Skip to main content
Log in

Explicit transformations of certain Lambert series

  • Research
  • Published:
Research in the Mathematical Sciences Aims and scope Submit manuscript

Abstract

An exact transformation, which we call the master identity, is obtained for the first time for the series \(\sum _{n=1}^{\infty }\sigma _{a}(n)e^{-ny}\) for \(a\in {\mathbb {C}}\) and Re\((y)>0\). New modular-type transformations when a is a nonzero even integer are obtained as its special cases. The precise obstruction to modularity is explicitly seen in these transformations. These include a novel companion to Ramanujan’s famous formula for \(\zeta (2m+1)\). The Wigert–Bellman identity arising from the \(a=0\) case of the master identity is derived too. When a is an odd integer, the well-known modular transformations of the Eisenstein series on \(SL _{2}\left( {\mathbb {Z}}\right) \), that of the Dedekind eta function as well as Ramanujan’s formula for \(\zeta (2m+1)\) are derived from the master identity. The latter identity itself is derived using Guinand’s version of the Voronoï summation formula and an integral evaluation of N. S. Koshliakov involving a generalization of the modified Bessel function \(K_{\nu }(z)\). Koshliakov’s integral evaluation is proved for the first time. It is then generalized using a well-known kernel of Watson to obtain an interesting two-variable generalization of the modified Bessel function. This generalization allows us to obtain a new modular-type transformation involving the sums-of-squares function \(r_k(n)\). Some results on functions self-reciprocal in the Watson kernel are also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. Koshliakov inadvertently missed the factor \(\pi \) in front on the right-hand side.

  2. It will be shown later that when \(\mu \ne -\nu \), this result actually holds for \(\nu \in {\mathbb {C}}\backslash \left( {\mathbb {Z}}\backslash \{0\}\right) \), \(Re (\mu )>-1/2\), \(Re (\nu )>-1/2\) and \(Re (\mu +\nu )>-1/2\); otherwise, it holds for \(-1/2<Re (\nu )<1/2\).

  3. One might as well take x in the definition of \({\mathscr {G}}_{\nu }(x, w)\) to be such that \(-\pi<\arg (x)<\pi \), thereby having analyticity in x as well. However, in this paper, we will be working with \(x>0\) only.

  4. For the definition of a resultant of two kernels, see [50].

  5. Ramanujan’s formula is actually valid for any complex \(\alpha , \beta \) such that \(Re (\alpha )>0, Re (\beta )>0\) and \(\alpha \beta =\pi ^2\).

  6. The condition for the validity of the Mellin transform given in this paper, namely \(-Re (w)\pm Re (\nu )<Re (s)<\frac{1}{4}\), is too restrictive. Here, we extend the region of validity.

  7. This integral evaluation was obtained by Koshliakov [60, Equation (13)].

  8. This lemma is valid even if k is complex such that \(Re (k)>0\).

  9. This result is actually true for all \(z\in {\mathbb {C}}\). Note that at any non-positive real number z, the right-hand side has a removable singularity.

  10. In the statement of their theorem, the \(1/\pi ^2\) appearing in front of the summation on the right-hand side should be \(1/\pi \).

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables, 9th edn. Dover, New York (1970)

    MATH  Google Scholar 

  2. Andrews, G.E., The Theory of Partitions. Addison-Wesley, New York. Reissued, p. 1998. Cambridge University Press, New York (1976)

  3. Andrews, G.E., Askey, R., Roy, R.: Special Functions, Encyclopedia of Mathematics and its Applications, vol. 71. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  4. Apostol, T.M.: Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics. Springer, New York-Heidelberg (1976)

    Book  Google Scholar 

  5. Berndt, B.C.: Periodic Bernoulli numbers, summmation formulas and applications. In: Askey, R.A. (ed.) Theory and Application of Special Functions, pp. 143–189. Academic Press, New York (1975)

    Chapter  Google Scholar 

  6. Berndt, B.C.: On Eisenstein series with characters and the values of Dirichlet \(L\)-functions. Acta Arith. 28(3), 299–320 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berndt, B.C.: Modular transformations and generalizations of several formulae of Ramanujan. Rocky Mt. J. Math. 7, 147–189 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  8. Berndt, B.C.: Ramanujan’s Notebooks, Part II. Springer, New York (1989)

