Skip to main content
Log in

Importance of NAD+ Anabolism in Metabolic, Cardiovascular and Neurodegenerative Disorders

  • Review Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

The role of nicotinamide adenine dinucleotide (NAD+) in ageing has emerged as a critical factor in understanding links to a wide range of chronic diseases. Depletion of NAD+, a central redox cofactor and substrate of numerous metabolic enzymes, has been detected in many major age-related diseases. However, the mechanisms behind age-associated NAD+ decline remains poorly understood. Despite limited conclusive evidence, supplements aimed at increasing NAD+ levels are becoming increasingly popular. This review provides renewed insights regarding the clinical utility and benefits of NAD+ precursors, namely nicotinamide (NAM), nicotinic acid (NA), nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN), in attenuating NAD+ decline and phenotypic characterization of age-related disorders, including metabolic, cardiovascular and neurodegenerative diseases. While it is anticipated that NAD+ precursors can play beneficial protective roles in several conditions, they vary in their ability to promote NAD+ anabolism with differing adverse effects. Careful evaluation of the role of NAD+, whether friend or foe in ageing, should be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. United Nations, Department of Economic and Social Affairs, Population Division. World Population Ageing 2015. (ST/ESA/SER.A/390). New York: United Nations; 2015.

  2. National Institute on Aging. Global Aging [Internet]. United States: United States Government. 2022. https://www.nia.nih.gov/research/dbsr/global-aging#:~:text=Rapid%20declines%20in%20fertility%2C%20together%20with%20rising%20life,of%2065%20as%20under%20the%20age%20of%2015. Accessed 14 Jun 2022.

  3. United Nations Department of Economic and Social Affairs. World Population Ageing 2019 [Internet]. United Nations. 2019. https://www.un.org/en/development/desa/population/publications/pdf/ageing/WorldPopulationAgeing2019-Highlights.pdf. Accessed 14 Jun 2022

  4. Fang EF, Xie C, Schenkel JA, Wu C, Long Q, Cui H, et al. A research agenda for ageing in China in the 21st century (2nd edition): focusing on basic and translational research, long-term care, policy and social networks. Ageing Res Rev. 2020;64: 101174. https://doi.org/10.1016/j.arr.2020.101174.

    Article  Google Scholar 

  5. Kc S, Wurzer M, Speringer M, Lutz W. Future population and human capital in heterogeneous India. Proc Natl Acad Sci USA. 2018;115(33):8328–33. https://doi.org/10.1073/pnas.1722359115.

    Article  CAS  Google Scholar 

  6. Jaul E, Barron J. Age-related diseases and clinical and public health implications for the 85 years old and over population. Front Public Health. 2017;5:335. https://doi.org/10.3389/fpubh.2017.00335.

    Article  Google Scholar 

  7. Warmoth K, Tarrant M, Abraham C, Lang IA. Older adults’ perceptions of ageing and their health and functioning: a systematic review of observational studies. Psychol Health Med. 2016;21(5):531–50. https://doi.org/10.1080/13548506.2015.

    Article  Google Scholar 

  8. Rowe JW, Kahn RL. Successful aging. New York: Pantheon Books; 1998.

    Google Scholar 

  9. Fernández-Ballesteros R, García LF, Abarca D, Blanc L, Efklides A, Kornfeld R, et al. Lay concept of aging well: cross-cultural comparisons. J Am Geriatr Soc. 2008;56:950–2. https://doi.org/10.1111/j.1532-5415.2008.01654.x.

    Article  Google Scholar 

  10. Schultz MB, Sinclair DA. Why NAD(+) declines during aging: it’s destroyed. Cell Metab. 2016;23(6):965–6. https://doi.org/10.1016/j.cmet.2016.05.022.

    Article  CAS  Google Scholar 

  11. Cantó C, Menzies KJ, Auwerx J. NAD+ metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab. 2015;22:31–53.

    Article  Google Scholar 

  12. Imai S, Guarente L. NAD+ and sirtuins in aging and disease. Trends Cell Biol. 2014;24:464–71. https://doi.org/10.1016/j.tcb.2014.04.002.

    Article  CAS  Google Scholar 

  13. Freeberg KA, Craighead DH, Martens CR, You Z, Chonchol M, Seals DR. Nicotinamide riboside supplementation for treating elevated systolic blood pressure and arterial stiffness in midlife and older adults. Front Cardiovasc Med. 2022;9: 881703. https://doi.org/10.3389/fcvm.2022.881703.

    Article  CAS  Google Scholar 

  14. Covarrubias AJ, Perrone R, Grozio A, Verdin E. NAD+ metabolism and its roles in cellular processes during ageing. Nat Rev Mol Cell Biol. 2021;22(2):119–41. https://doi.org/10.1038/s41580-020-00313-x/.

    Article  CAS  Google Scholar 

  15. McReynolds MR, Chellappa K, Baur JA. Age-related NAD+ decline. Exp Gerontol. 2020;22(134): 110888. https://doi.org/10.1016/j.exger.2020.110888.

    Article  CAS  Google Scholar 

  16. Fang EF, Scheibye-Knudsen M, Chua KF, Mattson MP, Croteau DL, Bohr VA. Nuclear DNA damage signalling to mitochondria in ageing. Nat Rev Mol Cell Biol. 2016;17(5):308–21. https://doi.org/10.1038/nrm.2016.14.

    Article  CAS  Google Scholar 

  17. Fang EF, Scheibye-Knudsen M, Brace LE, Kassahun H, SenGupta T, Nilsen H, et al. Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction. Cell. 2014;157(4):882–96. https://doi.org/10.1016/j.cell.2014.03.026.

    Article  CAS  Google Scholar 

  18. Strømland Ø, Diab J, Ferrario E, Sverkeli LJ, Ziegler M. The balance between NAD+ biosynthesis and consumption in ageing. Mech Ageing Dev. 2021;199: 111569. https://doi.org/10.1016/j.mad.2021.111569.

    Article  CAS  Google Scholar 

  19. Rajman L, Chwalek K, Sinclair DA. Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab. 2018;27(3):529–47. https://doi.org/10.1016/j.cmet.2018.02.011.

    Article  CAS  Google Scholar 

  20. Harden A, Young WJ. The alcoholic ferment of yeast-juice part II–the coferment of yeast-juice. Proc R Soc Lond Ser B Contain Pap Biol Character. 1906;78:369–75.

    Google Scholar 

  21. Warburg O, Christian W. Pyridin, the hydrogen-transferring component of the fermentation enzymes (pyridine nucleotide). Biochem Zeitschr. 1936;287:291.

    CAS  Google Scholar 

  22. Shade C. The science behind NMN-A Stable, Reliable NAD+Activator and anti-aging molecule. Integr Med (Encinitas). 2020;19(1):12–4.

    Google Scholar 

  23. Castro-Portuguez R, Sutphin GL. Kynurenine pathway, NAD+ synthesis, and mitochondrial function: targeting tryptophan metabolism to promote longevity and healthspan. Exp Gerontol. 2020;132: 110841. https://doi.org/10.1016/j.exger.2020.110841.

    Article  CAS  Google Scholar 

  24. Lundt S, Ding S. NAD+ metabolism and diseases with motor dysfunction. Genes (Basel). 2021;12(11):1776. https://doi.org/10.3390/genes12111776.

    Article  CAS  Google Scholar 

  25. Kennedy BE, Sharif T, Martell E, Dai C, Kim Y, Lee PW, et al. NAD+ salvage pathway in cancer metabolism and therapy. Pharmacol Res. 2016;114:274–83. https://doi.org/10.1016/j.phrs.2016.10.027.

