Skip to main content
Log in

Formulas for non-holomorphic Eisenstein series and for the Riemann zeta function at odd integers

  • Research
  • Published:
Research in Number Theory Aims and scope Submit manuscript

Abstract

New expressions are given for the Fourier expansions of non-holomorphic Eisenstein series with weight k. Among other applications, this leads to non-holomorphic analogs of formulas of Ramanujan, Grosswald and Berndt containing Eichler integrals of holomorphic Eisenstein series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Andersen, N., Duke, W.: Modular invariants for real quadratic fields and Kloosterman sums. arXiv:1801.08174

  2. Andersen, N., Lagarias, J.C., Rhoades, R.C.: Shifted polyharmonic Maass forms for \({{\rm PSL}}(2,\mathbb{Z})\). arXiv:1708.01278

  3. Berndt, B.C.: Modular transformations and generalizations of several formulae of Ramanujan. Rocky Mt. J. Math. 7(1), 147–189 (1977)

    Article  MathSciNet  Google Scholar 

  4. Berndt, B.C.: Ramanujan’s Notebooks. Part II. Springer, New York (1989)

    Book  Google Scholar 

  5. Berndt, B.C., Straub, A.: Ramanujan’s formula for \(\zeta (2n+1)\). In: Exploring the Riemann Zeta Function, pp. 13–34. Springer, Cham (2017)

    Chapter  Google Scholar 

  6. Bringmann, K., Kudla, S.: A classification of harmonic Maass forms. Math. Ann. 370(3–4), 1729–1758 (2018)

    Article  MathSciNet  Google Scholar 

  7. Bringmann, K., Folsom, A., Ono, K., Rolen, L.: Harmonic Maass Forms and Mock Modular Forms: Theory and Applications. American Mathematical Society Colloquium Publications, vol. 64. American Mathematical Society, Providence, RI (2017)

    Book  Google Scholar 

  8. Brown, F.: A class of non-holomorphic modular forms I. Res. Math. Sci. 5(1), 7 (2018)

    Article  MathSciNet  Google Scholar 

  9. Brown, F.: A class of non-holomorphic modular forms III: real analytic cusp forms for \({\rm SL}_2(\mathbb{Z})\). Res. Math. Sci. 5(3), 5:34 (2018)

    Article  Google Scholar 

  10. Bump, D.: Automorphic Forms and Representations. Cambridge Studies in Advanced Mathematics, vol. 55. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  11. Chinta, G., Jorgenson, J., Karlsson, A.: Zeta functions, heat kernels, and spectral asymptotics on degenerating families of discrete tori. Nagoya Math. J. 198, 121–172 (2010)

    Article  MathSciNet  Google Scholar 

  12. Cohen, H., Strömberg, F.: Modular Forms, A Classical Approach. Graduate Studies in Mathematics, vol. 179. American Mathematical Society, Providence, RI (2017)

    Book  Google Scholar 

  13. de Azevedo Pribitkin, W.: Eisenstein series and Eichler integrals. In: Analysis, geometry, number theory: the mathematics of Leon Ehrenpreis (Philadelphia, PA, 1998), Contemp. Math., vol. 251, pp. 463–467. American Mathematical Society, Providence, RI, (2000)

  14. D’Hoker, E., Duke, W.: Fourier series of modular graph functions. J. Number Theory 192, 1–36 (2018)

    Article  MathSciNet  Google Scholar 

  15. Duke, W., Friedlander, J.B., Iwaniec, H.: The subconvexity problem for Artin \(L\)-functions. Invent. Math. 149(3), 489–577 (2002)

    Article  MathSciNet  Google Scholar 

  16. Duke, W., Imamoḡlu, Ö., Tóth, Á.: Imamoḡlu, Ö., Tóth, Á.: Kronecker’s first limit formula, revisited. Res. Math. Sci. 5(2), 20 (2018)

    Article  Google Scholar 

  17. Diamantis, N., O’Sullivan, C.: Kernels of \(L\)-functions of cusp forms. Math. Ann. 346(4), 897–929 (2010)

    Article  MathSciNet  Google Scholar 

  18. Diamantis, N., O’Sullivan, C.: Kernels for products of \(L\)-functions. Algebra Number Theory 7(8), 1883–1917 (2013)

    Article  MathSciNet  Google Scholar 

  19. Gun, S., Murty, M.R., Rath, P.: Transcendental values of certain Eichler integrals. Bull. Lond. Math. Soc. 43(5), 939–952 (2011)

    Article  MathSciNet  Google Scholar 

  20. Grosswald, E.: Die Werte der Riemannschen Zetafunktion an ungeraden Argumentstellen. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1970, 9–13 (1970)

