Skip to main content
Log in

Recent Developments in Modeling of Laser Polishing of Metallic Materials

  • Published:
Lasers in Manufacturing and Materials Processing Aims and scope Submit manuscript

Abstract

Laser polishing (LP) represents one of the finishing/superfinishing technologies that has experienced a rapid growth over the past two decades. However, while undeniable progress has been achieved on the experimental and/or practical side, the development of the theoretical/numerical models of the continue to be somewhat slower and still dominated by significant simplifying assumptions. Along these lines, the main goal of the present study was to collate the most important modeling developments that were proposed so far in an attempt to synthesize the current stateof-art in the field. While the current consensus is that no single model could provide a comprehensive and accurate picture of the phenomena taking place during LP, it can be asserted at this time that reasonable matches between modeling and experimental results can be obtained under certain conditions. Furthermore, the complexity of the overlapping thermophysical processes that occur during laser polishing combined with the relatively limited database of functional dependencies between material properties and temperature and the impossibility to adequately monitor/measure in real-time many of the process parameters will continue to pose significant modeling and/or validation challenges. Moving forward, it could speculated that additional progress in the latter two categories will likely translate in more accurate representations of the intrinsic mechanisms underlying laser polishing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ρ :

Density

k :

Conductivity

T :

Temperature

H :

Enthalpy

c p :

Specific heat capacity in constant pressure

A :

Absorptivity

r :

Radial position

w :

Laser beam radius

P :

Laser power

h :

Convection heat transfer coefficient

L :

Latent heat of fusion

Δ :

Laser pulse duration

d :

Laser beam diameter

ED :

Energy density

v f :

Scanning speed

G :

Gain coefficient

M :

Delay coefficient

I :

Power intensity

α :

Thermal diffusivity

λ :

Wavelength

R :

Reflectivity

t :

Time

S(t) :

Time-depended location of the solid-liquid boundary

MD :

Melt depth

f :

Frequency

μ :

Viscosity

γ :

Surface tension

δ :

Depth

A :

Heat loss coefficient

Γ :

Surface amplitude

q v :

Volumetric power density

β :

Liquid fraction

u :

Fluid velocity

\( \overset{=}{\tau } \) :

Stress tensor

p :

Pressure

NAD :

Normalized average displacement

PVH :

Peak to valley height

ω :

Attenuation coefficient

f :

Spatial frequency

x :

Longitudinal coordinate

z :

Height coordinate

ref :

Reference

surf :

Surface

:

Surrounding area

rad :

Emitted radiation

liq :

Liquidous

sol :

Solidus

s :

Solid

l :

Liquid

m :

Melt

cr :

Critical

th :

Thermal

i :

Initial

f :

Final

References

  1. AFS, A.F.S.: Surface Finishes for Casting Processes. http://www.afsinc.org/content.cfm?ItemNumber=6915 (2015)

  2. Oberg, E., Jones, F., Horton, H., Ryffel, H.: Machinery’s handbook, 26th edn. Industrial Press Inc., New York (2000)

    Google Scholar 

  3. Chattopadhyay, A.K.P.S., Chattopadhyay, A.B.: Lecture notes on superfinishing processes. https://nptel.ac.in/courses/112105127/pdf/LM-30.pdf

  4. Temmler, A., Willenborg, E., Wissenbach, K.: Laser polishing. In: Proceedings SPIE 8243, Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XVII, 2012, pp. 82430W-82430W-82413. SPIE, Bellingham

  5. Willenborg, E.: Polishing with Laser Radiation. In: Poprawe, R. (ed.) Tailored Light 2: Laser Application Technology. Springer, Berlin (2011)

  6. Bordatchev, E.V., Hafiz, A.M.K., Tutunea-Fatan, O.R.: Performance of laser polishing in finishing of metallic surfaces. Int. J. Adv. Manuf. Technol. 73(1-4), 35–52 (2014). https://doi.org/10.1007/s00170-014-5761-3