    Article  CAS  Google Scholar 

  26. Mahan DC, Shields RG. Essential and nonessential amino acid composition of pigs from birth to 145 kilograms of body weight, and comparison to other studies. J Anim Sci. 1998;76:513–21.

    Article  CAS  Google Scholar 

  27. Hopkins F. The analyst and the medical man. Analyst. 1906;31:385b–404.

    Article  Google Scholar 

  28. Frick B, Schroecksnadel K, Neurauter G, Leblhuber F, Fuchs D. Increasing production of homocysteine and neopterin and degradation of tryptophan with older age. Clin Biochem. 2004;37:684–7.

    Article  CAS  Google Scholar 

  29. O’Connor JC, André C, Wang Y, Lawson MA, Szegedi SS, Lestage J, et al. Interferon-gamma and tumor necrosis factor-alpha mediate the upregulation of indoleamine 2,3-dioxygenase and the induction of depressive-like behavior in mice in response to bacillus Calmette-Guerin. J Neurosci. 2009;29(13):4200–9. https://doi.org/10.1523/JNEUROSCI.5032-08.2009.

    Article  CAS  Google Scholar 

  30. Souza LC, Jesse CR, Antunes MS, Ruff JR, de Oliveira ED, Gomes NS, et al. Indoleamine-2,3-dioxygenase mediates neurobehavioral alterations induced by an intracerebroventricular injection of amyloid-β1-42 peptide in mice. Brain Behav Immun. 2016;56:363–77. https://doi.org/10.1016/j.bbi.2016.03.002.

    Article  CAS  Google Scholar 

  31. Green AR, Sourkes TL, Young SN. Liver and brain tryptophan metabolism following hydrocortisone administration to rats and gerbils. Br J Pharmacol. 1975;53:287–92.

    Article  CAS  Google Scholar 

  32. Nakamura T, Niimi S, Nawa K, Noda C, Ichihara A, Takagi Y, et al. Multihormonal regulation of transcription of the tryptophan 2,3-dioxygenase gene in primary cultures of adult rat hepatocytes with special reference to the presence of a transcriptional protein mediating the action of glucocorticoids. J Biol Chem. 1987;262:727–33.

    Article  CAS  Google Scholar 

  33. Frick B, Schroecksnadel K, Neurauter G, Leblhuber F, Fuchs D. Increasing production of homocysteine and neopterin and degradation of tryptophan with older age. Clin Biochem. 2004;37(8):684–7. https://doi.org/10.1016/j.clinbiochem.2004.02.007.

    Article  CAS  Google Scholar 

  34. Pertovaara M, Raitala A, Lehtimäki T, Karhunen PJ, Oja SS, Jylhä M, et al. Indoleamine 2,3-dioxygenase activity in nonagenarians is markedly increased and predicts mortality. Mech Ageing Dev. 2006;127:497–9.

    Article  CAS  Google Scholar 

  35. Pedersen ER, Svingen GF, Schartum-Hansen H, Ueland PM, Ebbing M, Nordrehaug JE, et al. Urinary excretion of kynurenine and tryptophan, cardiovascular events, and mortality after elective coronary angiography. Eur Heart J. 2013;34:2689–96.

    Article  CAS  Google Scholar 

  36. Guillemin GJ, Brew BJ, Noonan CE, Takikawa O, Cullen KM. Indoleamine 2,3 dioxygenase and quinolinic acid Immunoreactivity in Alzheimer’s disease hippocampus. Neuropathol Appl Neurobiol. 2005;31:395–404. https://doi.org/10.1111/j.1365-2990.2005.00655.x.

    Article  CAS  Google Scholar 

  37. Wu W, Nicolazzo JA, Wen L, Chung R, Stankovic R, Bao SS, et al. Expression of tryptophan 2,3-dioxygenase and production of kynurenine pathway metabolites in triple transgenic mice and human alzheimer’s disease brain. PLoS ONE. 2013;8(4): e59749. https://doi.org/10.1371/journal.pone.0059749.

    Article  CAS  Google Scholar 

  38. Fertan E, Stover KRJ, Brant MG, Stafford PM, Kelly B, Diez-Cecilia E, et al. Effects of the novel IDO inhibitor DWG-1036 on the behavior of male and female 3xTg-AD mice. Front Pharmacol. 2019;10:1044. https://doi.org/10.3389/fphar.2019.01044.

    Article  CAS  Google Scholar 

  39. Laws KR, Irvine K, Gale TM. Sex differences in cognitive impairment in Alzheimer’s disease. World J Psychiatry. 2016;6(1):54–65. https://doi.org/10.5498/wjp.v6.i1.54.

    Article  Google Scholar 

  40. Dobrovolsky VN, Bowyer JF, Pabarcus MK, Heflich RH, Williams LD, Doerge DR, et al. Effect of arylformamidase (kynurenine formamidase) gene inactivation in mice on enzymatic activity, kynurenine pathway metabolites and phenotype. Biochim Biophys Acta. 2005;1724(1–2):163–72. https://doi.org/10.1016/j.bbagen.2005.03.010.

    Article  CAS  Google Scholar 

  41. Hugill AJ, Stewart ME, Yon MA, Probert F, Cox IJ, Hough TA, et al. Loss of arylformamidase with reduced thymidine kinase expression leads to impaired glucose tolerance. Biol Open. 2015;4(11):1367–75. https://doi.org/10.1242/bio.013342.

    Article  CAS  Google Scholar 

  42. Spinneker A, Sola R, Lemmen V, Castillo MJ, Pietrzik K, González-Gross M. Vitamin B6 status, deficiency and its consequences–an overview. Nutr Hosp. 2007;22(1):7–24.

    CAS  Google Scholar 

  43. Hvas AM, Juul S, Bech P, Nexø E. Vitamin B6 level is associated with symptoms of depression. Psychother Psychosom. 2004;73(6):340–3.

    Article  Google Scholar 

  44. McCarty MF. High-dose pyridoxine as an “anti-stress” strategy. Med Hypotheses. 2000;54(5):803–7. https://doi.org/10.1054/mehy.1999.0955.

    Article  CAS  Google Scholar 

  45. Hansson O. Tryptophan load test and pyridoxine treatment in epileptic children. Acta Neurol Scand. 1967;43(S31):65. https://doi.org/10.1111/j.1600-0404.

    Article  CAS  Google Scholar 

  46. Muller FL, Song W, Jang YC, Liu Y, Sabia M, Richardson A, et al. Denervation-induced skeletal muscle atrophy is associated with increased mitochondrial ROS production. Am J Physiol Regul Integr Comp Physiol. 2007;293(3):R1159–68. https://doi.org/10.1152/ajpregu.00767.2006.

    Article  CAS  Google Scholar 

  47. Pierozan P, Zamoner A, Soska AK, Silvestrin RB, Loureiro SO, Heimfarth L, et al. Acute intrastriatal administration of quinolinic acid provokes hyperphosphorylation of cytoskeletal intermediate filament proteins in astrocytes and neurons of rats. Exp Neurol. 2010;224(1):188–96. https://doi.org/10.1016/j.expneurol.2010.03.009.

    Article  CAS  Google Scholar 

  48. Guillemin GJ, Brew BJ, Noonan CE, Takikawa O, Cullen KM. Indoleamine 2,3 dioxygenase and quinolinic acid immunoreactivity in Alzheimer’s disease hippocampus. Neuropathol Appl Neurobiol. 2005;31(4):395–404. https://doi.org/10.1111/j.1365-2990.2005.00655.x.

