Skip to main content

Joining

  • Chapter
  • First Online:
Tailored Light 2

Part of the book series: RWTHedition ((RWTH))

Abstract

In the heat conduction welding process the material is heated to above the melting point through the energy of a laser beam, but only so high, so that no measurable evaporation will occur. The shape of the melt pool and the welding depth are dependent on the heat conduction of the material. Important factors which influence the heat conduction are the material and the geometry and temperature of the work piece.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. Michel, M. Niessen, V. Kostrykin, W. Schulz, C. Zimmermann, D. Petring. (1999) “LaserWeld3D”, ILT Software Paket

    Google Scholar 

  2. R. Poprawe, D. Petring, C. Benter. (2001) “Schweißen mit Diodenlasern”, iASTK 2001

    Google Scholar 

  3. C. Brettschneider. (1998) Rofin-Sinar Laser GmbH: “Im Vordergrund steht die Ästhetik”, Laser-Praxis, Oktober 1998, Carl Hanser Verlag, München

    Google Scholar 

  4. DIN32511 Beuth-Verlag Elektronenstrahl- und Laserschweißverfahren:Begriffe für Verfahren und Geräte

    Google Scholar 

  5. E. Beyer. (1987) Schweißen mit CO2-Hochleistungslasern. Technologie Aktuell. VDI-Verlag

    Google Scholar 

  6. Merkblatt DVS 3203 Teil 4. Qualitätsicherung von CO2-Laserstrahl-Schweißarbeiten. Nahtvorbereitung und konstruktive Hinweise

    Google Scholar 

  7. E. Beyer. (1985) Einfluß des laserinduzierten Plasmas beim Schweißen mit CO2-Lasern. Dissertation, TH-Darmstadt

    Google Scholar 

  8. M. Eboo, W. M. Steen, J. Clark (1978) Arc-augmented laser welding. Proceedings of 4th Int. Conf. on Advances in Welding Processes, UK, 9–11 May 1978, pp. 257–265

    Google Scholar 

  9. D. Petring (2001) Hybrid laser welding. Industrial Laser Solutions, December 2001, pp. 12–16

    Google Scholar 

  10. H. Lembeck (2002) Laser-Hybrid-Schweißen im Schiffbau. Proceedings Aachener Kolloquium fär Lasertechnik 2002, Aachen, Germany, September 2002, pp. 177–192

    Google Scholar 

  11. U. Jasnau, J. Hoffmann, P. Seyffarth, R. Reipa, G. Milbradt. (2003) Laser-MSG-Hybridschweißen im Schiffbau. Proceedings of European Automotive Laser Application 2003, Bad Nauheim, Germany, January 2003

    Google Scholar 

  12. T. Graf, H. Staufer. (2003) Laser-Hybrid-Welding Drives VW Improvements. Welding Journal, January 2003, pp. 42–48

    Google Scholar 

  13. D. Petring, C. Fuhrmann. (2003) Hybrid laser welding: laser and arc in concert. The Industrial Laser User, No. 33, December 2003, pp. 34–36

    Google Scholar 

  14. D. Petring, C. Fuhrmann, N. Wolf, R. Poprawe. (2007) Progress in Laser-MAG Hybrid Welding of High Strength Steels up to 30 mm Thickness, in Proceedings of 26th International Congress on Applications of Lasers & Electro-Optics ICALEO 2007, OR, USA, pp. 300–307

    Google Scholar 

  15. Frost & Sullivan, Market report: “Advances in Automotive Plastics”, 11pp, (2007)

    Google Scholar 

  16. H. Saechtling. (1998) Kunststoff-Taschenbuch, 27. Ausgabe, Tabelle 5.6, Carl Hanser Verlag, Mänchen Wien

    Google Scholar 

  17. U.A. Russek, G. Otto, M. Poggel. (2001) Verbindliche Nähte – Automatisiertes Fägen von Kunststoffen mit Hochleistungs-Diodenlasern, Laser Praxis 1/2001, pp. 14–16

    Google Scholar 

  18. F.G Bachmann, U.A. Russek. (2002) Laser welding of polymers using high power diode lasers, Proceedings Photonics West

    Google Scholar 

  19. J.W. Chen. (2000) Mit der Maske in die Mikrowelt – Neues Laserschweißverfahren fär Kunststoffe, Zeitschrift TAE-Aktuell, S. 2–4, Heft 12

    Google Scholar 

  20. F. Becker. (2003) Einsatz des Laserdurchstrahlschweißens zum Fägen von Thermoplasten, Dissertation Universität Paderborn, Institut fär Kunststofftechnik