    Article  Google Scholar 

  7. Vega, F., Armengol Cebrian, J., Lupon, N.B., Laguarta, F.: Surface dynamics during laser polishing of glass. In: Proceedings SPIE 3822, Computer-Controlled Microshaping, pp. 92–102. SPIE, Munich (1999)

  8. Kumstel, J., Kirsch, B.: Polishing titanium- and nickel-based alloys using Cw-laser radiation. Phys. Procedia. 41, 362–371 (2013). https://doi.org/10.1016/j.phpro.2013.03.089

    Article  Google Scholar 

  9. Guo, K.W.: Effect of polishing parameters on morphology of DF2 (AISI-O1) steel surface polished by Nd:YAG laser. Surf. Eng. 25(3), 187–195 (2009). https://doi.org/10.1179/026708408X336382

    Article  Google Scholar 

  10. Chow, M.T.C., Bordatchev, E.V., Knopf, G.K.: Experimental study on the effect of varying focal offset distance on laser micropolished surfaces. Int. J. Adv. Manuf. Technol. 67(9), 2607–2617 (2013). https://doi.org/10.1007/s00170-012-4677-z

    Article  Google Scholar 

  11. De Giorgi, C., Furlan, V., Demir, A.G., Tallarita, E., Candiani, G., Previtali, B.: Laser micropolishing of AISI 304 stainless steel surfaces for cleanability and bacteria removal capability. Appl. Surf. Sci. 406, 199–211 (2017). https://doi.org/10.1016/j.apsusc.2017.02.083

    Article  Google Scholar 

  12. Yung, K.C., Wang, W.J., Xiao, T.Y., Choy, H.S., Mo, X.Y., Zhang, S.S., Cai, Z.X.: Laser polishing of additive manufactured CoCr components for controlling their wettability characteristics. Surf. Coat. Technol. 351, 89–98 (2018). https://doi.org/10.1016/j.surfcoat.2018.07.030

    Article  Google Scholar 

  13. Yermachenko, V.M., Vdovin, Y.A., Mironov, V.D., Naumov, N.V., Petrovskiy, V.N., Prokopova, N.M., Polsky, V.I., Dzhumaev, P.S., Yakushin, V.L.: Technology of polishing of titanium surface using the fiber-laser radiation. Laser Phys. 20(6), 1537–1544 (2010). https://doi.org/10.1134/S1054660X10120042

    Article  Google Scholar 

  14. Conrad, D., Richter, L.: Ultra-short pulse laser structuring of molding tools. Phys. Procedia. 56, 1041–1046 (2014). https://doi.org/10.1016/j.phpro.2014.08.016

    Article  Google Scholar 

  15. Nüsser, C., Sändker, H., Willenborg, E.: Pulsed laser micro polishing of metals using dual-beam technology. Phys. Procedia. 41, 346–355 (2013). https://doi.org/10.1016/j.phpro.2013.03.087

    Article  Google Scholar 

  16. Nüsser, C., Kumstel, J., Kiedrowski, T., Diatlov, A., Willenborg, E.: Process- and material-induced surface structures during laser polishing. Adv. Eng. Mater. 17(3) (2015). https://doi.org/10.1002/adem.201400426

    Article  Google Scholar 

  17. Maisterrena-Epstein, R., Camacho-López, S., Escobar-Alarcón, L., Camacho-Lopez, M.: Nanosecond laser ablation of bulk Al, Bronze, and Cu: Ablation ratesaturation and laser induced oxidation. Superficies y Vacío 20(3), 1–5 (2007)

  18. Schneider, C.W., Lippert, T.: Laser ablation and thin film deposition. In: Schaaf, P. (ed.) Laser Processing of Materials: Fundamentals, Applications and Developments, pp. 89–112. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Harilal, S.S., Freeman, J.R., Diwakar, P.K., Hassanein, A.: Femtosecond laser ablation: fundamentals and applications. In: Musazzi, S., Perini, U. (eds.) Laser-Induced Breakdown Spectroscopy: Theory and Applications, pp. 143–166. Springer Berlin Heidelberg, Berlin, Heidelberg (2014)

