Skip to main content
Log in

Superimposing theta structure on a generalized modular relation

  • Research
  • Published:
Research in the Mathematical Sciences Aims and scope Submit manuscript

Abstract

A generalized modular relation of the form \(F(z, w, \alpha )=F(z, iw,\beta )\), where \(\alpha \beta =1\) and \(i=\sqrt{-1}\), is obtained in the course of evaluating an integral involving the Riemann \(\Xi \)-function. This modular relation involves a surprising new generalization of the Hurwitz zeta function \(\zeta (s, a)\), which we denote by \(\zeta _w(s, a)\). We show that \(\zeta _w(s, a)\) satisfies a beautiful theory generalizing that of \(\zeta (s, a)\). In particular, it is shown that for \(0<a<1\) and \(w\in \mathbb {C}\), \(\zeta _w(s, a)\) can be analytically continued to Re\((s)>-1\) except for a simple pole at \(s=1\). The theories of functions reciprocal in a kernel involving a combination of Bessel functions and of a new generalized modified Bessel function \({}_1K_{z,w}(x)\), which are also essential to obtain the generalized modular relation, are developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See [18, Theorem 1.2] for the corrected versions of equations (19) and (21) of [54].

  2. Note that there is a typo in this formula in that \(\pi \) should not be present.

  3. The interchange of the order of \(\lim _{w\rightarrow 0}\) and integration can be easily justified.

  4. Note that \(\zeta _w(s, a)\) is defined for Re\((s)>1\) by (1.1.14), and for \(-1<\text{ Re }(s)\le 1, s\ne 1\), by (1.1.27). The latter is inferred from the paragraph following (1.1.27).

  5. The first equality in (2.1.4) is actually valid for \(z\in \mathbb {C}\backslash \{-1,1\}\). The condition \(-1<\)Re\((z)<1\) is required only for both equalities to hold. Same is the case with (2.1.2).

  6. This result is, in fact, true for Re\((a)>1\).

  7. We do not give the details of the argument here as a similar one is established in full detail in Lemma 5.1.1.

  8. This formula, which is given for \(b>0\) in [52], can be seen to be true for Re\((b)>0\) by analytic continuation.

  9. This result actually holds for \(\text{ Re }(a)>0\) and \(\text{ Re }(s)>-1, s\ne 1\), by analytic continuation.

  10. According to Remark 7 below, this result is actually valid for \(-1<\mathrm {Re}(s)<2\).

  11. Koshliakov [40] stated them only for \(-\frac{1}{2}<z<\frac{1}{2}\), however, they are easily seen to be true for \(-\frac{1}{2}<\text{ Re }(z)<\frac{1}{2}\).

  12. Throughout the analysis z and w will be fixed complex numbers in some domains of their respective complex planes.

  13. The integrals \(\int _0^\infty x^{-s} \int _0^\infty \psi (t,z, w)\left( \sin (\pi z)J_{2z}(4\sqrt{xt})-\cos (\pi z)L_{2z}(4\sqrt{xt}))\right) {\text {d}}t\,{\text {d}}x\) and \(\int _0^\infty \psi (t,z, w)\) \(\times \int _0^\infty x^{-s}\left( \sin (\pi z)J_{2z}(4\sqrt{xt})-\cos (\pi z)L_{2z}(4\sqrt{xt}))\right) {\text {d}}x\,{\text {d}}t\) are absolutely convergent for \(\frac{3}{4}<\)Re\((s)<1-|\)Re(z)|. So the result follows from Fubini’s theorem.

  14. There is a typo on page 1117 of [25], namely, all instances of |Re(z)|/2 should be replaced by |Re(z)|.

  15. The conditions in the corresponding theorem given in [24], namely Theorem 1.9, are too restrictive. It is actually valid for \(z, w\in \mathbb {C}\), and \(|\arg (x)|<\pi \).

  16. There is typo in the argument of \({}_0F_2\). It should be \(-\frac{a^2y}{4}\) instead of \(-\frac{a^2y}{2}\). Also, \(y^{z-1/2}\) is missing from the integrand.