    Google Scholar 

  21. U.-A. Russek. (2003) Simultaneous Laser Beam Welding of Thermoplastics – Innovations and Challenges, ICALEO 2003, Jacksonville, Florida, USA, Paper ID 604, October 13th–16th

    Google Scholar 

  22. R. Klein, R. Poprawe, M. Wehner. (1987) Thermal Processing of Plastics by Laser Radiation; Proceedings Laser 87, Springer, Heidelberg

    Google Scholar 

  23. D. Hänsch, H. Pätz. (1998) Treusch: Harte und weiche Kunststoffe mit Diodenlaser verbinden, Kunststoffe 88, Carl Hanser Verlag

    Google Scholar 

  24. U.A. Russek, A. Palmen, H. Staub, J. Pöhler, C. Wenzlau, G. Otto, M. Poggel, A. Koeppe, H. Kind. (2003) Laser beam welding of thermoplastics, Proceedings Photonics West

    Google Scholar 

  25. U.A. Russek. (2003) Innovative Trends in Laser Beam Welding of Thermoplastics, Proceedings of the Second International WLT-Conference on Lasers in Manufacturing, pp. 105–112, Munich, Germany

    Google Scholar 

  26. P.A. Atanasov. (1995) Laser welding of plastics – theory and experiment, Optical Eng. 34/10, pp. 2976–2980

    Google Scholar 

  27. G. Menges, E. Haberstroh, W. Michaeli, E. Schmachtenberg. (2002) Werkstoffkunde Kunststoffe, 5. Auflage, Kapitel. 12, Carl Hanser Verlag, Mänchen Wien

    Google Scholar 

  28. C.J. Nonhof. (1994) Laser welding of polymers, Polymer Eng. SCI 34/20, pp. 1547–1549

    Google Scholar 

  29. W.W. Duley, R.E. Mueller. (1992) CO2 laser welding of polymers, Polymer Engineering and Science, Mid-May 1992, Vol. 32, No. 9, pp. 582–585

    Article  Google Scholar 

  30. M. Sieffert. (2003) Farbstoffe und Pigmente- von schwarz bis weiß zu kunterbunt. Aachener Laser Seminare: Aachen

    Google Scholar 

  31. U.A. Russek. (2006) Prozesstechnische Aspekte des Laserdurchstrahlschweißens von Thermoplasten. Dissertation RWTH Aachen University, Shaker Verlag, Aachen

    Google Scholar 

  32. A. Boglea, A. Olowinsky, A. Gillner. (2007) Fibre laser welding for packaging of disposable polymeric microfluidic-biochips, Journal of Applied Surface Science, Vol. 254, pp. 1174–1178

    Article  Google Scholar 

  33. A. Boglea, A. Olowinsky, A. Gillner. (2007) TWIST – a new method for the micro-welding of polymers with fibre lasers, in the proceedings of the ICALEO, October 29–November 1, 2007, OR, USA, pp. 136–142

    Google Scholar 

  34. A. Roesner, P. Abels, A. Olowinsky, N. Matsuo, A. Hino. (2008) Absorber-free Laser Beam Welding of Transparent Thermoplastics, ICALEO 2008, Temecula, California, USA, Paper ID 303

    Google Scholar 

  35. Kern W. (1993) Handbook of Semiconductor Wafer Cleaning Technology: Conventional RCA-Type Hydrogen Peroxide Mixtures, p. 19, Noyes Publications, New Jersey

    Google Scholar 

  36. Lasky J.B. (1986) Wafer bonding for silicon-on-insulator technologies, Applied Physics Letters, Vol. 48, pp. 78–80

    Article  Google Scholar 

  37. M. Shimbo, K. Fukukawa, K. Fukuda, K. Tanzawa. (1986) Silicon-to-silicon direct bonding method, Journal of Applied Physics, Vol. 60, pp. 2987–2989

    Article  Google Scholar 

  38. M.A. Schmidt. (1998) Wafer-to-Wafer Bonding for Microstructure Formation, Proceedings of the IEEE, Vol. 86, No. 8, pp. 1575–1585

    Google Scholar 

  39. M. Wiegand. (2001) issertation, Auswirkungen einer Plasmabehandlung auf die Eigenschaften des Niedertemperatur-Waferbondens monokristalliner Siliziumoberflächen, Mathematisch-Naturwissenschaftlich-Technischen Fakultät der Martin-Luther-Universität Halle-Wittenberg, Der Andere Verlag