    Article  CAS  Google Scholar 

  49. Rahman A, Rao MS, Khan KM. Intraventricular infusion of quinolinic acid impairs spatial learning and memory in young rats: a novel mechanism of lead-induced neurotoxicity. J Neuroinflamm. 2018;15(1):263. https://doi.org/10.1186/s12974-018-1306-2.

    Article  CAS  Google Scholar 

  50. Latif-Hernandez A, Shah D, Ahmed T, Lo AC, Callaerts-Vegh Z, Van der Linden A, Balschun D, D’Hooge R. Quinolinic acid injection in mouse medial prefrontal cortex affects reversal learning abilities, cortical connectivity and hippocampal synaptic plasticity. Sci Rep. 2016;6:36489. https://doi.org/10.1038/srep36489.

    Article  CAS  Google Scholar 

  51. Roberts Buceta PM, Romanelli-Cedrez L, Babcock SJ, Xun H, VonPaige ML, Higley TW, et al. The kynurenine pathway is essential for rhodoquinone biosynthesis in Caenorhabditis elegans. J Biol Chem. 2019;294(28):11047–53. https://doi.org/10.1074/jbc.AC119.009475.

    Article  CAS  Google Scholar 

  52. Mehmel M, Jovanović N, Spitz U. Nicotinamide riboside-the current state of research and therapeutic uses. Nutrients. 2020;12(6):1616. https://doi.org/10.3390/nu12061616.

    Article  CAS  Google Scholar 

  53. Revollo JR, Grimm AA, Imai S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem. 2004;279(49):50754–63. https://doi.org/10.1074/jbc.M408388200.

    Article  CAS  Google Scholar 

  54. Reiten OK, Wilvang MA, Mitchell SJ, Hu Z, Fang EF. Preclinical and clinical evidence of NAD+ precursors in health, disease, and ageing. Mech Ageing Dev. 2021;199: 111567. https://doi.org/10.1016/j.mad.2021.111567.

    Article  CAS  Google Scholar 

  55. Hara N, Yamada K, Shibata T, Osago H, Hashimoto T, Tsuchiya M. Elevation of cellular NAD levels by nicotinic acid and involvement of nicotinic acid phosphoribosyltransferase in human cells. J Biol Chem. 2007;282:24574–82.

    Article  CAS  Google Scholar 

  56. Ho C, van der Veer E, Akawi O, Pickering JG. SIRT1 markedly extends replicative lifespan if the NAD+ salvage pathway is enhanced. FEBS Lett. 2009;583:3081–5.

    Article  CAS  Google Scholar 

  57. Imai S, The NAD. World: a new systemic regulatory network for metabolism and aging–Sirt1, systemic NAD biosynthesis, and their importance. Cell Biochem Biophys. 2009;53:65–74.

    Article  CAS  Google Scholar 

  58. Yang H, Lavu S, Sinclair DA. Nampt/PBEF/Visfatin: a regulator of mammalian health and longevity? Exp Gerontol. 2006;41:718–26.

    Article  CAS  Google Scholar 

  59. Hsu CP, Odewale I, Alcendor RR, Sadoshima J. Sirt1 protects the heart from aging and stress. Biol Chem. 2008;389:221–31.

    Article  CAS  Google Scholar 

  60. Audrito V, Messana VG, Deaglio S. NAMPT and NAPRT: two metabolic enzymes with key roles in inflammation. Front Oncol. 2020;10:358. https://doi.org/10.3389/fonc.2020.00358.

    Article  Google Scholar 

  61. Hara N, Yamada K, Shibata T, Osago H, Tsuchiya M. Nicotinamide phosphoribosyltransferase/visfatin does not catalyze nicotinamide mononucleotide formation in blood plasma. PLoS ONE. 2011;6(8): e22781. https://doi.org/10.1371/journal.pone.0022781.

    Article  CAS  Google Scholar 

  62. Samal B, Sun Y, Stearns G, Xie C, Suggs S, McNiece I. Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. Mol Cell Biol. 1994;14(2):1431–7.

    CAS  Google Scholar 

  63. Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M, Kishimoto K, et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science. 2005;307:426–30.

    Article  CAS  Google Scholar 

  64. Revollo JR, Körner A, Mills KF, Satoh A, Wang T, Garten A, et al. Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab. 2007;6(5):363–75. https://doi.org/10.1016/j.cmet.2007.09.003.

    Article  CAS  Google Scholar 

  65. Körner A, Garten A, Blüher M, Tauscher R, Kratzsch J, Kiess W. Molecular characteristics of serum visfatin and differential detection by immunoassays. J Clin Endocrinol Metab. 2007;92(12):4783–91. https://doi.org/10.1210/jc.2007-1304.

    Article  CAS  Google Scholar 

  66. Imai S, Yoshino J. The importance of NAMPT/NAD/SIRT1 in the systemic regulation of metabolism and ageing. Diabetes Obes Metab. 2013;15(3):26–33. https://doi.org/10.1111/dom.12171.

    Article  CAS  Google Scholar 

  67. Choi YJ, Choi SE, Ha ES, Kang Y, Han SJ, Kim DJ, et al. Extracellular visfatin activates gluconeogenesis in HepG2 cells through the classical PKA/CREB-dependent pathway. Horm Metab Res. 2014;46(4):233–9. https://doi.org/10.1055/s-0034-1370907.

    Article  CAS  Google Scholar 

  68. Kim SR, Bae SK, Choi KS, Park SY, Jun HO, Lee JY, et al. Visfatin promotes angiogenesis by activation of extracellular signal-regulated kinase 1/2. Biochem Biophys Res Commun. 2007;357(1):150–6. https://doi.org/10.1016/j.bbrc.2007.03.105.

    Article  CAS  Google Scholar 

  69. Ma C, Pi C, Yang Y, Lin L, Shi Y, Li Y, et al. Nampt expression decreases age-related senescence in rat bone marrow mesenchymal stem cells by targeting Sirt1. PLoS ONE. 2017;12(1): e0170930. https://doi.org/10.1371/journal.pone.0170930.

    Article  CAS  Google Scholar 

  70. Nakajima TE, Yamada Y, Hamano T, Furuta K, Gotoda T, Katai H, et al. Adipocytokine levels in gastric cancer patients: resistin and visfatin as biomarkers of gastric cancer. J Gastroenterol. 2009;44(7):685–90. https://doi.org/10.1007/s00535-009-0063-5.

    Article  CAS  Google Scholar 

  71. Dahl TB, Yndestad A, Skjelland M, Oie E, Dahl A, Michelsen A, et al. Increased expression of visfatin in macrophages of human unstable carotid and coronary atherosclerosis: possible role in inflammation and plaque destabilization. Circulation. 2007;115:972–80.

    Article  CAS  Google Scholar 

  72. Nowell MA, Richards PJ, Fielding CA, Ognjanovic S, Topley N, Williams AS, et al. Regulation of pre-B cell colony-enhancing factor by STAT-3-dependent interleukin-6 trans-signaling: implications in the pathogenesis of rheumatoid arthritis. Arthritis Rheum. 2006;54:2084–95. https://doi.org/10.1002/art.21942.

    Article  CAS  Google Scholar 

  73. Franco-Trepat E, Alonso-Perez A, Guillan-Fresco M, Jorge-Mora A, Gualillo O, Gomez-Reino JJ, et al. Visfatin as a therapeutic target for rheumatoid arthritis. Expert Opin Ther Targets. 2019;23:607–18. https://doi.org/10.1080/14728222.2019.1617274.

    Article  CAS  Google Scholar 

  74. Busso N, Karababa M, Nobile M, Rolaz A, Van Gool F, Galli M, et al. Pharmacological inhibition of nicotinamide phosphoribosyltransferase/visfatin enzymatic activity identifies a new inflammatory pathway linked to NAD. PLoS ONE. 2008;3: e2267. https://doi.org/10.1371/journal.pone.0002267.