    Book  MATH  Google Scholar 

  9. Berndt, B.C.: Ramanujan’s Notebooks, Part IV. Springer, New York (1994)

    Book  MATH  Google Scholar 

  10. Berndt, B.C.: Ramanujan’s Notebooks, Part V. Springer, New York (1998)

    Book  MATH  Google Scholar 

  11. Berndt, B.C., Dixit, A., Kim, S., Zaharescu, A.: Sums of squares and products of Bessel functions. Adv. Math. 338, 305–338 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Berndt, B.C., Dixit, A., Roy, A., Zaharescu, A.: New pathways and connections in number theory and analysis motivated by two incorrect claims of Ramanujan. Adv. Math. 304, 809–929 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Berndt, B.C., Lee, Y., Sohn, J.: The formulas of Koshliakov and Guinand in Ramanujan’s lost notebook. In: Alladi, K. (ed.) Surveys in Number Theory, Series: Developments in Mathematics, vol. 17, pp. 21–42. Springer, New York (2008)

    Google Scholar 

  14. Berndt, B.C., Straub, A.: Ramanujan’s Formula for \(\zeta (2n+1)\), Exploring the Riemann zeta Function, pp. 13–34. Springer, Cham (2017)

    Google Scholar 

  15. Bettin, S., Conrey, J.B.: Period functions and cotangent sums. Algebra Number Theory 7(1), 215–242 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bhand, A., Shankhadhar, K.D.: On Dirichlet series attached to quasimodular forms. J. Number Theory 202, 91–106 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bhatnagar, K.P.: On certain theorems on self-reciprocal functions. Acad. R. Belgique Bull. Cl. Sci. (5) 39, 42–69 (1953)

    MathSciNet  MATH  Google Scholar 

  18. Bhatnagar, K.P.: On self-reciprocal functions. Ganita 4, 19–37 (1953)

    MathSciNet  MATH  Google Scholar 

  19. Bhatnagar, K.P.: On self-reciprocal functions and a new transform. Bull. Calcutta Math. Soc. 46, 179–199 (1954)

    MathSciNet  MATH  Google Scholar 

  20. Bhatnagar, K.P.: Some self-reciprocal functions. Bull. Calcutta Math. Soc. 46, 245–250 (1954)

    MathSciNet  MATH  Google Scholar 

  21. Bradley, D.M.: Series acceleration formulas for Dirichlet series with periodic coefficients. Ramanujan J. 6, 331–346 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bringmann, K., Ono, K., Wagner, I.: Eichler integrals of Eisenstein series as q-brackets of weighted t-hook functions on partitions. Ramanujan J. (2021)(https://doi.org/10.1007/s11139-021-00453-4)

  23. Brychkov, A.Y.: Handbook of special functions: derivatives, integrals, series and other formulas. CRC Press, Boca Raton (2008)

    Book  MATH  Google Scholar 

  24. Chandrasekharan, K., Narasimhan, R.: Hecke’s functional equation and arithmetical identities. Ann. Math. 74, 1–23 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dahiya, R.S.: A note on Watson’s kernel, Gazeta Matematica Soc. de stiinte matematica din Rep. Soc. Romania Ser. A LXXV(3), 81–83 (1970)

  26. Dahiya, R.S.: On some results involving Jacobi polynomials and the generalized function \({\tilde{\omega }}_{\mu _1, \cdots, \mu _n}(x)\). Proc. Japan Acad. 46, 605–608 (1970)

    Article  Google Scholar 

  27. Delerue, P.: Note sur une formule opératoire nouvelle en calcul symbolique (French). C. R. Acad. Sci. Paris 229, 1197–1199 (1949)

    MathSciNet  MATH  Google Scholar 

  28. Delerue, P.: Sur l’utilisation des fonctions hyperbesséliennes à la résolution d’une équation différentielle et au calcul symbolique à \(n\) variables (French). C. R. Acad. Sci. Paris 230, 912–914 (1950)

    MathSciNet  MATH  Google Scholar 

  29. Delerue, P.: Note sur les propriétés des fonctions hyperbesséliennes (French). C. R. Acad. Sci. Paris 230, 1333–1335 (1950)

    MathSciNet  MATH  Google Scholar 

  30. Delerue, P.: Sur le calcul symbolique à \(n\) variables et sur les fonctions hyperbesséliennes. Ann. Soc. Sci. Bruxelles Ser. 1 67, 83–104 (1953)