    Chapter  Google Scholar 

  20. Weingarten, C., Schmickler, A., Willenborg, E., Wissenbach, K., Poprawe, R: Laser polishing and laser shape correction of optical glass. J. Laser. App. 011702, 29 (2017). https://doi.org/10.2351/1.4974905

    Article  Google Scholar 

  21. Hafiz, A.M.K., Bordatchev, E.V., Tutunea-Fatan, R.O.: Influence of overlap between the laser beam tracks on surface quality in laser polishing of AISI H13 tool steel. J. Manuf. Process. 14(4), 425–434 (2012). https://doi.org/10.1016/j.jmapro.2012.09.004

    Article  Google Scholar 

  22. Temmler, A., Willenborg, E., Wissenbach, K.: Design surfaces by laser Remelting. Phys. Procedia. 12, 419–430 (2011). https://doi.org/10.1016/j.phpro.2011.03.053

    Article  Google Scholar 

  23. Temmler, A.: Section 11.4: structuring by Remelting. In: Poprawe, R. (ed.) Tailored Light 2: Laser Application Technology, pp. 203–207. Springer, Berlin (2011)

  24. Vatsya, S.R., Nikumb, S.K.: Modeling of fluid dynamical processes during pulsed-laser texturing of material surfaces. Phys. Rev. B. 68(3), (2003). https://doi.org/10.1103/PhysRevB.68.035410

  25. Ramos, J.A., Bourell, D.L., Beaman, J.J.: Surface over-melt during laser polishing of Indirect- SLS metal parts. Rapid Prototyping Technol. 758, 53–61 (2003)

    Google Scholar 

  26. Brown, M.S., Arnold C.B.: Fundamentals of laser-material interaction and application to multiscale surface modification. In: Sugioka, K., Meunier, M., Piqué, A. (eds.) Laser Precision Microfabrication. Springer Series in Materials Science, vol. 135, pp. 91–120. Springer, Berlin Heidelberg (2010)

    Chapter  Google Scholar 

  27. Shinn, M.: Basics of lasers and laser optics. In: Schaaf, P. (ed.) Laser Processing of Materials, pp. 5–19. Springer, Berlin Heidelberg (2010)

    Chapter  Google Scholar 

  28. Bustillo, A., Ukar, E., Rodriguez, J.J., Lamikiz, A.: Modelling of process parameters in laser polishing of steel components using ensembles of regression trees. Int. J. Comput. Integr. Manuf. 24(8), 735–747 (2011). https://doi.org/10.1080/0951192X.2011.574155

    Article  Google Scholar 

  29. Dobrev, T., Pham, D.T., Dimov, S.S.: Techniques for improving surface quality after laser milling. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 222(1), 55–65 (2008). https://doi.org/10.1243/09544054JEM843

    Article  Google Scholar 

  30. Shao, T.M., Hua, M., Tam, H.Y., Cheung, E.H.M.: An approach to modelling of laser polishing of metals. Surf. Coat. Technol. 197(1), 77–84 (2005). https://doi.org/10.1016/j.surfcoat.2005.01.010

    Article  Google Scholar 

  31. Perry, T.L., Werschmoeller, D., Li, X.C., Pfefferkorn, F.E., Duffie, N.A.: The effect of laser pulse duration and feed rate on pulsed laser polishing of microfabricated nickel samples. J. Manuf. Sci. Eng. - Trans. ASME 131(3), 031002 (2009). https://doi.org/10.1115/1.3106033

    Article  Google Scholar 

  32. Shen, Z.H., Zhang, S.Y., Lu, J., Ni, X.W.: Mathematical modeling of laser induced heating and melting in solids. Opt. Laser Technol. 33(8), 533–537 (2001). https://doi.org/10.1016/S0030-3992(01)00005-6