    MathSciNet  MATH  Google Scholar 

  21. Grosswald, E.: Comments on some formulae of Ramanujan. Acta Arith. 21, 25–34 (1972)

    Article  MathSciNet  Google Scholar 

  22. Grosswald, E.: Rational valued series of exponentials and divisor functions. Pac. J. Math. 60(1), 111–114 (1975)

    Article  MathSciNet  Google Scholar 

  23. Iwaniec, H.: Spectral Methods of Automorphic Forms. Graduate Studies in Mathematics, vol. 53, 2nd edn. American Mathematical Society, Providence, RI (2002)

    Google Scholar 

  24. Jakobson, D.: Quantum unique ergodicity for Eisenstein series on \({\rm PSL}_2({\bf Z})\backslash {\rm PSL}_2({\bf R})\). Ann. Inst. Fourier (Grenoble) 44(5), 1477–1504 (1994)

    Article  MathSciNet  Google Scholar 

  25. Katsurada, M., Noda, T.: Differential actions on the asymptotic expansions of non-holomorphic Eisenstein series. Int. J. Number Theory 5(6), 1061–1088 (2009)

    Article  MathSciNet  Google Scholar 

  26. Khuri-Makdisi, K., Raji, W.: Periods of modular forms and identities between Eisenstein series. Math. Ann. 367(1–2), 165–183 (2017)

    Article  MathSciNet  Google Scholar 

  27. Kohnen, W., Zagier, D.: Modular forms with rational periods. In: Modular forms (Durham, 1983), Ellis Horwood Ser. Math. Appl.: Statist. Oper. Res., pp. 197–249. Horwood, Chichester (1984)

  28. Lagarias, J.C., Rhoades, R.C.: Polyharmonic Maass forms for \(\text{ PSL }(2,\mathbb{Z})\). Ramanujan J. 41(1–3), 191–232 (2016)

    Article  MathSciNet  Google Scholar 

  29. Maass, H.: Lectures on Modular Functions of One Complex Variable. Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 29, 2nd edn. Tata Institute of Fundamental Research, Bombay (1983). (With notes by Sunder Lal)

    Book  Google Scholar 

  30. Miyake, T.: Modular Forms. Springer Monographs in Mathematics, English edn. Springer, Berlin (2006). (Translated from the 1976 Japanese original by Yoshitaka Maeda)

    Google Scholar 

  31. Murty, M.R., Smyth, C., Wang, R.J.: Zeros of Ramanujan polynomials. J. Ramanujan Math. Soc. 26(1), 107–125 (2011)

    MathSciNet  MATH  Google Scholar 

  32. NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.17 of 2017-12-22. Olver, F.W.J., Olde Daalhuis, A.B., Lozier, D.W., Schneider, B.I., Boisvert, R.F., Clark, C.W., Miller, B.R., Saunders, B.V. (eds)

  33. Ono, K.: Unearthing the visions of a master: harmonic Maass forms and number theory. In: Current Developments in Mathematics, 2008, pp. 347–454. Int. Press, Somerville, MA (2009)

  34. O’Sullivan, C.: Identities from the holomorphic projection of modular forms. In: Number Theory for the millennium, III (Urbana, IL, 2000), pp. 87–106. DA K Peters, Natick, MA (2002)

  35. O’Sullivan, C.: Zeros of the dilogarithm. Math. Comput. 85(302), 2967–2993 (2016)

    Article  MathSciNet  Google Scholar 

  36. Terras, A.: Some formulas for the Riemann zeta function at odd integer argument resulting from Fourier expansions of the Epstein zeta function. Acta Arith. 29(2), 181–189 (1976)

    Article  MathSciNet  Google Scholar 

  37. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1996). (Reprint of the fourth (1927) edition)

    Book  Google Scholar 

  38. Zagier, D.: Modular Forms Whose Fourier Coefficients Involve Zeta-Functions of Quadratic Fields. Lecture Notes in Math., vol. 627, pp. 105–169 (1977)

    Google Scholar 

  39. Zagier, D.: Periods of modular forms and Jacobi theta functions. Invent. Math. 104(3), 449–465 (1991)

    Article  MathSciNet  Google Scholar 

  40. Zagier, D.: Elliptic modular forms and their applications. In: The 1-2-3 of Modular Forms, Universitext, pp. 1–103. Springer, Berlin (2008)

    MATH  Google Scholar 

Download references

Acknowledgements

Support for this project was provided by a PSC-CUNY Award, jointly funded by The Professional Staff Congress and The City University of New York.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cormac O’Sullivan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Sullivan, C. Formulas for non-holomorphic Eisenstein series and for the Riemann zeta function at odd integers. Res. number theory 4, 36 (2018). https://doi.org/10.1007/s40993-018-0129-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40993-018-0129-7

Mathematics Subject Classification

Navigation