  17. In [25, Lemma 4.2], the condition given was \(-1<\mathrm {Re}(z)<1\) which is not correct.

  18. Even though this result is true only for \(-\frac{3}{4}<\text{ Re }(z)<\frac{3}{4}\), later while actually using the reciprocal functions in this result, we will replace z by z/2, in which case the result then actually holds for \(-\frac{3}{2}<\text{ Re }(z)<\frac{3}{2}\).

  19. This result also holds for Re\((s)<1\) if \(0<a<1\). See [5, p. 257, Theorem 12.6].

References

  1. Abou-Rjeily, C.: Performance analysis of power line communication systems with diversity combining under correlated lognormal fading and Nakagami noise. IET Commun. 11(3), 405–413 (2017)

    Article  Google Scholar 

  2. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables. Dover, New York (1972)

    MATH  Google Scholar 

  3. Andrews, G.E., Askey, R., Roy, R.: Special Functions, Encyclopedia of Mathematics and its Applications, vol. 71. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  4. Andrews, G.E., Berndt, B.C.: Ramanujan’s Lost Notebook, Part IV. Springer, New York (2013)

    Book  MATH  Google Scholar 

  5. Apostol, T.M.: Introduction to Analytic Number Theory, Undergraduate Texts in Mathematics. Springer, New York (1976)

    Book  Google Scholar 

  6. Balasubramanian, R., Kanemitsu, S., Tsukada, H.: Contributions to the theory of the Lerch zeta-function, The Riemann zeta function and related themes: papers in honour of Professor K. Ramachandra, 29–38, Ramanujan Math. Soc. Lect. Notes Ser., 2. Ramanujan Math. Soc., Mysore (2006)

  7. Berndt, B.C.: On the Hurwitz zeta-function. Rocky Mountain J. Math. 2(1), 151–157 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  8. Berndt, B.C.: Ramanujan’s Notebooks, Part III. Springer, New York (1991)

    Book  MATH  Google Scholar 

  9. Berndt, B.C., Dixit, A.: A transformation formula involving the Gamma and Riemann zeta functions in Ramanujan’s Lost Notebook. In: Alladi, K., Klauder, J., Rao, C.R. (eds.) The Legacy of Alladi Ramakrishnan in the Mathematical Sciences, pp. 199–210. Springer, New York (2010)

    Chapter  Google Scholar 

  10. Berndt, B.C., Dixit, A., Roy, A., Zaharescu, A.: New pathways and connections in number theory and analysis motivated by two incorrect claims of Ramanujan. Adv. Math. 304, 809–929 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Burchnall, J.L., Chaundy, T.W.: Expansions of Appell’s double hypergeometric functions (II). Quart. J. Math. 12, 112–128 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cohen, H.: Some formulas of Ramanujan involving Bessel functions, Publications Mathématiques de Besançon. Algèbre et Théorie des Nombres, pp. 59–68 (2010)

  13. Conway, J.B.: Functions of One Complex Variable, 2nd edn. Springer, New York (1978)

    Book  Google Scholar 

  14. Copson, E.T.: Theory of Functions of a Complex Variable. Oxford University Press, Oxford (1935)

    MATH  Google Scholar 

  15. Darses, S., Hillion, E.: An exponentially-averaged Vasyunin formula, submitted for publication. arXiv:2004.10086 (2020)

  16. de Bruijn, N.G.: The roots of trigonometric integrals. Duke Math. J. 17, 197–226 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dixit, A.: Series transformations and integrals involving the Riemann \(\Xi \)-function. J. Math. Anal. Appl. 368, 358–373 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dixit, A.: Analogues of a transformation formula of Ramanujan. Int. J. Number Theory 7(5), 1151–1172 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dixit, A.: Transformation formulas associated with integrals involving the Riemann \(\Xi \)-function. Monatsh. Math. 164(2), 133–156 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dixit, A.: Analogues of the general theta transformation formula. Proc. R. Soc. Edinb. Sect. A 143, 371–399 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dixit, A.: Modular-type transformations and integrals involving the Riemann \(\Xi \)-function. Math. Student 87(3–4), 47–59 (2018)