    Article  Google Scholar 

  33. Bordatchev, E.V., Nikumb, S.K.: Laser material-removal process as a subject of automatic control. In: Proceedings of the Fourteenth Annual Meeting of the American Society for Precision Engineering, Monterey, California, pp. 236–239 (1999)

  34. Chow, M.T.C., Hafiz, A.M.K., Tutunea-Fatan, O.R., Knopf, G.K., Bordatchev, E.V.: Experimental statistical analysis of laser micropolishing process. In: International Symposium on Optomechatronic Technologies, pp. 1–6. ISOT, Toronto (2010)

  35. Hafiz, A.M.K., Bordatchev, E.V., Tutunea-Fatan, R.O.: Experimental analysis of applicability of a picosecond laser for micro-polishing of micromilled Inconel 718 superalloy. Int. J. Adv. Manuf. Technol. 70(9-12), 1963–1978 (2014). https://doi.org/10.1007/s00170-013-5408-9

    Article  Google Scholar 

  36. Kaplan, A.F.H.: Analysis and modeling of a high-power Yb: fiber laser beam profile. Opt. Eng. 50(5), (2011). https://doi.org/10.1117/1.3580660

    Article  Google Scholar 

  37. Wolf, N.: Joining. In: Poprawe, R. (ed.) Tailored Light 2: Laser Application Technology, pp. 265–341. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

    Chapter  Google Scholar 

  38. Yilbas, B.S., Shuja, S.Z., Khan, S.M.A., Aleem, A.: Laser melting of carbide tool surface: model and experimental studies. Appl. Surf. Sci. 255(23), 9396–9403 (2009). https://doi.org/10.1016/j.apsusc.2009.07.042

    Article  Google Scholar 

  39. Marimuthu, S., Triantaphyllou, A., Antar, M., Wimpenny, D., Morton, H., Beard, M.: Laser polishing of selective laser melted components. Int J Mach Tool Manu. 95, 97–104 (2015). https://doi.org/10.1016/j.ijmachtools.2015.05.002

    Article  Google Scholar 

  40. Backes, G., Gasser, A., Kreutz, E.-W., Ollier, B., Pirch, N., Rozsnoki, M., Wissenbach, K.: Surface melting of AlSi10Mg with CO2 laser radiation. In: Proceedings SPIE 1276, CO2 Lasers and Applications II. SPIE, Bellingham (1990)

  41. Rosenthal, D.: The Theory of Moving Sources of Heat and its Application to Metal Treatments. ASME, Cambridge (1946)

    Google Scholar 

  42. Liu, S.Y., Hu, J.D., Yang, Y., Guo, Z.X., Wang, H.Y.: Microstructure analysis of magnesium alloy melted by laser irradiation. Appl. Surf. Sci. 252(5), 1723–1731 (2005). https://doi.org/10.1016/j.apsusc.2005.03.110

    Article  Google Scholar 

  43. Ohring, M.: The Materials Science of Thin Films. Academic Press, San Diego (1992)

    MATH  Google Scholar 

  44. Mai, T.A., Lim, G.C.: Micromelting and its effects on surface topography and properties in laser polishing of stainless steel. J. Laser. App. 16(4), 221–228 (2004). https://doi.org/10.2351/1.1809637

    Article  Google Scholar 

  45. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, vol. 6, 2nd ed. Pergamon Press, Oxford. https://www.sciencedirect.com/book/9780080339337/fluid-mechanics (1987)

    Chapter  Google Scholar 

  46. Pfefferkorn, F.E., Duffie, N.A., Li, X., Vadali, M., Ma, C.: Improving surface finish in pulsed laser micro polishing using thermocapillary flow. CIRP Ann. Manuf. Technol. 62(1), 203–206 (2013). https://doi.org/10.1016/j.cirp.2013.03.112

    Article  Google Scholar 

  47. Perry, T.L., Werschmoeller, D., Li, X., Pfefferkorn, F.E., Duffie, N.A.: Pulsed laser polishing of micro-milled Ti6Al4V samples. J. Manuf. Process. 11(2), 74–81 (2009). https://doi.org/10.1016/j.jmapro.2009.10.001