    Article  CAS  Google Scholar 

  75. Neubauer K, Bednarz-Misa I, Walecka-Zacharska E, Wierzbicki J, Agrawal A, Gamian A, et al. Oversecretion and overexpression of nicotinamide phosphoribosyltransferase/Pre-B colony-enhancing factor/visfatin in inflammatory bowel disease reflects the disease activity, severity of inflammatory response and hypoxia. Int J Mol Sci. 2019;20:166.

    Article  Google Scholar 

  76. Chang YH, Chang DM, Lin KC, Shin SJ, Lee YJ. Visfatin in overweight/obesity, type 2 diabetes mellitus, insulin resistance, metabolic syndrome and cardiovascular diseases: a meta-analysis and systemic review. Diabetes Metab Res Rev. 2011;27:515–27. https://doi.org/10.1002/dmrr.1201.

    Article  CAS  Google Scholar 

  77. Nielsen KN, Peics J, Ma T, Karavaeva I, Dall M, Chubanava S, et al. NAMPT-mediated NAD(+) biosynthesis is indispensable for adipose tissue plasticity and development of obesity. Mol Metab. 2018;11:178–88. https://doi.org/10.1016/j.molmet.2018.02.014.

    Article  CAS  Google Scholar 

  78. Sayers SR, Beavil RL, Fine NHF, Huang GC, Choudhary P, Pacholarz KJ, et al. Structure-functional changes in eNAMPT at high concentrations mediate mouse and human beta cell dysfunction in type 2 diabetes. Diabetologia. 2019;63:313–23. https://doi.org/10.1007/s00125-019-05029-y.

    Article  CAS  Google Scholar 

  79. Garten A, Schuster S, Penke M, Gorski T, de Giorgis T, Kiess W. Physiological and pathophysiological roles of NAMPT and NAD metabolism. Nat Rev Endocrinol. 2015;11(9):535–46. https://doi.org/10.1038/nrendo.2015.117.

    Article  CAS  Google Scholar 

  80. Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M, Kishimoto K, et al. Retraction Science. 2007;318:565.

    Article  CAS  Google Scholar 

  81. Dahl TB, Ynestad A, Skjelland M, Øie E, Dahl A, Michelsen A, et al. Increased expression of visfatin in macrophages of human unstable carotid and coronary atherosclerosis: possible role in inflammation and plaque destabilization. Circulation. 2007;115:972–80.

    Article  CAS  Google Scholar 

  82. Song HK, Lee MH, Kim BK, Park YG, Ko GJ, Kang YS, et al. Visfatin: a new player in mesangial cell physiology and diabetic nephropathy. Am J Physiol Renal Physiol. 2008;295:F1485–94.

    Article  CAS  Google Scholar 

  83. Xie H, Tang SY, Luo XH, Huang J, Cui RR, Yuan LQ, et al. Insulin-like effects of visfatin on human osteoblasts. Calcif Tissue Int. 2007;80:201–10.

    Article  CAS  Google Scholar 

  84. Xing S, Hu Y, Huang X, Shen D, Chen C. Nicotinamide phosphoribosyltransferase-related signaling pathway in early Alzheimer’s disease mouse models. Mol Med Rep. 2019;20(6):5163–71.

    CAS  Google Scholar 

  85. Aksoy S, Szumlanski CL, Weinshilboum RM. Human liver nicotinamide N-methyltransferase cDNA cloning, expression, and biochemical characterization. J Biol Chem. 1994;269(20):14835–40.

    Article  CAS  Google Scholar 

  86. Pissios P. Nicotinamide N-methyltransferase: more than a vitamin B3 clearance enzyme. Trends Endocrinol Metab. 2017;28(5):340–53. https://doi.org/10.1016/j.tem.2017.02.004.

    Article  CAS  Google Scholar 

  87. Kang-Lee YA, McKee RW, Wright SM, Swendseid ME, Jenden DJ, Jope RS. Metabolic effects of nicotinamide administration in rats. J Nutr. 1983;113(2):215–21. https://doi.org/10.1093/jn/113.2.215.

    Article  CAS  Google Scholar 

  88. Schmeisser K, Mansfeld J, Kuhlow D, Weimer S, Priebe S, Heiland I, et al. Role of sirtuins in lifespan regulation is linked to methylation of nicotinamide. Nat Chem Biol. 2013;9(11):693–700. https://doi.org/10.1038/nchembio.1352.

    Article  CAS  Google Scholar 

  89. Parsons RB, Smith SW, Waring RH, Williams AC, Ramsden DB. High expression of nicotinamide N-methyltransferase in patients with idiopathic Parkinson’s disease. Neurosci Lett. 2003;342(1–2):13–6.

    Article  CAS  Google Scholar 

  90. Liu KY, Mistry RJ, Aguirre CA, Fasouli ES, Thomas MG, Klamt F, et al. Nicotinamide N-methyltransferase increases complex I activity in SH-SY5Y cells via sirtuin 3. Biochem Biophys Res Commun. 2015;467(3):491–6. https://doi.org/10.1016/j.bbrc.2015.10.023.

    Article  CAS  Google Scholar 

  91. Parsons RB, Aravindan S, Kadampeswaran A, Evans EA, Sandhu KK, Levy E, et al. The expression of nicotinamide N-methyltransferas increases ATP synthesis and protects SH-SY5Y neuroblastoma cells against the toxicity of complex I inhibitors. Biochem J. 2011;436(1):145–55. https://doi.org/10.1042/BJ20101685.

    Article  CAS  Google Scholar 

  92. Slomka M, Zieminska E, Lazarewicz J. Nicotinamide and 1-methylnicotinamide reduce homocysteine neurotoxicity in primary cultures of rat cerebellar granule cells. Acta Neurobiol Exp. 2008;68(1):1–9.

    Google Scholar 

  93. Schmeisser K, Parker JA. Nicotinamide-N-methyltransferase controls behavior, neurodegeneration and lifespan by regulating neuronal autophagy. PLoS Genet. 2018;14(9): e1007561. https://doi.org/10.1371/journal.pgen.1007561.

    Article  CAS  Google Scholar 

  94. Bieganowski P, Brenner C. Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans. Cell. 2004;117(4):495–502.

    Article  CAS  Google Scholar 

  95. Sambeat A, Ratajczak J, Joffraud M, Sanchez-Garcia JL, Giner MP, Valsesia A, et al. Endogenous nicotinamide riboside metabolism protects against diet-induced liver damage. Nat Commun. 2019;10(1):4291. https://doi.org/10.1038/s41467-019-12262-x.

    Article  CAS  Google Scholar 

  96. Yang Y, Mohammed FS, Zhang N, Sauve AA. Dihydronicotinamide riboside is a potent NAD+ concentration enhancer in vitro and in vivo. J Biol Chem. 2019;294(23):9295–307. https://doi.org/10.1074/jbc.RA118.005772.

    Article  CAS  Google Scholar 

  97. Megarity CF, Gill JR, Caraher MC, Stratford IJ, Nolan KA, Timson DJ. The two common polymorphic forms of human NRH-quinone oxidoreductase 2 (NQO2) have different biochemical properties. FEBS Lett. 2014;588(9):1666–72. https://doi.org/10.1016/j.febslet.2014.02.063.

    Article  CAS  Google Scholar 

  98. Vella F, Ferry G, Delagrange P, Boutin JA. NRH:quinone reductase 2: an enzyme of surprises and mysteries. Biochem Pharmacol. 2005;71(1–2):1–12. https://doi.org/10.1016/j.bcp.2005.09.019.