    MathSciNet  Google Scholar 

  22. Dixit, A., Moll, V.H.: Self-reciprocal functions, powers of the Riemann zeta function and modular-type transformations. J. Number Theory 147, 211–249 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dixit, A., Roy, A., Zaharescu, A.: Error functions, Mordell integrals and an integral analogue of a partial theta function. Acta Arith. 177(1), 1–37 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dixit, A., Kesarwani, A., Moll, V.H.: A generalized modified Bessel function and a higher level analogue of the theta transformation formula. J. Math. Anal. Appl. (with an appendix by N. M. Temme) 459, 385–418 (2018)

    MathSciNet  MATH  Google Scholar 

  25. Dixit, A., Robles, N., Roy, A., Zaharescu, A.: Koshliakov kernel and identities involving the Riemann zeta function. J. Math. Anal. Appl. 435, 1107–1128 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dunster, T.M.: Bessel functions of purely imaginary order, with an application to second-order linear differential equations having a large parameter. SIAM. J. Math. Anal. 21(4), 995–1018 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dyson, F.J.: A walk through Ramanujan’s garden. In: Berndt, B.C., Rankin, R.A. (eds.) Ramanujan: Essays And Surveys. History of Mathematics, vol. 22. American Mathematical Society, Providence (2001)

    Google Scholar 

  28. Eichler, M., Zagier, D.: The Theory of Jacobi Forms, vol. 55. Birkhäuser, Basel (1985)

    Book  MATH  Google Scholar 

  29. Ghorpade, S.R., Limaye, B.V.: A Course in Multivariable Calculus and Analysis. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  30. Gradshteyn, I.S., Ryzhik, I.M. (eds.): Table of Integrals, Series, and Products, 8th ed., Edited by D. Zwillinger, V.H. Moll. Academic Press, New York (2015)

  31. Hardy, G.H.: Some multiple integrals, Quart. J. Math. (Oxford) (2)5 (1908), 357–375; Collected Papers of G. H. Hardy, Vol. V, pp. 434–452 (1972)

  32. Hardy, G.H.: Sur les zéros de la fonction \(\zeta (s)\) de Riemann. Comptes Rendus 158, 1012–14 (1914)

    MATH  Google Scholar 

  33. Hardy, G.H.: Note by Mr. G.H. Hardy on the preceding paper. Quart. J. Math. 46, 260–261 (1915)

    Google Scholar 

  34. Hardy, G.H.: Mr. S. Ramanujan’s mathematical work in England, J. Indian Math. Soc. 9, 30–45 (1917); (also a Report to the University of Madras, 1916, privately printed)

  35. Hardy, G.H.: Notes on some points in the integral calculus LII: On some definite integrals considered by Mellin, Mess. Math. 49, 85–91, (1920); Collected Papers of G. H. Hardy, Vol. 7, The Clarendon Press, Oxford University Press, New York, 1979, pp. 99–105

  36. Kanemitsu, S., Tanigawa, Y., Tsukada, H., Yoshimoto, M.: Contributions to the theory of the Hurwitz zeta-function. Hardy-Ramanujan J. 30, 31–55 (2007)

    MathSciNet  MATH  Google Scholar 

  37. Kanemitsu, S., Tsukada, H.: Contributions to the Theory of Zeta-Functions. The Modular Relation Supremacy, Series on Number Theory and its Applications, vol. 10. World Scientific, New Jersey (2015)

    MATH  Google Scholar 

  38. Kapteyn, W.: Sur le calcul numérique de la série \({\sum }_{s=0}^{\infty }\frac{1}{({\alpha }^2+\beta ^2s^2)^{\frac{q}{2}}}\), Mém. del la Soc. R. des Sci. de Liège, (3) VI., no. 9. (1906)

  39. Koshliakov, N.S.: On Voronoi’s sum-formula. Mess. Math. 58, 30–32 (1929)

    Google Scholar 

  40. Koshliakov, N.S.: Note on certain integrals involving Bessel functions. Bull. Acad. Sci. URSS Ser. Math. 2(4), 417–420; English text 421–425 (1938)

  41. Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics. Springer, Berlin (1966)

    Book  MATH  Google Scholar 

  42. Kumar, R.: The generalized modified Bessel function and its connection with Voigt line profile and Humbert functions. Adv. Appl. Math. 114, 101986 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  43. Lang, S.: Undergraduate Analysis, 2nd edn. Springer, New York (1997)