    Article  Google Scholar 

  48. Dowden, J.: The theory of laser material processing. Springer Series in Materials Science, vol. 119. In: Springer Science. Springer, Netherlands (2009)

  49. Ukar, E., Lamikiz, A., Martinez, S., Tabernero, I., de Lacalle, L.N.L.: Roughness prediction on laser polished surfaces. J. Mater. Process. Technol. 212(6), 1305–1313 (2012). https://doi.org/10.1016/j.jmatprotec.2012.01.007

    Article  Google Scholar 

  50. Voller, V.R., Prakash, C.: A fixed grid numerical modelling methodology for convection-diffusion mushy region phase change problems. Int. J. Heat Mass Transf. 30(8), 1709–1719 (1987)

    Article  Google Scholar 

  51. Vadali, M., Ma, C., Duffie, N.A., Li, X., Pfefferkorn, F.E.: Pulsed laser micro polishing: surface prediction model. J. Manuf. Process. 14(3), 307–315 (2012). https://doi.org/10.1016/j.jmapro.2012.03.001

    Article  Google Scholar 

  52. Tokarev, V.N., Kaplan, A.F.H.: An analytical modeling of time dependent pulsed laser melting. J. Appl. Phys. 86(5), 2836–2846 (1999). https://doi.org/10.1063/1.371132

    Article  Google Scholar 

  53. Amara, M., Timchenko, V., El Ganaoui, M., Leonardi, E., Davis, G.D.: A 3D computational model of heat transfer coupled to phase change in multilayer materials with random thermal contact resistance. Int. J. Therm. Sci. 48(2), 421–427 (2009). https://doi.org/10.1016/j.ijthermalsci.2008.03.008

    Article  Google Scholar 

  54. Ma, C., Vadali, M., Duffie, N.A., Pfefferkorn, F.E., Li, X.: Melt pool flow and surface evolution during pulsed laser micro polishing of Ti6Al4V. J. Manuf. Sci. Eng. 135(6), 061023-061023-061028 (2013). doi:https://doi.org/10.1115/1.4025819

    Article  Google Scholar 

  55. Sowdari, D., Majumdar, P.: Finite element analysis of laser irradiated metal heating and melting processes. Opt. Laser Technol. 42(6), 855–865 (2010). https://doi.org/10.1016/j.optlastec.2009.11.022

    Article  Google Scholar 

  56. Mohajerani, S., D. Miller, J., Remus Tutunea-Fatan, O., Bordatchev, E.: Thermo-physical modelling of track width during laser polishing of H13 tool steel. Proc. Manuf. 10, 708–719 (2017)

    Article  Google Scholar 

  57. Yilbas, B.S., Mansoor, S.B.: Laser evaporative heating of surface: simulation of flow field in the laser produced cavity. J. Phys. D. Appl. Phys. 39(17), 3863–3875 (2006). https://doi.org/10.1088/0022-3727/39/17/024

    Article  Google Scholar 

  58. ANSYS (2015) ANSYS Fluent Theory Guide. ANSYS, Canonsburg

  59. Voller, V.R., Brent, A.D., Prakash, C.: Modeling the mushy region in a binary alloy. Appl. Math. Model. 14(6), 320–326 (1990). https://doi.org/10.1016/0307-904x(90)90084-I

    Article  Google Scholar 

  60. Yin, H.B., Emi, T.: Marangoni flow at the gas/melt interface of steel. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 34(5), 483–493 (2003). https://doi.org/10.1007/s11663-003-0015-z

    Article  Google Scholar 

  61. Xu, Y.L., Dong, Z.B., Wei, Y.H., Yang, C.L.: Marangoni convection and weld shape variation in A-TIG welding process. Theor. Appl. Fract. Mech. 48(2), 178–186 (2007). https://doi.org/10.1016/j.tafmec.2007.05.004