    Article  CAS  Google Scholar 

  99. Islam F, Leung KK, Walker MD, Al Massri S, Shilton BH. The unusual cosubstrate specificity of NQO2: conservation throughout the amniotes and implications for cellular function. Front Pharmacol. 2022;13: 838500. https://doi.org/10.3389/fphar.2022.838500.

    Article  CAS  Google Scholar 

  100. Yang Y, Zhang N, Zhang G, Sauve AA. NRH salvage and conversion to NAD+ requires NRH kinase activity by adenosine kinase. Nat Metab. 2020;2(4):364–79. https://doi.org/10.1038/s42255-020-0194-9.

    Article  CAS  Google Scholar 

  101. Zhang H, Ryu D, Wu Y, Gariani K, Wang X, Luan P, et al. NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science. 2016;352(6292):1436–43. https://doi.org/10.1126/science.aaf2693.

    Article  CAS  Google Scholar 

  102. Mills KF, Yoshida S, Stein LR, Grozio A, Kubota S, Sasaki Y, et al. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab. 2016;24(6):795–806.

    Article  CAS  Google Scholar 

  103. Trammell SA, Weidemann BJ, Chadda A, Yorek MS, Holmes A, Coppey LJ, et al. Nicotinamide riboside opposes type 2 diabetes and neuropathy in mice. Sci Rep. 2016;6:26933. https://doi.org/10.1038/srep26933.

    Article  CAS  Google Scholar 

  104. Kim MB, Pham TX, vanLuling M, Kostour V, Kang H, Corvino O, et al. Nicotinamide riboside supplementation exerts an anti-obesity effect and prevents inflammation and fibrosis in white adipose tissue of female diet-induced obesity mice. J Nutr Biochem. 2022;107: 109058. https://doi.org/10.1016/j.jnutbio.2022.109058.

    Article  CAS  Google Scholar 

  105. Cantó C, Houtkooper RH, Pirinen E, Youn DY, Oosterveer MH, Cen Y, et al. The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 2012;15(6):838–47.

    Article  Google Scholar 

  106. Dollerup OL, Trammell SAJ, Hartmann B, Holst JJ, Christensen B, Møller N, et al. Effects of nicotinamide riboside on endocrine pancreatic function and incretin hormones in nondiabetic men with obesity. J Clin Endocrinol Metab. 2019;104(11):5703–14. https://doi.org/10.1210/jc.2019-01081.

    Article  Google Scholar 

  107. de Picciotto NE, Gano LB, Johnson LC, Martens CR, Sindler AL, Mills KF, et al. Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell. 2016;15(3):522–30. https://doi.org/10.1111/acel.12461.

    Article  CAS  Google Scholar 

  108. Okabe K, Yaku K, Tobe K, Nakagawa T. Implications of altered NAD metabolism in metabolic disorders. J Biomed Sci. 2019;26(1):34. https://doi.org/10.1186/s12929-019-0527-8.

    Article  Google Scholar 

  109. Yoshino J, Mills KF, Yoon MJ, Imai S. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 2011;14(4):528–36. https://doi.org/10.1016/j.cmet.2011.08.014.

    Article  CAS  Google Scholar 

  110. Stromsdorfer KL, Yamaguchi S, Yoon MJ, Moseley AC, Franczyk MP, Kelly SC, et al. NAMPT-mediated NAD(+) biosynthesis in adipocytes regulates adipose tissue function and multi-organ insulin sensitivity in mice. Cell Rep. 2016;16(7):1851–60. https://doi.org/10.1016/j.celrep.2016.07.027.

    Article  CAS  Google Scholar 

  111. Uddin GM, Youngson NA, Sinclair DA, Morris MJ. Head to head comparison of short-term treatment with the NAD(+) precursor nicotinamide mononucleotide (NMN) and 6 weeks of exercise in obese female mice. Front Pharmacol. 2016;7:258. https://doi.org/10.3389/fphar.2016.00258.

    Article  CAS  Google Scholar 

  112. Yoshino M, Yoshino J, Kayser BD, Patti GJ, Franczyk MP, Mills KF, et al. Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic women. Science. 2021;372(6547):1224–9. https://doi.org/10.1126/science.abe9985.

    Article  CAS  Google Scholar 

  113. Bushehri N, Jarrell ST, Lieberman S, Mirdamadi-Zonozi N, Birkmayer G, Preuss HG. Oral reduced B-nicotinamide adenine dinucleotide (NADH) affects blood pressure, lipid peroxidation, and lipid profile in hypertensive rats (SHR). Geriatr Nephrol Urol. 1998;8(2):95–100. https://doi.org/10.1023/a:1008242900153.

    Article  CAS  Google Scholar 

  114. Roh E, Myoung Kang G, Young Gil S, Hee Lee C, Kim S, Hong D, et al. Effects of chronic NAD supplementation on energy metabolism and diurnal rhythm in obese mice. Obes (Silver Spring). 2018;26(9):1448–56. https://doi.org/10.1002/oby.22263.

    Article  CAS  Google Scholar 

  115. Mitchell SJ, Bernier M, Aon MA, Cortassa S, Kim EY, Fang EF, et al. nicotinamide improves aspects of healthspan, but not lifespan, in Mice. Cell Metab. 2018;27(3):667-676.e4. https://doi.org/10.1016/j.cmet.2018.02.001.

    Article  CAS  Google Scholar 

  116. Alenzi FQ. Effect of nicotinamide on experimental induced diabetes. Iran J Allergy Asthma Immunol. 2009;8(1):11–8.

    CAS  Google Scholar 

  117. Barr DP, Russ EM, Eder HA. Protein-lipid relationships in human plasma. II. In atherosclerosis and related conditions. Am J Med. 1951;11(4):480–93. https://doi.org/10.1016/0002-9343(51)90183-0.

    Article  CAS  Google Scholar 

  118. Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR. High density lipoprotein as a protective factor against coronary heart disease: the Framingham study. Am J Med. 1977;62(5):707–14. https://doi.org/10.1016/0002-9343(77)90874-9.

    Article  CAS  Google Scholar 

  119. Gordon DJ, Probstfield JL, Garrison RJ, Neaton JD, Castelli WP, Knoke JD, et al. High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation. 1989;79(1):8–15. https://doi.org/10.1161/01.cir.79.1.8.

    Article  CAS  Google Scholar 

  120. Altschul R, Hoffer A, Stephen JD. Influence of nicotinic acid on serum cholesterol in man. Arch Biochem. 1955;54:558–9.

    Article  CAS  Google Scholar 

  121. Abdellatif M, Sedej S, Kroemer G. NAD+ metabolism in cardiac health, aging, and disease. Circulation. 2021;144(22):1795–817. https://doi.org/10.1161/CIRCULATIONAHA.

    Article  CAS  Google Scholar 

  122. Abdellatif M, Trummer-Herbst V, Koser F, Durand S, Adão R, Vasques-Nóvoa F, et al. Nicotinamide for the treatment of heart failure with preserved ejection fraction. Sci Transl Med. 2021;13(580):eabd7064. https://doi.org/10.1126/scitranslmed.abd7064.

    Article  CAS  Google Scholar 

  123. Lee CF, Chavez JD, Garcia-Menendez L, Choi Y, Roe ND, Chiao YA, et al. Normalization of NAD+ redox balance as a therapy for heart failure. Circulation. 2016;134(12):883–94. https://doi.org/10.1161/CIRCULATIONAHA.116.022495.

    Article  CAS  Google Scholar 

  124. Abdellatif M, Bugger H, Kroemer G, Sedej S. NAD+ and vascular dysfunction: from mechanisms to therapeutic opportunities. J Lipid Atheroscler. 2022;11(2):111–32. https://doi.org/10.12997/jla.2022.11.2.111.

