Skip to main content
Log in

Iron-Catalyzed Boron Removal from Molten Silicon in Ammonia

  • Published:
Metallurgical and Materials Transactions E

Abstract

A high-temperature process of refining metallurgical-grade silicon to solar-grade silicon was developed. In this gas purging treatment, boron impurity in silicon reacts with ammonia and the products are removed as volatiles at high temperature. 1 mass pct metallic iron was added to molten silicon as a catalyst, improving the boron removal ratio from 14 to 80 pct at 1723 K (1450 °C). At 1823 K (1550 °C), this reaction could reduce boron concentration from more than 120 ppmw to <1 ppmw within 6 hours, meeting the purity requirement of solar-grade silicon. Nickel was tested in place of iron but showed no catalytic effect on boron removal. The result confirmed the catalytic role of iron in boron removal from molten silicon in ammonia. Possible mechanisms of catalysis, influence from iron concentration, and temperature effect on the catalytic reaction were explored. An apparent activation energy of 329 ± 129 kJ mol−1 was calculated from experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Safarian, G. Tranell, M. Tangstad, Energy Procedia 20, 88–97 (2012)

    Article  Google Scholar 

  2. D. Lynch, JOM 61, 41–48 (2009)

    Article  Google Scholar 

  3. M. Johnston, L. Khajavi, M. Li, S. Sokhanvaran, M. Barati, JOM 64, 935–45 (2012)

    Article  Google Scholar 

  4. Y. Wang, X. Ma, K. Morita, Metall. Mater. Trans. B 45B, 334–37 (2014)

    Article  Google Scholar 

  5. H. Theuerer, Trans. AIME 206, 1316–19 (1956)

    Google Scholar 

  6. H. Nishimoto, Y. Kang, T. Yoshikawa, K. Morita, High Temp. Mater. Process. (Lond.) 31, 471–77 (2012)

    Google Scholar 

  7. J.J. Wu, W.H. Ma, B. Yang, Y.N. Dai, K. Morita, Trans. Nonferr. Metal. Soc. 19, 463–67 (2009)

    Article  Google Scholar 

  8. A. Yvon, E. Fourmond, C. Ndzogha, Y. Delannoy and C. Trassy: Proceedings of EPM 2003 4th International Conference on Electromagnetic Processing of Materials, 2003, pp. 125–30.

  9. E.F. Nordstrand, M. Tangstad, Metall. Mater. Trans. B 43B, 814–22 (2012)

    Article  Google Scholar 

  10. C.P. Khattak, D.B. Joyce, F. Schmid, Sol. Energy Mater. Sol. Cells 74, 77–89 (2002)

    Article  Google Scholar 

  11. C. Khattak, D. Joyce and F. Schmid: Report No. NREL/SR-520-30716, National Renewable Energy Laboratory, Salem, Massachusetts, 2001.