    Article  Google Scholar 

  62. Lu, S.P., Fujii, H., Nogi, K.: Marangoni convection and weld shape variations in Ar-O-2 and Ar-CO2 shielded GTA welding. Mat. Sci. Eng. - Struct. Mat. Prop. Microstruct. Proc. 380(1-2), 290–297 (2004). https://doi.org/10.1016/j.msea.2004.05.057

    Article  Google Scholar 

  63. Guha, R., Mohajerani, F., Mukhopadhyay, A., Collins, M.D., Sen, A., Velegol, D.: Modulation of spatiotemporal particle patterning in evaporating droplets: applications to diagnostics and materials science. ACS Appl. Mater. Interfaces. 9(49), 43352–43362 (2017). https://doi.org/10.1021/acsami.7b13675

    Article  Google Scholar 

  64. Ma, C., Vadali, M., Li, X., Duffie, N.A., Pfefferkorn, F.E.: Analytical and experimental investigation of thermocapillary flow in pulsed laser micropolishing. J. Micro. Nano.-Manuf. 2(2), 021010-021010-021018 (2014). https://doi.org/10.1115/1.4027433

    Article  Google Scholar 

  65. Wang, Q.H., Morrow, J.D., Ma, C., Duffie, N.A., Pfefferkorn, F.E.: Surface prediction model for thermocapillary regime pulsed laser micro polishing of metals. J. Manuf. Process. 20, 340–348 (2015). https://doi.org/10.1016/j.jmapro.2015.05.005

    Article  Google Scholar 

  66. Mazumder, J.: Laser welding. Materials Processing: Theory and Practices. 3, 113–200 (1983). https://doi.org/10.1016/B978-0-444-86396-6.50009-X

    Article  Google Scholar 

  67. Bergstrom, D., Powell, J., Kaplan, A.F.H.: The absorptance of steels to Nd : YLF and Nd : YAG laser light at room temperature. Appl. Surf. Sci. 253(11), 5017–5028 (2007). https://doi.org/10.1016/j.apsusc.2006.11.018

    Article  Google Scholar 

  68. Guha, R., Mohajerani, F., Collins, M., Ghosh, S., Sen, A., Velegol, D.: Chemotaxis of molecular dyes in polymer gradients in solution. J. Am. Chem. Soc. 139(44), 15588–15591 (2017). https://doi.org/10.1021/jacs.7b08783

    Article  Google Scholar 

  69. Zhang, C., Zhou, J., Shen, H.: Role of capillary and Thermocapillary forces in laser polishing of metals. J. Manuf. Sci. Eng. - Trans. ASME 139(4), 041019 (2017). https://doi.org/10.1115/1.4035468

    Article  Google Scholar 

  70. Shuja, S.Z., Yilbas, B.S., Shazli, S.Z.: Laser repetitive pulse heating influence of pulse duty on temperature rise. Heat Mass Transf. 43(9), 949–955 (2007). https://doi.org/10.1007/s00231-006-0168-9

    Article  Google Scholar 

  71. Yilbas, B.S., Arif, A.F.M., Karatas, C., Ahsan, M.: Cemented carbide cutting tool: laser processing and thermal stress analysis. Appl. Surf. Sci. 253(12), 5544–5552 (2007). https://doi.org/10.1016/j.apsusc.2006.12.123

    Article  Google Scholar 

Download references

Acknowledgements

This paper is the result of collaboration between the University of Western Ontario (London, Ontario, Canada) and National Research Council of Canada (London, Ontario, Canada). This research was supported in part through the financial contribution of National Sciences and Engineering Research Council (NSERC) of Canada.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Evgueni V. Bordatchev or O. Remus Tutunea-Fatan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohajerani, S., Bordatchev, E. & Tutunea-Fatan, O. Recent Developments in Modeling of Laser Polishing of Metallic Materials. Lasers Manuf. Mater. Process. 5, 395–429 (2018). https://doi.org/10.1007/s40516-018-0071-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40516-018-0071-5

Keywords

Navigation