    Article  CAS  Google Scholar 

  125. Oka SI, Byun J, Huang CY, Imai N, Ralda G, Zhai P, et al. Nampt potentiates antioxidant defense in diabetic cardiomyopathy. Circ Res. 2021;129(1):114–30. https://doi.org/10.1161/CIRCRESAHA.120.317943.

    Article  CAS  Google Scholar 

  126. Hsu CP, Oka S, Shao D, Hariharan N, Sadoshima J. Nicotinamide phosphoribosyltransferase regulates cell survival through NAD+ synthesis in cardiac myocytes. Circ Res. 2009;105(5):481–91. https://doi.org/10.1161/CIRCRESAHA.109.203703.

    Article  Google Scholar 

  127. Byun J, Oka SI, Imai N, Huang CY, Ralda G, Zhai P, et al. Both gain and loss of Nampt function promote pressure overload-induced heart failure. Am J Physiol Heart Circ Physiol. 2019;317(4):H711–25. https://doi.org/10.1152/ajpheart.00222.2019.

    Article  CAS  Google Scholar 

  128. Zeitz MJ, Smyth JW. Translating translation to mechanisms of cardiac hypertrophy. J Cardiovasc Dev Dis. 2020;7(1):9. https://doi.org/10.3390/jcdd7010009.

    Article  CAS  Google Scholar 

  129. Pirinen E, Cantó C, Jo YS, Morato L, Zhang H, Menzies KJ, et al. Pharmacological Inhibition of poly(ADP-ribose) polymerases improves fitness and mitochondrial function in skeletal muscle. Cell Metab. 2014;19(6):1034–41. https://doi.org/10.1016/j.cmet.2014.04.002.

    Article  CAS  Google Scholar 

  130. Martens CR, Denman BA, Mazzo MR, Armstrong ML, Reisdorph N, McQueen MB, et al. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+ in healthy middle-aged and older adults. Nat Commun. 2018;9(1):1286. https://doi.org/10.1038/s41467-018-03421-7.

    Article  CAS  Google Scholar 

  131. Zhou B, Wang DD, Qiu Y, Airhart S, Liu Y, Stempien-Otero A, et al. Boosting NAD level suppresses inflammatory activation of PBMCs in heart failure. J Clin Invest. 2020;130(11):6054–63. https://doi.org/10.1172/JCI138538.

    Article  CAS  Google Scholar 

  132. Lukasova M, Malaval C, Gille A, Kero J, Offermanns S. Nicotinic acid inhibits progression of atherosclerosis in mice through its receptor GPR109A expressed by immune cells. J Clin Invest. 2011;121(3):1163–73.

    Article  CAS  Google Scholar 

  133. Kong D, Li J, Shen Y, Liu G, Zuo S, Tao B, et al. Niacin promotes cardiac healing after myocardial infarction through activation of the myeloid prostaglandin D2 receptor subtype 1. J Pharmacol Exp Ther. 2017;360(3):435–44. https://doi.org/10.1124/jpet.116.238261.

    Article  CAS  Google Scholar 

  134. D’Andrea E, Hey SP, Ramirez CL, Kesselheim AS. Assessment of the role of niacin in managing cardiovascular disease outcomes: a systematic review and meta-analysis. JAMA Netw Open. 2019;2(4): e192224. https://doi.org/10.1001/jamanetworkopen.2019.2224.

    Article  Google Scholar 

  135. Seals DR, Jablonski KL, Donato AJ. Aging and vascular endothelial function in humans. Clin Sci. 2011;120:357–75.

    Article  CAS  Google Scholar 

  136. Fleenor BS, Seals DR, Zigler ML, Sindler AL. Superoxide-lowering therapy with TEMPOL reverses arterial dysfunction with aging in mice. Aging Cell. 2012;11:269–76.

    Article  CAS  Google Scholar 

  137. Bachschmid MM, Schildknecht S, Matsui R, Zee R, Haeussler D, Cohen RA, et al. Vascular aging: chronic oxidative stress and impairment of redox signaling-consequences for vascular homeostasis and disease. Ann Med. 2013;45:17–36.

    Article  CAS  Google Scholar 

  138. Yamamoto T, Byun J, Zhai P, Ikeda Y, Oka S, Sadoshima J. Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion. PLoS ONE. 2014;9(6): e98972. https://doi.org/10.1371/journal.pone.0098972.

    Article  CAS  Google Scholar 

  139. Fang EF, Hou Y, Palikaras K, Adriaanse BA, Kerr JS, Yang B, et al. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat Neurosci. 2019;22(3):401–12. https://doi.org/10.1038/s41593-018-0332-9.

    Article  CAS  Google Scholar 

  140. Roca-Agujetas V, de Dios C, Abadin X, Colell A. Upregulation of brain cholesterol levels inhibits mitophagy in Alzheimer disease. Autophagy. 2021;17(6):1555–7. https://doi.org/10.1080/15548627.2021.1920814.

    Article  CAS  Google Scholar 

  141. Pradeepkiran JA, Reddy PH. Defective mitophagy in Alzheimer’s disease. Ageing Res Rev. 2020;64: 101191. https://doi.org/10.1016/j.arr.2020.101191.

    Article  CAS  Google Scholar 

  142. Reddy PH, Oliver DM. Amyloid beta and phosphorylated tau-induced defective autophagy and mitophagy in alzheimer’s disease. Cells. 2019;8(5):488. https://doi.org/10.3390/cells8050488.

    Article  CAS  Google Scholar 

  143. Hou Y, Wei Y, Lautrup S, Yang B, Wang Y, Cordonnier S, et al. NAD+ supplementation reduces neuroinflammation and cell senescence in a transgenic mouse model of Alzheimer’s disease via cGAS-STING. Proc Natl Acad Sci USA. 2021;118(37): e2011226118. https://doi.org/10.1073/pnas.2011226118.

    Article  CAS  Google Scholar 

  144. Cen X, Chen Y, Xu X, Wu R, He F, Zhao Q, et al. Pharmacological targeting of MCL-1 promotes mitophagy and improves disease pathologies in an Alzheimer’s disease mouse model. Nat Commun. 2020;11(1):5731. https://doi.org/10.1038/s41467-020-19547-6.

    Article  CAS  Google Scholar 

  145. Chen C, Yang C, Wang J, Huang X, Yu H, Li S, et al. Melatonin ameliorates cognitive deficits through improving mitophagy in a mouse model of Alzheimer’s disease. J Pineal Res. 2021;71(4): e12774. https://doi.org/10.1111/jpi.12774.

    Article  CAS  Google Scholar 

  146. Ghosh N, Das A, Biswas N, Gnyawali S, Singh K, Gorain M, et al. Urolithin A augments angiogenic pathways in skeletal muscle by bolstering NAD+ and SIRT1. Sci Rep. 2020;10(1):20184. https://doi.org/10.1038/s41598-020-76564-7.

    Article  CAS  Google Scholar 

  147. Gong B, Pan Y, Vempati P, Zhao W, Knable L, Ho L, et al. Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-γ coactivator 1α regulated β-secretase 1 degradation and mitochondrial gene expression in Alzheimer’s mouse models. Neurobiol Aging. 2013;34(6):1581–8. https://doi.org/10.1016/j.neurobiolaging.2012.12.005.

    Article  CAS  Google Scholar 

  148. Love S, Barber R, Wilcock GK. Increased poly(ADP-ribosyl)ation of nuclear proteins in Alzheimer’s disease. Brain. 1999;122:247–53. https://doi.org/10.1093/brain/122.2.247.

