measured limits of two-liquid miscibility gap exist in the Cu-Pb-As system. Experimental investigation of the present study aimed to fill the gaps and resolve the discrepancies. It consists of equilibration, quenching and electron probe microanalysis. Thermodynamic modeling helped to analyze the results and provided a database of model parameters. Present study is a part of a larger research program aimed at characterization of phase equilibria, heat balance and distribution of elements during complex copper and lead smelting, refining and recycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. C.W. Bale, E. Belisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melancon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, and M.A. Van Ende, FactSage Thermochemical Software and Databases, 2010–2016, CALPHAD, 2016, 54, p 35-53 (in English)

    Article  Google Scholar 

  2. D. Shishin and E. Jak, Critical Assessment and Thermodynamic Modeling of the Cu-As System, CALPHAD, 2018, 60, p 134-143 (in English)

    Article  Google Scholar 

  3. P.R. Subramanian and D.E. Laughlin, The As-Cu (Arsenic-Copper) System, Bull. Alloy Phase Diagr., 1988, 9(5), p 605-618 (in English)

    Article  Google Scholar 

  4. O. Teppo and P. Taskinen, Assessment of the Thermodynamic Properties of Arsenic-Copper Alloys, Scand. J. Metall., 1991, 20(2), p 141-148 (in English)

    Google Scholar 

  5. R.J. Sinclair, The Extractive Metallurgy of Lead, AusIMM, Carlton, 2009

    Google Scholar 

  6. T.R.A. Davey, Phase Systems Concerned with the Copper Drossing of Lead, Bull. Inst. Min. Metall., 1963, 678, p 553-620

    Google Scholar 

  7. B. Friedrich, F. Toubartz, A. Arnold, Cu-Pb-Me-S-Balances During Lead Refining. in Proceedings of EMC, European Metallurgical Conference, (Germany), (2001), pp. 295-317

  8. Y.P. Novgorodtsev and M.P. Smirnov, Reciprocal Solubility of Components in the Vicinity of the Lead Corner of the Lead-Copper-Arsenic-Sulfur System, Sbornik Nauchnykh Trudov—Gosudarstvennyi Nauchno-Issledovatel’skii Institut Tsvetnykh Metallov, 1967, 26, p 59-75 (in Russian)

    Google Scholar 

  9. H. Hartmann, F. Ensslin, and E. Wunderlich, Decoppering of Lead in the Presence of Tin, Arsenic, and Antimony, Z. Erzbergbau Metallhuettenwes., 1959, 12, p 437-443

    Google Scholar 

  10. A.G. Matyas, Metallurgy of Lead-Copper Dross Smelting, Trans. Inst. Min. Metall. Sect. C, 1977, 86, p 190-194

    Google Scholar 

  11. T. Azakami, M. Hino, and A. Yazawa, The Liquid Miscibility Gap and the Distribution of Silver Between Speiss and Metallic Lead in the Lead-Iron-Arsenic, Lead-Copper-Arsenic and Lead-Iron-Copper-Arsenic Systems at 1200 C, Can. Metall. Q., 1979, 18(4), p 389-394

    Article  Google Scholar 

  12. H. Kleinheisterkamp, Fundamental Equilibria in the Formation of Metallurgical Speisses, Z. Erzbergbau Metallhuettenwes., 1948, 1, p 65-72

    Google Scholar 

  13. J.J. Jacobs, R.H. Maes, and S.R.E. De, The Liquid Miscibility Gaps in the Lead-Copper-Iron-Arsenic System, Trans. Metall. Soc. AIME, 1967, 239(8), p 1166-1171

    Google Scholar 

  14. N. Ritchie, NIST DTSA-II software. https://www.nist.gov/services-resources/software/nist-dtsa-ii. Accessed Aug 2019

  15. D. Shishin, T. Hidayat, J. Chen, P.C. Hayes, and E. Jak, Experimental Investigation and Thermodynamic Modelling of the Distributions of Ag and Au Between Slag, Matte and Metal in the Cu-Fe-O-S-Si System, J. Sustain. Metall., 2018, 5, p 240-249

    Article  Google Scholar 

  16. A.D. Pelton and P. Chartrand, The Modified Quasichemical Model. II—Multicomponent Solutions, Metall. Mater. Trans. A, 2001, 32(6), p 1355-1360