    MathSciNet  MATH  Google Scholar 

  31. Delerue, P.: Sur le calcul symbolique à \(n\) variables et sur les fonctions hyperbesséliennes Deuxieme Partie. Fonctions hyperbessliennes. Ann. Soc. Sci. Bruxelles Ser. 1 67, 229–274 (1953)

    MathSciNet  MATH  Google Scholar 

  32. Dixit, A., Gupta, R., Kumar, R., Maji, B.: Generalized Lambert series, Raabe’s cosine transform and a generalization of Ramanujan’s formula for \(\zeta (2m+1)\). Nagoya Math. J. 239, 232–293 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Dixit, A., Kesarwani, A., Moll, V.H.: A generalized modified Bessel function and a higher level analogue of the theta transformation formula (with an appendix by N. M. Temme). J. Math. Anal. Appl. 459, 385–418 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Dixit, A., Kumar, R.: Superimposing theta structure on a generalized modular relation. Res. Math. Sci. 8(3), Paper No. 41 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  35. Dixit, A., Moll, V.H.: Self-reciprocal functions, powers of the Riemann zeta function and modular-type transformations. J. Number Theory 147, 211–249 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Dixit, A., Robles, N., Roy, A., Zaharescu, A.: Koshliakov kernel and identities involving the Riemann zeta function. J. Math. Anal. Appl. 435(2), 1107–1128 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Dixit, A., Roy, A.: Analogue of a Fock-type integral arising from electromagnetism and its applications in number theory. Res. Math. Sci. 7(25), 1–33 (2020)

    MathSciNet  MATH  Google Scholar 

  38. Dixon, A.L., Ferrar, W.L.: Some summations over the lattice points of a circle(I). Quart. J. Math. 5, 48–63 (1934)

    Article  MATH  Google Scholar 

  39. Dixon, A.L., Ferrar, W.L.: Infinite integrals of Bessel functions. Quart. J. Math. 1, 161–174 (1935)

    Article  MATH  Google Scholar 

  40. Dorigoni, D., Kleinschmidt, A.: Resurgent expansion of Lambert series and iterated Eisenstein integrals. Commun. Number Theory Phys. 15(1), 1–57 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  41. Dunster, T.M.: Bessel functions of purely imaginary order, with an application to second-order linear differential equations having a large parameter. SIAM. J. Math. Anal. 21(4), 995–1018 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  42. Edgar, G.A.: Transseries for beginners. Real Anal. Exchange 35(2), 253–309 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Erdös, P.: On arithmetical properties of Lambert series. J. Indian Math. Soc. (N.S.) 12, 63–66 (1948)

    MathSciNet  MATH  Google Scholar 

  44. Gradshteyn, I.S., Ryzhik, I.M.: eds.: Table of Integrals, Series, and Products. In: D. Zwillinger, V. H. Moll (eds.), 8th edn. Academic Press, New York (2015)

  45. Guinand, A.P.: Functional equations and self-reciprocal functions connected with Lambert series. Quart. J. Math. 15, 11–23 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  46. Guinand, A.P.: Some rapidly convergent series for the Riemann \(\Xi \)-function. Quart. J. Math. 6, 156–160 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  47. Guinand, A.P.: Concordance and the harmonic analysis of sequences. Acta Math. 101(3), 235–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  48. Han, G.-N.: The Nekrasov–Okounkov hook length formula: refinement, elementary proof, extension and applications. Ann. Inst. Fourier 60, 1–29 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Han, G.-N., Ji, K.Q.: Combining hook length formulas and BG-ranks for partitions via the Littlewood decomposition. Trans. Am. Math. Soc. 363(2), 1041–1060 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  50. Hardy, G.H.: The resultant of two Fourier kernels. Math. Proc. Camb. Philos. Soc. 31, 1–6 (1935)

    Article  MATH  Google Scholar 

  51. Hardy, G.H., Titchmarsh, E.C.: Self-reciprocal functions. Quart. J. Math. Ser. 1, 196–231 (1930)

    Article  MATH  Google Scholar 

  52. Jahnke, E., Emde, F.: Tables of Functions with Formulae and Curves, 4th edn. Dover, New York (1945)

    MATH  Google Scholar 

  53. de Jekhowsky, B.: Étude sur les fonctions de Bessel modifiées de première espèce d’ordre \(k\) entier à deux variables. J. Math. Pures Appl. IX. S’er. 41, 319–337 (1962)