    Article  Google Scholar 

  149. Hou Y, Lautrup S, Cordonnier S, Wang Y, Croteau DL, Zavala E, et al. NAD+ supplementation normalizes key Alzheimer’s features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proc Natl Acad Sci USA. 2018;115:E1876–85. https://doi.org/10.1073/pnas.1718819115.

    Article  CAS  Google Scholar 

  150. Johnson S, Wozniak DF, Imai S. CA1 Nampt knockdown recapitulates hippocampal cognitive phenotypes in old mice which nicotinamide mononucleotide improves. NPJ Aging Mech Dis. 2018;4:10. https://doi.org/10.1038/s41514-018-0029-z.

    Article  CAS  Google Scholar 

  151. Tarantini S, Valcarcel-Ares MN, Toth P, Yabluchanskiy A, Tucsek Z, Kiss T, et al. Nicotinamide mononucleotide (NMN) supplementation rescues cerebromicrovascular endothelial function and neurovascular coupling responses and improves cognitive function in aged mice. Redox Biol. 2019;24: 101192. https://doi.org/10.1016/j.redox.2019.101192.

    Article  CAS  Google Scholar 

  152. Long AN, Owens K, Schlappal AE, Kristian T, Fishman PS, Schuh RA. Effect of nicotinamide mononucleotide on brain mitochondrial respiratory deficits in an Alzheimer’s disease-relevant murine model. BMC Neurol. 2015;15:19. https://doi.org/10.1186/s12883-015-0272-x.

    Article  CAS  Google Scholar 

  153. Kiss T, Balasubramanian P, Valcarcel-Ares MN, Tarantini S, Yabluchanskiy A, Csipo T, et al. Nicotinamide mononucleotide (NMN) treatment attenuates oxidative stress and rescues angiogenic capacity in aged cerebromicrovascular endothelial cells: a potential mechanism for the prevention of vascular cognitive impairment. Geroscience. 2019;41(5):619–30. https://doi.org/10.1007/s11357-019-00074-2.

    Article  CAS  Google Scholar 

  154. Yao Z, Yang W, Gao Z, Jia P. Nicotinamide mononucleotide inhibits JNK activation to reverse Alzheimer disease. Neurosci Lett. 2017;647:133–40. https://doi.org/10.1016/j.neulet.2017.03.027.

    Article  CAS  Google Scholar 

  155. Zhao Y, Guan YF, Zhou XM, Li GQ, Li ZY, Zhou CC, et al. Regenerative neurogenesis after ischemic stroke promoted by nicotinamide phosphoribosyltransferase-nicotinamide adenine dinucleotide cascade. Stroke. 2015;46(7):1966–74. https://doi.org/10.1161/STROKEAHA.115.009216.

    Article  CAS  Google Scholar 

  156. Park JH, Long A, Owens K, Kristian T. Nicotinamide mononucleotide inhibits post-ischemic NAD(+) degradation and dramatically ameliorates brain damage following global cerebral ischemia. Neurobiol Dis. 2016;95:102–10. https://doi.org/10.1016/j.nbd.2016.07.018.

    Article  CAS  Google Scholar 

  157. Wei CC, Kong YY, Hua X, Li GQ, Zheng SL, Cheng MH, et al. NAD replenishment with nicotinamide mononucleotide protects blood-brain barrier integrity and attenuates delayed tissue plasminogen activator-induced haemorrhagic transformation after cerebral ischaemia. Br J Pharmacol. 2017;174(21):3823–36. https://doi.org/10.1111/bph.13979.

    Article  CAS  Google Scholar 

  158. Lee HJ, Yang SJ. Supplementation with nicotinamide riboside reduces brain inflammation and improves cognitive function in diabetic mice. Int J Mol Sci. 2019;20(17):4196.

    Article  Google Scholar 

  159. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, et al. Inflammation and Alzheimer’s disease. Neurobiol Aging. 2000;21:383–421. https://doi.org/10.1016/S0197-4580(00)00124-X.

    Article  CAS  Google Scholar 

  160. Sorrentino V, Romani M, Mouchiroud L, Beck JS, Zhang H, D’Amico D, et al. Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity. Nature. 2017;552(7684):187–93. https://doi.org/10.1038/nature25143.

    Article  CAS  Google Scholar 

  161. Xie X, Gao Y, Zeng M, Wang Y, Wei TF, Lu YB, et al. Nicotinamide ribose ameliorates cognitive impairment of aged and Alzheimer’s disease model mice. Metab Brain Dis. 2019;34(1):353–66. https://doi.org/10.1007/s11011-018-0346-8.

    Article  CAS  Google Scholar 

  162. Hou Y, Lautrup S, Cordonnier S, Wang Y, Croteau DL, Zavala E, et al. NAD+ supplementation normalizes key Alzheimer’s features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proc Natl Acad Sci USA. 2018;115(8):E1876–85. https://doi.org/10.1073/pnas.1718819115.

    Article  CAS  Google Scholar 

  163. Burke RE, O’Malley K. Axon degeneration in Parkinson’s disease. Exp Neurol. 2013;246:72–83. https://doi.org/10.1016/j.expneurol.2012.01.011.

    Article  CAS  Google Scholar 

  164. Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science. 2002;298(5594):789–91. https://doi.org/10.1126/science.

    Article  CAS  Google Scholar 

  165. Vaur P, Brugg B, Mericskay M, Li Z, Schmidt MS, Vivien D, et al. Nicotinamide riboside, a form of vitamin B3, protects against excitotoxicity-induced axonal degeneration. FASEB J. 2017;31(12):5440–52. https://doi.org/10.1096/fj.201700221RR.

    Article  CAS  Google Scholar 

  166. Brakedal B, Dölle C, Riemer F, Ma Y, Nido GS, Skeie GO, et al. The NADPARK study: a randomized phase I trial of nicotinamide riboside supplementation in Parkinson’s disease. Cell Metab. 2022;34(3):396–407.

    Article  CAS  Google Scholar 

  167. Klaidman L, Morales M, Kem S, Yang J, Chang ML, Adams JD Jr. Nicotinamide offers multiple protective mechanisms in stroke as a precursor for NAD+, as a PARP inhibitor and by partial restoration of mitochondrial function. Pharmacology. 2003;69(3):150–7. https://doi.org/10.1159/000072668.

    Article  CAS  Google Scholar 

  168. Liu D, Gharavi R, Pitta M, Gleichmann M, Mattson MP. Nicotinamide prevents NAD+ depletion and protects neurons against excitotoxicity and cerebral ischemia: NAD+ consumption by SIRT1 may endanger energetically compromised neurons. Neuromol Med. 2009;11(1):28–42. https://doi.org/10.1007/s12017-009-8058-1.

    Article  CAS  Google Scholar 

  169. Mokudai T, Ayoub IA, Sakakibara Y, Lee EJ, Ogilvy CS, Maynard KI. Delayed treatment with nicotinamide (Vitamin B(3)) improves neurological outcome and reduces infarct volume after transient focal cerebral ischemia in Wistar rats. Stroke. 2000;31(7):1679–85. https://doi.org/10.1161/01.str.31.7.1679.

    Article  CAS  Google Scholar 

  170. Wang C, Zhang Y, Ding J, Zhao Z, Qian C, Luan Y, et al. Nicotinamide administration improves remyelination after stroke. Neural Plast. 2017;2017:7019803. https://doi.org/10.1155/2017/7019803.

    Article  CAS  Google Scholar 

  171. Ying W, Wei G, Wang D, Wang Q, Tang X, Shi J, et al. Intranasal administration with NAD+ profoundly decreases brain injury in a rat model of transient focal ischemia. Front Biosci. 2007;12:2728–34. https://doi.org/10.2741/2267.