    Article  Google Scholar 

  17. O. Redlich and A.T. Kister, Thermodynamics of Nonelectrolytic Solutions Algebraic Representation of Thermodynamic Properties and the Classification of Solutions, Ind. Eng. Chem., 1948, 40(2), p 345-348

    Article  Google Scholar 

  18. N.A. Gokcen, The As-Pb (Arsenic-Lead) System, Bull. Alloy Phase Diagr., 1990, 11(2), p 120-124

    Article  Google Scholar 

  19. Y. Dessureault, Thermodynamic Modeling of Lead Smelting in the Blast Furnace, Université de Montréal, Montreal, 1994

    Google Scholar 

  20. W. Heike, The Equilibrium Diagram of Lead-Arsenic Alloys and the Melting Point of Arsenic, Intern. Z. Metallog., 1914, 6, p 49-57

    Google Scholar 

  21. O. Bauer and W. Tonn, Alloys of Lead with Arsenic, Z. Metallkd., 1935, 27, p 183-187

    Google Scholar 

  22. S.E. Hutchison and E.A. Peretti, Lead-Rich Portion of the Lead-Arsenic Phase Diagram, J. Less-Common Metals, 1973, 30(2), p 306-308

    Article  Google Scholar 

  23. D.M. Suleimanov, A.N. Mamedov, and A.A. Kuliev, Thermodynamic Properties of Lead-Arsenic Molten Alloys Studied by the Emf. Measurement Method, Izv. Vyssh. Ucheb. Zaved. Khim. Khim. Tekhnol., 1974, 17(3), p 365-367

    Google Scholar 

  24. B. Onderka and J. Wypartowicz, Thermodynamic Activities in the Liquid and the Liquidus Line in the Lead-Arsenic System, Z. Metallkd., 1990, 81(5), p 345-348

    Google Scholar 

  25. E. Zaleska, Electrochemical Investigation of Liquid Lead-Arsenic Solutions, Rocz. Chem., 1974, 48(2), p 195-200

    Google Scholar 

  26. B. Predel and A. Emam, Thermodynamic Properties of Liquid Arsenic-Bismuth and Arsenic-Lead Alloys, Z. Metallk., 1973, 64(9), p 647-652

    Google Scholar 

  27. R.J. McClincy and A.H. Larson, Activity of Arsenic in Dilute Arsenic-Lead Alloys at 703.deg, Trans. Met. Soc. AIME, 1969, 245, p 173

    Google Scholar 

  28. K. Itagaki, T. Shimizu, and M. Hino, Thermodynamic Studies of the Liquid Lead-Arsenic System, Tohoku Daigaku Senko Seiren Kenkyusho Iho, 1978, 34(1), p 45-52

    Google Scholar 

  29. M. Chase, NIST-JANAF Thermochemical Tables, 4th ed., NIST, Gaithersburg, 1998

    Google Scholar 

  30. T. Jantzen and P.J. Spencer, Thermodynamic Assessments of the Cu-Pb-Zn and Cu-Sn-Zn Systems, CALPHAD Comput. Coupling Phase Diagr. Thermochem., 1998, 22(3), p 417-434

    Article  Google Scholar 

  31. A.D. Pelton, S.A. Decterov, G. Eriksson, C. Robelin, and Y. Dessureault, The Modified Quasichemical Model. I—Binary Solutions, Metall. Mater. Trans. B, 2000, 31(4), p 651-659

    Article  Google Scholar 

  32. A.D. Pelton, A General “Geometric” Thermodynamic Model for Multicomponent Solutions, CALPHAD, 2001, 25(2), p 319-328

    Article  Google Scholar 

  33. T. Azakami and M. Hino, Thermodynamic Studies on Behavior of Arsenic in Copper Smelting, Metall. Rev. MMIJ, 1986, 3(3), p 72-86

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial and technical support for this research from the consortium of lead producers: Aurubis, Kazzinc Glencore, Umicore, Nystar, Peñoles and Boliden through Australian Research Council Linkage program LP180100028. The authors acknowledge the facilities, the scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy and Microanalysis, The University of Queensland. The authors value greatly the scientific discussions with Prof. P.C. Hayes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Shishin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shishin, D., Chen, J., Hidayat, T. et al. Thermodynamic Modeling of the Pb-As and Cu-Pb-As Systems Supported by Experimental Study. J. Phase Equilib. Diffus. 40, 758–767 (2019). https://doi.org/10.1007/s11669-019-00764-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-019-00764-6

Keywords

Navigation