    MATH  Google Scholar 

  54. de Jekhowsky, B.: Les fonctions de Bessel modifiées de première espèce d’ordre \(k\) entier à deux variables considérées comme les dégénérescences des fonctions hypergéométriques de P. Appell. Acad. Serbe Sci. Arts Bull. 45, Cl. Sci. math. natur., Sci. math., n. Sér. No. 7 , 1–8 (1969)

  55. Kanemitsu, S., Tanigawa, Y., Yoshimoto, M.: On rapidly convergent series for the Riemann zeta-values via the modular relation. Abh. Math. Sem. Univ. Hambg. 72, 187–206 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  56. Kanemitsu, S., Tanigawa, Y., Tsukada, H.: Some number theoretic applications of a general modular relation. Int. J. Number Theory 2(4), 599–615 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  57. Katayama, K.: Ramanujan’s formulas for \(L\)-functions. J. Math. Soc. Japan 26(2), 234–240 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  58. Kim, S.K.: The asymptotic expansion of a hypergeometric function \({}_2F_2(1; \alpha ; \rho _1; \rho _2; z)\). Math. Comp. 26(120) (1972)

  59. Komori, Y., Matsumoto, K., Tsumura, H.: Barnes multiple zeta-functions, Ramanujan’s formula, and relevant series involving hyperbolic functions. J. Ramanujan Math. Soc. 28(1), 49–69 (2013)

    MathSciNet  MATH  Google Scholar 

  60. Koshliakov, N.S.: Note on certain integrals involving Bessel functions. Bull. Acad. Sci. URSS Ser. Math. 2(4), 417–420. English text 421–425 (1938)

  61. Laurinc̆ikas, A.: One transformation formula related to the Riemann zeta-function. Integral Transforms Spec. Funct. 19(8), 577–583 (2008)

  62. Lerch, M.: Sur la fonction \(\zeta (s)\) pour valeurs impaires de l’argument. J. Sci. Math. Astron. pub. pelo Dr. F. Gomes Teixeira Coimbra 14, 65–69 (1901)

    Google Scholar 

  63. Lukkarinen, M.: The Mellin transform of the square of Riemann’s zeta-function and Atkinson’s formula. Ann. Acad. Sci. Fenn. Math. Diss. 140 (2005), Suomalainen Tiedeakatemia, Helsinki

  64. Mainra, V.P., Singh, B.: On the asymptotic expansion of \({\tilde{\omega }}_{\mu ,\gamma }(x)\). J. Birla Inst. Tech. Sci. 2, 64–70 (1970)

    MathSciNet  Google Scholar 

  65. Marichev, O.I.: Handbook of Integral Transforms of Higher Transcendental Functions: Theory and Algorithmic Tables, The Ellis Horwood Series in Mathematics and its Applications: Statistics and Operational Research, E. Horwood (1983)

  66. Masirević, D.J., Parmar, R.K., Pogany, T.K.: \((p, q)\)-Extended Bessel and modified Bessel functions of the first kind. Results Math. 72(1–2), 617–632 (2017)

    MathSciNet  MATH  Google Scholar 

  67. Mitra, S.C.: On a theorem in the generalised Fourier transform. Can. Math. Bull. 10(5), 699–709 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  68. Narain, R.: The \(G\)-functions as unsymmetrical Fourier kernels. I. Proc. Am. Math. Soc. 13(6), 950–959 (1962)

    MathSciNet  MATH  Google Scholar 

  69. Oberhettinger, F.: Tables of Mellin Transforms. Springer, New York (1974)

    Book  MATH  Google Scholar 

  70. Oberhettinger, F., Soni, K.L.: On some relations which are equivalent to functional equations involving the Riemann zeta-function. Math. Z. 127, 17–34 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  71. Olkha, G.S., Rathie, P.N.: On a generalized Bessel function and an integral transform. Math. Nachr. 51, 231–240 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  72. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  73. O’Sullivan, C.: Formulas for non-holomorphic Eisenstein series and for the Riemann zeta function at odd integers. Res. Number Theory 4, 36 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  74. Paris, R.B., Kaminski, D.: Asymptotics and Mellin-Barnes Integrals, Encyclopedia of Mathematics and its Applications, 85. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  75. Popov, A.I.: On some summation formulas (in Russian). Bull. Acad. Sci. L’URSS 7, 801–802 (1934)