  12. K. Tang, S. Andersson, E. Nordstrand, M. Tangstad, JOM 64, 952–56 (2012)

    Article  Google Scholar 

  13. N. Nakamura, H. Baba, Y. Sakaguchi, Y. Kato, Mater. Trans. 45, 858–64 (2004)

    Article  Google Scholar 

  14. P.G. Ho, M. James: Report No. SAND99-1047, Sandia National Labs., Albuquerque, 1999.

  15. J.A. Van Den Avyle, P. Ho and J.M. Gee: Report No. SAND2000-0821, Sandia National Labs., Albuquerque, 2000.

  16. F.L. Riley, J. Am. Ceram. Soc. 83, 245–65 (2000)

    Article  Google Scholar 

  17. B.R. Bathey, M.C. Cretella, J. Mater. Sci. 17, 3077–96 (1982)

    Article  Google Scholar 

  18. T. Yoshikawa, K. Morita, JOM 64, 946–51 (2012)

    Article  Google Scholar 

  19. T. Yoshikawa, K. Morita, J. Cryst. Growth 311, 776–79 (2009)

    Article  Google Scholar 

  20. T. Yoshikawa, K. Morita, Metall. Mater. Trans. B 36B, 731–36 (2005)

    Article  Google Scholar 

  21. H. Bielawa, O. Hinrichsen, A. Birkner, M. Muhler, Angew. Chem. Int. Ed. 40, 1061–63 (2001)

    Article  Google Scholar 

  22. N.D. Spencer, R.C. Schoonmaker, G.A. Somorjai, J. Catal. 74, 129–35 (1982)

    Article  Google Scholar 

  23. P. Stoltze, Phys. Scr. 36, 824 (1987)

    Article  Google Scholar 

  24. M. Bowker, I. Parker, K. Waugh, Appl. Catal. 14, 101–18 (1985)

    Article  Google Scholar 

  25. W.-S. Seo, K. Koumoto, S. Arai, J. Am. Ceram. Soc. 81, 1255–61 (1998)

    Article  Google Scholar 

  26. A.J. Moulson, J. Mater. Sci. 14, 1017–51 (1979)

    Article  Google Scholar 

  27. W. Kaiser, C. Thurmond, J. Appl. Phys. 30, 427–31 (1959)

    Article  Google Scholar 

  28. W.G. Bessler, M. Vogler, H. Störmer, D. Gerthsen, A. Utz, A. Weber, E. Ivers-Tiffée, PCCP 12, 13888–903 (2010)

    Article  Google Scholar 

  29. H. Zhu, R.J. Kee, V.M. Janardhanan, O. Deutschmann, D.G. Goodwin, J. Electrochem. Soc. 152, A2427–40 (2005)

    Article  Google Scholar 

  30. Z. Yuan, W. Huang, K. Mukai, Appl. Phys. A 78, 617–22 (2004)

    Article  Google Scholar 

  31. M. Tanahashi, T. Fujisawa, C. Yamauchi, J. Min. Mater. Process. Inst. Jpn. 114, 807–12 (1998)

    Google Scholar 

  32. S.V. Lukin, V.I. Zhuchkov, N.A. Vatolin, J. Less-Common Met. 67, 399–405 (1979)

    Article  Google Scholar 

  33. R. Speiser, D.R. Poirier, K. Yeum, Scr. Metall. 21, 687–92 (1987)

    Article  Google Scholar 

  34. A. Zaitsev, N.Y. Zaitseva, A. Kodentsov, Metall. Mater. Trans. B 34B, 887–98 (2003)

    Article  Google Scholar 

  35. C. Ji, R. Yu, S. Liu, Can. Metall. Q. 27, 41–47 (1988)

    Article  Google Scholar 

  36. J. Garandet, Int. J. Thermophys. 28, 1285–303 (2007)

    Article  Google Scholar 

  37. H. Kodera, Jpn. J. Appl. Phys. 2, 212 (1963)

    Article  Google Scholar 

  38. Y. Wang and K. Morita: J. Sustain. Metall., vol. 1, pp. 126–33.

  39. K. Tang, E.J. Øvrelid, G. Tranell, M. Tangstad, JOM 61, 49–55 (2009)

    Article  Google Scholar 

  40. Q. Wang, D.-G. Li, K. Wang, Z.-Y. Wang, J.-C. He, Scr. Mater. 56, 485–88 (2007)

    Article  Google Scholar 

  41. T. Kobayashi, M. Tokiwai, J. Alloys Compd. 197, 7–16 (1993)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Professor Toru Okabe for discussion on this work and Miss Han Wang for her help in the ICP-AES analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyuan Chen.

Additional information

Manuscript submitted December 20, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Morita, K. Iron-Catalyzed Boron Removal from Molten Silicon in Ammonia. Metallurgical and Materials Transactions E 3, 228–233 (2016). https://doi.org/10.1007/s40553-016-0078-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40553-016-0078-9

Keywords

Navigation