    Book  MATH  Google Scholar 

  44. Lewis, J.: Spaces of holomorphic functions equivalent to the even Maass cusp form. Invent. Math. 127, 271–306 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lewis, J., Zagier, D.: Period functions for Maass wave forms. I. Ann. Math. 153(1), 191–258 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  46. Newman, C.M.: Fourier transforms with only real zeroes. Proc. Am. Math. Soc. 61, 246–251 (1976)

    Article  Google Scholar 

  47. Oberhettinger, F.: Tables of Mellin Transforms. Springer, New York (1974)

    Book  MATH  Google Scholar 

  48. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  49. Paris, R.B., Kaminski, D.: Asymptotics and Mellin–Barnes Integrals, Encyclopedia of Mathematics and its Applications, vol. 85. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  50. Pólya, G.: Über trigonometrische Integralemit nur reelen Nullstellen. J. Reine Angew. Math. 58, 6–18 (1927)

    Article  MATH  Google Scholar 

  51. Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integrals and Series, Vol 1. Elementary Functions. Gordan and Breach, New York (1986)

    MATH  Google Scholar 

  52. Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integrals and Series, Volume 2: Special Functions. Gordon and Breach, New York (1992)

    MATH  Google Scholar 

  53. Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integrals and Series, Vol. 3: More Special Functions. Gordan and Breach, New York (1990)

    MATH  Google Scholar 

  54. Ramanujan, S.: New expressions for Riemann’s functions \(\xi (s)\) and \(\Xi (t)\). Quart. J. Math. 46, 253–260 (1915)

    MATH  Google Scholar 

  55. Ramanujan, S.: The Lost Notebook and Other Unpublished Papers. Narosa, New Delhi (1988)

    MATH  Google Scholar 

  56. Rodgers, B., Tao, T.: The De Bruijn–Newman constant is non-negative. Forum Math. Pi 8(e6), 62 (2020)

    MathSciNet  MATH  Google Scholar 

  57. Rudin, W.: Principles of Mathematical Analysis, vol. 3. McGraw-hill, New York (1964)

    MATH  Google Scholar 

  58. Salerno, S., Vitolo, A., Zannier, U.: Functional equations for Dirichlet series with periodic coefficients. Ricerche mat. 40(2), 209–222 (1991)

    MathSciNet  MATH  Google Scholar 

  59. Temme, N.M.: Special Functions: An Introduction to the Classical Functions of Mathematical Physics. Wiley-Interscience Publication, New York (1996)

    Book  MATH  Google Scholar 

  60. Titchmarsh, E.C.: The Theory of Functions, Revised by D. R. Heath-Brown, 2nd edn. Oxford University Press, London (1999)

    Google Scholar 

  61. Titchmarsh, E.C.: The Theory of the Riemann Zeta Function. Clarendon Press, Oxford (1986)

    MATH  Google Scholar 

  62. Watson, G.N.: Some self-reciprocal functions. Q. J. Math. 2, 298–309 (1931)

    Article  MATH  Google Scholar 

  63. Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, London (1966)

    MATH  Google Scholar 

  64. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis, 4th edn. Cambridge University Press, Cambridge (1935)

    MATH  Google Scholar 

  65. Yu, K.W.: On value distribution theory of second order non-homogeneous periodic ODEs and the Lommel Functions, Ph.D. Thesis, The Hong Kong University of Science and Technology (2010)

Download references

Acknowledgements

The authors sincerely thank the referee for his/her important suggestions which improved the readability of the paper. They also thank Nico M. Temme for his help, Neer Bhardwaj for providing them a copy of [58], and Richard B. Paris, Don Zagier, M. Lawrence Glasser, Robert Maier, Alexandru Zaharescu and Alexandre Kisselev for interesting discussions. The first author’s research is partially supported by the SERB-DST Grant ECR/2015/000070 and partially by the SERB MATRICS Grant MTR/2018/000251. He sincerely thanks SERB for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dixit, A., Kumar, R. Superimposing theta structure on a generalized modular relation. Res Math Sci 8, 41 (2021). https://doi.org/10.1007/s40687-021-00277-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40687-021-00277-0

Keywords

Mathematics Subject Classification

Navigation