    Google Scholar 

  76. Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integrals and Series. Elementary Functions, vol. 1. Gordan and Breach, New York (1986)

    MATH  Google Scholar 

  77. Radchenko, D., Zagier, D.: Arithmetic properties of the Herglotz Function, submitted for publication, arXiv:2012.15805, https://arxiv.org/abs/2012.15805

  78. Ramanujan, S.: On certain arithmetical functions. Trans. Camb. Philos. Soc. 22(9), 159–184 (1916)

    MATH  Google Scholar 

  79. Ramanujan, S.: Notebooks (2 volumes). Tata Institute of Fundamental Research, Bombay, 1957; 2nd edn (2012)

  80. Ramanujan, S.: The Lost Notebook and Other Unpublished Papers. Narosa, New Delhi (1988)

    MATH  Google Scholar 

  81. Rudin, W.: Principles of Mathematical Analysis. International Series in Pure and Applied Mathematics, 3rd edn. McGraw-Hill, New York (1976)

    Google Scholar 

  82. Singh, B.: On certain expansions and integrals involving \({\tilde{\omega }}_{\mu, \nu }(x)\). Proc. Rajasthan Acad. Sci. 9, 9–22 (1962)

    MathSciNet  Google Scholar 

  83. Singh, B.: On certain integrals involving \({\tilde{\omega }}_{\mu, \nu }(x)\). Mitt. Verein. Schweiz. Versich.-Math. 65, 55–62 (1965)

    MathSciNet  Google Scholar 

  84. Straub, A.: Special values of trigonometric Dirichlet series and Eichler integrals. Ramanujan J. 41(1–3), 269–285 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  85. Temme, N.M.: Special Functions: An Introduction to the Classical Functions of Mathematical Physics. Wiley-Interscience Publication, New York (1996)

    Book  MATH  Google Scholar 

  86. Titchmarsh, E.C.: The Theory of the Riemann Zeta Function. Clarendon Press, Oxford (1986)

    MATH  Google Scholar 

  87. Varma, V.S.: On self-reciprocal functions involving infinite series. Math. Z. 81, 99–107 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  88. Vlasenko, M., Zagier, D.: Higher Kronecker “limit’’ formulas for real quadratic fields. J. Reine Angew. Math. 679, 23–64 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  89. Watson, G.N.: Some self-reciprocal functions. Quart. J. Math. 2, 298–309 (1931)

    Article  MATH  Google Scholar 

  90. Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, London (1944)

    MATH  Google Scholar 

  91. Wigert, S.: Sur la série de Lambert et son application \(\grave{a}\) la théorie des nombres. Acta Math. 41, 197–218 (1916)

    Article  MathSciNet  MATH  Google Scholar 

  92. Witte, N.S.: Exact solution for the reflection and diffraction of atomic de Broglie waves by a travelling evanescent laser wave. J. Phys. A: Math. Gen. 31, 807–832 (1998)

    Article  MATH  Google Scholar 

  93. Yakubovich, S.: A general class of Voronoi’s and Koshliakov–Ramanujan’s summation formulas involving \(d_k(n)\). Integral Transforms Spec. Funct. 22(11), 801–821 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the referees for giving very nice suggestions which improved the exposition of the paper. They would also like to thank Olivia da Costa Maya, Professors Alexandru Zaharescu, Lin Jiu and Gaurav Dwivedi, respectively, for sending them the copies of references [17, 25, 53, 64]. They also thank Becky Burner, a library staff at the University of Illinois at Urbana-Champaign, for procuring the copies of [20, 82], Dr. T. S. Kumbar, the librarian at IIT Gandhinagar for obtaining a copy of [18] and Suresh Kumar, the librarian at the Harish-Chandra Research Institute, for arranging a copy of [19]. The first author’s research was supported by the CRG grant CRG/2020/002367. He sincerely thanks SERB for the support. The third author’s research was supported by the Grant IBS-R003-D1 of the IBS-CGP, POSTECH, South Korea and by IIT Gandhinagar. He sincerely thanks both the institutes for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Kumar.

Additional information

In memory of Srinivasa Ramanujan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dixit, A., Kesarwani, A. & Kumar, R. Explicit transformations of certain Lambert series. Res Math Sci 9, 34 (2022). https://doi.org/10.1007/s40687-022-00331-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40687-022-00331-5

Keywords

Mathematics Subject Classification

Navigation