    Article  CAS  Google Scholar 

  172. Wang X, Li H, Ding S. The effects of NAD+ on apoptotic neuronal death and mitochondrial biogenesis and function after glutamate excitotoxicity. Int J Mol Sci. 2014;15(11):20449–68. https://doi.org/10.3390/ijms151120449.

    Article  CAS  Google Scholar 

  173. Bi J, Li H, Ye SQ, Ding S. Pre-B-cell colony-enhancing factor exerts a neuronal protection through its enzymatic activity and the reduction of mitochondrial dysfunction in in vitro ischemic models. J Neurochem. 2012;120(2):334–46. https://doi.org/10.1111/j.1471-4159.2011.07566.x.

    Article  CAS  Google Scholar 

  174. Wang S, Xing Z, Vosler PS, Yin H, Li W, Zhang F, et al. Cellular NAD replenishment confers marked neuroprotection against ischemic cell death: role of enhanced DNA repair. Stroke. 2008;39(9):2587–95. https://doi.org/10.1161/STROKEAHA.107.509158.

    Article  CAS  Google Scholar 

  175. Green KN, Steffan JS, Martinez-Coria H, Sun X, Schreiber SS, Thompson LM, et al. Nicotinamide restores cognition in Alzheimer’s disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau. J Neurosci. 2008;28(45):11500–10. https://doi.org/10.1523/JNEUROSCI.3203-08.2008.

    Article  CAS  Google Scholar 

  176. Liu D, Pitta M, Jiang H, Lee JH, Zhang G, Chen X, et al. Nicotinamide forestalls pathology and cognitive decline in Alzheimer mice: evidence for improved neuronal bioenergetics and autophagy procession. Neurobiol Aging. 2013;34(6):1564–80. https://doi.org/10.1016/j.neurobiolaging.2012.11.020.

    Article  CAS  Google Scholar 

  177. Jia H, Li X, Gao H, Feng Z, Li X, Zhao L, Jia X, Zhang H, Liu J. High doses of nicotinamide prevent oxidative mitochondrial dysfunction in a cellular model and improve motor deficit in a Drosophila model of Parkinson’s disease. J Neurosci Res. 2008;86(9):2083–90. https://doi.org/10.1002/jnr.21650.

    Article  CAS  Google Scholar 

  178. Caito SW, Aschner M. NAD+ supplementation attenuates methylmercury dopaminergic and mitochondrial toxicity in Caenorhabditis elegans. Toxicol Sci. 2016;151(1):139–49. https://doi.org/10.1093/toxsci/kfw030.

    Article  CAS  Google Scholar 

  179. Zheng C, Han J, Xia W, Shi S, Liu J, Ying W. NAD(+) administration decreases ischemic brain damage partially by blocking autophagy in a mouse model of brain ischemia. Neurosci Lett. 2012;512(2):67–71. https://doi.org/10.1016/j.neulet.2012.01.007.

    Article  CAS  Google Scholar 

  180. Xie L, Yu S, Wang Z, Yang K, Liu Z, Li C, et al. Nicotinamide adenine dinucleotide protects against spinal cord ischemia reperfusion injury-induced apoptosis by blocking autophagy. Oxid Med Cell Longev. 2017;2017:7063874. https://doi.org/10.1155/2017/7063874.

    Article  CAS  Google Scholar 

  181. Huan Q, Sun M, Li M, Zhang D, Han F, Chao WuJ, et al. combination of NAD+ and NADPH offers greater neuroprotection in ischemic stroke models by relieving metabolic stress. Mol Neuro. 2018;55:6063–75. https://doi.org/10.1007/s12035-017-0809-7.

    Article  CAS  Google Scholar 

  182. O’Holleran P. DPN in the prevention, diagnosis, and treatment of drug addictions. West J Surg Obst Gyn. 1961;69:213–5.

    Google Scholar 

  183. Mestayer PN. Addiction the dark night of the soul, NAD+ the light of hope. Bloomington: Balboa Press; 2019.

    Google Scholar 

  184. Rex A, Spychalla M, Fink H. Treatment with reduced nicotinamide adenine dinucleotide (NADH) improves water maze performance in old Wistar rats. Behav Brain Res. 2004;154(1):149–53. https://doi.org/10.1016/j.bbr.2004.02.001.

    Article  CAS  Google Scholar 

  185. Dunbar RL, Gelfand JM. Seeing red: flushing out instigators of niacin-associated skin toxicity. J Clin Invest. 2010;120:2651–5.

    Article  CAS  Google Scholar 

  186. Kamanna VS, Kashyap ML. Nicotinic acid (niacin) receptor agonists: will they be useful therapeutic agents? Am J Cardiol. 2007;100(11A):S53-61. https://doi.org/10.1016/j.amjcard.2007.09.080.

    Article  CAS  Google Scholar 

  187. Lv H, Lv G, Chen C, Zong Q, Jiang G, Ye D, et al. NAD+ metabolism maintains inducible PD-L1 expression to drive tumor immune evasion. Cell Metab. 2021;33(1):110–27.

    Article  CAS  Google Scholar 

  188. Navas LE, Carnero A. NAD+ metabolism, stemness, the immune response, and cancer. Signal Transduct Target Ther. 2021;6(1):2. https://doi.org/10.1038/s41392-020-00354-w.

    Article  CAS  Google Scholar 

  189. Parrott JM, Redus L, Santana-Coelho D, Morales J, Gao X, O’Connor JC. Neurotoxic kynurenine metabolism is increased in the dorsal hippocampus and drives distinct depressive behaviors during inflammation. Transl Psychiatry. 2016;6(10): e918. https://doi.org/10.1038/tp.2016.200.

    Article  CAS  Google Scholar 

  190. Grant R, Berg J, Mestayer R, Braidy N, Bennett J, Broom S, et al. A pilot study investigating changes in the human plasma and urine NAD+ metabolome during a 6 hour intravenous infusion of NAD. Front Aging Neurosci. 2019;11:257. https://doi.org/10.3389/fnagi.2019.00257.

    Article  CAS  Google Scholar 

  191. Anti-aging Services Market Size, Share & Trends Analysis Report By Demographics, By Type (Chemical Peel, BOTOX, Microdermabrasion, Breast Augmentation, Liposuction), And Segment Forecasts, 2019–2026. Grandview Research; 2019. p. GVR-2-68038-815-2.

  192. Conze D, Brenner C, Kruger CL. Safety and metabolism of long-term administration of NIAGEN (Nicotinamide Riboside Chloride) in a randomized, double-blind, placebo-controlled clinical trial of healthy overweight adults. Sci Rep. 2019;9(1):9772. https://doi.org/10.1038/s41598-019-46120-z.

    Article  CAS  Google Scholar 

  193. Trammell SA, Schmidt MS, Weidemann BJ, Redpath P, Jaksch F, Dellinger RW, et al. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nat Commun. 2016;7:12948. https://doi.org/10.1038/ncomms12948.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nady Braidy.

Ethics declarations

Funding

NB is a recipient of the NHMRC Emerging Leadership EL2 Award at the Centre for Healthy Brain Ageing, University of New South Wales, Sydney, Australia.

Conflicts of interest

All authors declare that they have no conflicts of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Code availability

Not applicable.

Author contributions

TH and NB wrote and revised the manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helman, T., Braidy, N. Importance of NAD+ Anabolism in Metabolic, Cardiovascular and Neurodegenerative Disorders. Drugs Aging 40, 33–48 (2023). https://doi.org/10.1007/s40266-022-00989-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40266-022-00989-0

Navigation