    Google Scholar 

  40. V. Dragoi, M. Alexe, M. Reiche, U. Gösele. (1999) Low temperature direct wafer bonding of silicon using a glass intermediate layer, Proceedings of the 22nd Annual Conference on Semiconductors (CAS’99) 2, pp. 443–446, IEEE Cat. No. 99TH8389, Sinaia, Romania

    Google Scholar 

  41. R.F. Wolffenbuttel. (1994) Low-temperature Silicon Wafer-to-wafer Bonding Using Gold at Eutectic Temperature, Sensors and Actuators A, Vol. 43, pp. 223–229

    Article  Google Scholar 

  42. R. Knechtel. (2005) Dissertation, Halbleiterwaferbondverbindungen mittels strukturierter Glaszwischenschichten zur Verkapselung oberflächenmikromechanischer Sensoren auf Waferebene, TU Chemnitz, Fakultät fär Elektrotechnik und Informationstechnik, Verlag Dr. Hut Mänchen

    Google Scholar 

  43. Q.-Y. Tong, U. Gösele. (1996) A model of low-temperature wafer bonding and its application, Journal of Electrochemical Society, vol. 143, p. 1773

    Article  Google Scholar 

  44. M. J. Wild. (2002) Dissertation RWTH Aachen, Lokal selektives Bonden von Silizium und Glas mit Laser, Shaker Verlag, Aachen

    Google Scholar 

  45. F. Sari, A. Gillner, et al.: Advances in selective Laser Radiation Bonding of Silicon and Glass for Microsystems, in Proceedings of the Third International WLT-Conference on Lasers in Manufacturing 2005, München, AT-Fachverlag Stuttgart, 791–796

    Google Scholar 

  46. M.J. Wild, A. Gillner, R. Poprawe. (2001) Locally selective bonding of silicon and glass with laser. Sensors and Actuators A, Vol. 93, pp. 63–69

    Article  Google Scholar 

  47. M.J. Wild, A. Gillner, R. Poprawe. (2001) Advances in Silicon to Glass Bonding with Laser. Proceedings of the SPIE 4407, pp. 135–141

    Google Scholar 

  48. F. Sari,M.Wiemer, M. Bernasch, J. Bagdahn. (2008) Laser Transmission Bonding of Siliconto- Silicon and Silicon-to-Glass for Wafer-Level-Packaging and Microsystems, The Electrochemical Society ECS, Trans, Vol. 16, No. 8, p. 561

    Google Scholar 

  49. F. Sari, W.-M. Hoffmann, E. Haberstroh and R. Poprawe, Applications of laser transmission processes for the joining of plastics, silicon and glass micro parts,Microsystem Technologies, Vol. 14, Issue 12, 1879–1886, 2008

    Google Scholar 

  50. J.-S. Park, A.A. Tseng. (2004) Transmission laser bonding of glass with silicon wafer in Proceedings of 2004 Japan-USA Symposium on flexible Automation, Paper No. UL-073, American Society of Mechanical Engineers, New York

    Google Scholar 

  51. J-S. Park, A.A. Tseng. (2005) Development and characterization of transmission laser bonding technique in Proceedings of IMAPS Int. Conf. Exhibition Device Packaging, Paper No. TA15, Int. Microelectronics and Packaging Society

    Google Scholar 

  52. J-S. Park, A.A. Tseng. (2006) Line bonding of wafers using transmission laser bonding technique for microsystem packaging in ITherm 2006 Proceedings, IEEE, Thermal and Thermomechanical Phenomena in Electronics Systems, pp. 1358–1364

    Google Scholar 

  53. A.A. Tseng, J.-S. Park. (2006) Using Transmission Laser Bonding Technique for Line Bonding in Microsystem Packaging in IEEE Transactions on Electronics Packaging Manufacturing, Vol. 29, No 4, pp. 308–318

    Article  Google Scholar 

  54. A.A. Tseng, J.-S. Park. (2006) Mechanical strength and interface characteristics of transmission laser bonding for wafer-level packaging, IEEE Transactions on Electronics Packaging Manufacturing, Vol. 29, No. 3, pp. 191–201

    Article  Google Scholar 

  55. A.A. Tseng, J.-S. Park. (2006) Effects of surface roughness and oxide layer on wafer bonding strength using transmission laser bonding technique in ITherm 2006 Proceedings, IEEE, Thermal and Thermomechanical Phenomena in Electronics Systems, pp. 1349–1357

    Google Scholar 

  56. A.A. Tseng, J.-S. Park, G.-P. Vakanas, H. Wu, M. Raudensky, T.P. Chen. (2007) Influences of interface oxidation on transmission laser bonding of wafers for microsystem packaging in Microsystem Technologies, Vol. 13, No. 1, pp. 49–59

    Article  Google Scholar 

  57. A.A. Tseng, J.-S. Park. (2006) Effects of surface roughness and contact pressure on wafer bonding strength using transmission laser bonding technique, Journal of Microlithography, Microfabrication, and Microsystems – October–December 2006 – Vol. 5, No. 4, 043013,11pp

    Google Scholar 

  58. A.W.Y. Tan, F.E.H. Tay. (2005) Localized laser assisted eutectic bonding of quartz and silicon by Nd:YAG pulsed-laser in Sensors and Actuators A: Physical, Vol. 120, No. 2, 17 May 2005, pp. 550–561

    Article  Google Scholar 

  59. A.W.Y. Tan, F.E.H. Tay, J. Zhang. (2006) Characterization of localized laser assisted eutectic bonds in Sensors and Actuators A: Physical, Vol. 125, No. 2, 10 January 2006, pp. 573–585

    Article  Google Scholar 

  60. U.M. Mescheder, M. Alavi, K. Hiltmann, Ch. Lietza, Ch. Nachtigall, H. Sandmaier. (2002) Local laser bonding for low temperature budget in Sensors and Actuators A: Physical, Vols. 97–98, No. 1, April 2002, pp. 422–427

    Google Scholar 

  61. U. Mescheder, M. Alavi, K. Hiltmann, Ch. Lizeau, Ch. Nachtigall, H. Sandmaier. (2001) Local Laser Bonding for Low Temperature Budget, Digest of Technical Papers of the Transducers ’01, Eurosensors XV, pp. 620–623, Munich, Germany, June 2001

    Google Scholar 

  62. S. Theppakuttai, D. Shao, S.C. Chen. (2004) Localized laser transmission bonding for microsystem fabrication and packaging, Journal of Manufacturing Processes, Vol. 6, No. 1, pp. 24–31

    Article  Google Scholar 

  63. J. Bagdahn. (2001) Festigkeit und Lebensdauer direkt gebondeter Siliziumwafer unter mechanischer Belastung: Der Micro-Chevron-Test (MC-Test), p. 58, Dissertation, VDI Fortschrittsberichte, VDI Reihe 9, Nr. 334, VDI Verlag Düsseldorf

    Google Scholar 

  64. DIN8505. (1979) “Löten; Allgemeines, Begriffe”, Teil 1, Normausschuss Schweiβtechnik (NAS) im DIN Deutsches Institut für Normung e.V.

    Google Scholar 

  65. DIN8505. (1979) “Löten – Einteilung der Verfahren, Begriffe”, Teil 2, Normausschuss Schweiβtechnik (NAS) im DIN Deutsches Institut für Normung e.V.

    Google Scholar 

  66. R.J. Klein Wassink. (1991) “Weichlöten in der Elektronik”, 2. Auflage, Eugen G. Leuze Verlag, (ISBN: 3874800660)

    Google Scholar 

  67. L. Bosse, A. Schildecker, A. Gillner, R. Poprawe. (2002) High quality laser beam soldering, Journal of Microsystem Technologies, Vol. 7

    Google Scholar 

  68. L. Bosse, A. Koglin, A. Olowinsky, V. Kolauch, M. Nover. (2003) “Laser Beam Soldering – An Attractive Alternative to Conventional Soldering Technologies”, Laser and Applications in Science and Technology, Proceedings of SPIE, San Jose, USA

    Google Scholar 

  69. U. Dilthey. (2000) Laserstrahlschweiβen: Prozesse, Werkstoffe, Fertigung und Prüfung; DVS-Verlag Düsseldorf

    Google Scholar 

  70. L. Dorn. (1992) Schweiβen und Löten mit Festkörperlasern; Springer Verlag

    Google Scholar 

  71. M. Glasmacher. (1998) Mikroschweiβen mit Laserstrahlung, Meisenbach Verlag Bamberg

    Google Scholar 

  72. M. Beck. (1996) Modellierung des Lasertiefschweiβens; B.G. Teubnerverlag, Stuttgart

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Wolf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wolf, N. (2011). Joining. In: Poprawe, R. (eds) Tailored Light 2. RWTHedition. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01237-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01237-2_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01236-5

  • Online ISBN: 978-3-642-01237-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics