Skip to main content
Log in

Human Adipose Tissue Derivatives as a Potent Native Biomaterial for Tissue Regenerative Therapies

  • Review Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Background:

Human adipose tissue is a great source of translatable biomaterials owing to its ease of availability and simple processing. Reusing discardable adipose tissue for tissue regeneration helps in mimicking the exact native microenvironment of tissue. Over the past 10 years, extraction, processing, tuning and fabrication of adipose tissue have grabbed the attention owing to their native therapeutic and regenerative potential. The present work gives the overview of next generation biomaterials derived from human adipose tissue and their development with clinical relevance.

Methods:

Around 300 articles have been reviewed to widen the knowledge on the isolation, characterization techniques and medical applications of human adipose tissue and its derivatives from bench to bedside. The prospective applications of adipose tissue derivatives like autologous fat graft, stromal vascular fraction, stem cells, preadipocyte, adipokines and extracellular matrix, their behavioural mechanism, rational property of providing native bioenvironment, circumventing their translational abilities, recent advances in featuring them clinically have been reviewed extensively to reveal the dormant side of human adipose tissue.

Results:

Basic understanding about the molecular and structural aspect of human adipose tissue is necessary to employ it constructively. This review has nailed the productive usage of human adipose tissue, in a stepwise manner from exploring the methods of extracting derivatives, concerns during processing and its formulations to turning them into functional biomaterials. Their performance as functional biomaterials for skin regeneration, wound healing, soft tissue defects, stem cell and other regenerative therapies under in vitro and in vivo conditions emphasizes the translational efficiency of adipose tissue derivatives.

Conclusion:

In the recent years, research interest has inclination towards constructive tissue engineering and regenerative therapies. Unravelling the maximum utilization of human adipose tissue derivatives paves a way for improving existing tissue regeneration and cellular based therapies and other biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Poss KD. Advances in understanding tissue regenerative capacity and mechanisms in animals. Nat Rev Genet. 2010;11:710–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Haughey BH, Wilson E, Kluwe L, Piccirillo J, Fredrickson J, Sessions D, et al. Free flap reconstruction of the head and neck: analysis of 241 cases. Otolaryngol Head Neck Surg. 2001;125:10–7.

    Article  CAS  PubMed  Google Scholar 

  3. Funt D, Pavicic T. Dermal fillers in aesthetics: an overview of adverse events and treatment approaches. Clin Cosmet Investig Dermatol. 2013;6:295–316.

    PubMed  PubMed Central  Google Scholar 

  4. Lemperle G, Morhenn V, Charrier U. Human histology and persistence of various injectable filler substances for soft tissue augmentation. Aesthetic Plast Surg. 2003;27:354–66.

    Article  PubMed  Google Scholar 

  5. Patrick CW Jr. Adipose tissue engineering: the future of breast and soft tissue reconstruction following tumor resection. Semin Surg Oncol. 2000;19:302–11.

    Article  PubMed  Google Scholar 

  6. Aarabi S, Bhatt KA, Shi Y, Paterno J, Chang EI, Loh SA, et al. Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis. FASEB J. 2007;21:3250–61.

    Article  CAS  PubMed  Google Scholar 

  7. Alster TS, West TB. Human-derived and new synthetic injectable materials for soft-tissue augmentation: current status and role in cosmetic surgery. Plast Reconstr Surg. 2000;105:2515–25.

    Article  CAS  PubMed  Google Scholar 

  8. Pinsolle V, Chichery A, Grolleau JL, Chavoin JP. Autologous fat injection in Poland’s syndrome. J Plast Reconstr Aesthet Surg. 2008;61:784–91.

    Article  CAS  PubMed  Google Scholar 

  9. Lindberg RD, Martin RG, Romsdahl MM, Barkley HT Jr. Conservative surgery and postoperative radiotherapy in 300 adults with soft-tissue sarcomas. Cancer. 1981;47:2391–7.

    Article  CAS  PubMed  Google Scholar 

  10. Paul M, Mulholland RS. A new approach for adipose tissue treatment and body contouring using radiofrequency-assisted liposuction. Aesthetic Plast Surg. 2009;33:687–94.

    Article  PubMed  PubMed Central  Google Scholar 

  11. de Bree R, Rinaldo A, Genden EM, Suárez C, Rodrigo JP, Fagan JJ, et al. Modern reconstruction techniques for oral and pharyngeal defects after tumor resection. Eur Arch Otorhinolaryngol. 2008;265:1–9.

    Article  PubMed  Google Scholar 

  12. Tintle SM, Gwinn DE, Andersen RC, Kumar AR. Soft tissue coverage of combat wounds. J Surg Orthop Adv. 2010;19:29–34.

    PubMed  Google Scholar 

  13. Shandalov Y, Egozi D, Koffler J, Dado-Rosenfeld D, Ben-Shimol D, Freiman A, et al. An engineered muscle flap for reconstruction of large soft tissue defects. Proc Natl Acad Sci U S A. 2014;111:6010–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Matsumoto D, Sato K, Gonda K, Takaki Y, Shigeura T, Sato T, et al. Cell-assisted lipotransfer: supportive use of human adipose-derived cells for soft tissue augmentation with lipoinjection. Tissue Eng. 2006;12:3375–82.

    Article  CAS  PubMed  Google Scholar 

  15. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7:211–28.

    Article  CAS  PubMed  Google Scholar 

  16. Rosen ED, Spiegelman BM. Molecular regulation of adipogenesis. Annu Rev Cell Dev Biol. 2000;16:145–71.

    Article  CAS  PubMed  Google Scholar 

  17. Katz AJ, Llull R, Hedrick MH, Futrell JW. Emerging approaches to the tissue engineering of fat. Clin Plast Surg. 1999;26:587–603.

    CAS  PubMed  Google Scholar 

  18. Serrero G, Lepak N. Endocrine and paracrine negative regulators of adipose differentiation. Int J Obes Relat Metab Disord. 1996;20:S58–64.

    CAS  PubMed  Google Scholar 

  19. Gesta S, Tseng YH, Kahn CR. Developmental origin of fat: tracking obesity to its source. Cell. 2007;131:242–56.

    Article  CAS  PubMed  Google Scholar 

  20. Eto H, Suga H, Matsumoto D, Inoue K, Aoi N, Kato H, et al. Characterization of structure and cellular components of aspirated and excised adipose tissue. Plast Reconstr Surg. 2009;124:1087–97.

    Article  CAS  PubMed  Google Scholar 

  21. Fraser JK, Wulur I, Alfonso Z, Hedrick MH. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol. 2006;24:150–4.

    Article  CAS  PubMed  Google Scholar 

  22. Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation. 2004;109:1292–8.

    Article  PubMed  Google Scholar 

  23. Casadei A, Epis R, Ferroni L, Tocco I, Gardin C, Bressan E, et al. Adipose tissue regeneration: a state of the art. J Biomed Biotechnol. 2012;2012:462543.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Choi JH, Gimble JM, Lee K, Marra KG, Rubin JP, Yoo JJ, et al. Adipose tissue engineering for soft tissue regeneration. Tissue Eng Part B Rev. 2010;16:413–26.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Christy RJ, Yang VW, Ntambi JM, Geiman DE, Landschulz WH, Friedman AD, et al. Differentiation-induced gene expression in 3T3-L1 preadipocytes: CCAAT/enhancer binding protein interacts with and activates the promoters of two adipocyte-specific genes. Genes Dev. 1989;3:1323–35.

    Article  CAS  PubMed  Google Scholar 

  26. Juge-Aubry CE, Gorla-Bajszczak A, Pernin A, Lemberger T, Wahli W, Burger AG, et al. Peroxisome proliferator-activated receptor mediates cross-talk with thyroid hormone receptor by competition for retinoid X receptor possible role of a leucine zipper-like heptad repeat. J Biol Chem. 1995;270:18117–22.

    Article  CAS  PubMed  Google Scholar 

  27. Prestwich TC, Macdougald OA. Wnt/β-catenin signaling in adipogenesis and metabolism. Curr Opin Cell Biol. 2007;19:612–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Barker N. The canonical Wnt/β-catenin signalling pathway. In: Vincan E. editor. Wnt signaling. Methods in molecular biology. Humana Press; 2008. p. 5–15.

  29. Fontaine C, Cousin W, Plaisant M, Dani C, Peraldi P. Hedgehog signaling alters adipocyte maturation of human mesenchymal stem cells. Stem Cells. 2008;26:1037–46.

    Article  CAS  PubMed  Google Scholar 

  30. Billings E Jr, May JW Jr. Historical review and present status of free fat graft autotransplantation. Plast Reconstr Surg. 1989;83:368–81.

    Article  PubMed  Google Scholar 

  31. Locke MB, de Chalain TM. Current practice in autologous fat transplantation: suggested clinical guidelines based on a review of recent literature. Ann Plast Surg. 2008;60:98–102.

    Article  CAS  PubMed  Google Scholar 

  32. Sajjadian A, Tandav Magge K. Treating facial soft tissue deficiency: fat grafting and adipose-derived stem cell tissue engineering. Aesthet Surg J. 2007;27:100–4.

    Article  CAS  PubMed  Google Scholar 

  33. Padoin AV, Braga-Silva J, Martins P, Rezende K, Rezende AR, Grechi B, et al. Sources of processed lipoaspirate cells: influence of donor site on cell concentration. Plast Reconstr Surg. 2008;122:614–8.

    Article  CAS  PubMed  Google Scholar 

  34. Pu LL. Towards more rationalized approach to autologous fat grafting. J Plast Reconstr Aesthet Surg. 2012;65:413–9.

    Article  PubMed  Google Scholar 

  35. Moore JH, Kolaczynski JW, Morales LM, Considine RV, Pietrzkowski Z, Noto PF, et al. Viability of fat obtained by syringe suction lipectomy: effects of local anesthesia with lidocaine. Aesthetic Plast Surg. 1995;19:335–9.

    Article  PubMed  Google Scholar 

  36. Keck M, Zeyda M, Gollinger K, Burjak S, Kamolz LP, Frey M, et al. Local anesthetics have a major impact on viability of preadipocytes and their differentiation into adipocytes. Plast Reconstr Surg. 2010;126:1500–5.

    Article  CAS  PubMed  Google Scholar 

  37. Shoshani O, Berger J, Fodor L, Ramon Y, Shupak A, Kehat I, et al. The effect of lidocaine and adrenaline on the viability of injected adipose tissue-an experimental study in nude mice. J Drugs Dermatol. 2005;4:311–6.

    PubMed  Google Scholar 

  38. Erdim M, Tezel E, Numanoglu A, Sav A. The effects of the size of liposuction cannula on adipocyte survival and the optimum temperature for fat graft storage: an experimental study. J Plast Reconstr Aesthet Surg. 2009;62:1210–4.

    Article  PubMed  Google Scholar 

  39. Condé-Green A, de Amorim NF, Pitanguy I. Influence of decantation, washing and centrifugation on adipocyte and mesenchymal stem cell content of aspirated adipose tissue: a comparative study. J Plast Reconstr Aesthet Surg. 2010;63:1375–81.

    Article  PubMed  Google Scholar 

  40. Ramon Y, Shoshani O, Peled IJ, Gilhar A, Carmi N, Fodor L, et al. Enhancing the take of injected adipose tissue by a simple method for concentrating fat cells. Plast Reconstr Surg. 2005;115:197–201.

    CAS  PubMed  Google Scholar 

  41. Minn KW, Min KH, Chang H, Kim S, Heo EJ. Effects of fat preparation methods on the viabilities of autologous fat grafts. Aesthetic Plast Surg. 2010;34:626–31.

    Article  PubMed  Google Scholar 

  42. Boschert MT, Beckert BW, Puckett CL, Concannon MJ. Analysis of lipocyte viability after liposuction. Plast Reconstr Surg. 2002;109:761–5.

    Article  PubMed  Google Scholar 

  43. Xie Y, Zheng D, Li Q, Chen Y, Lei H, Pu LL. The effect of centrifugation on viability of fat grafts: an evaluation with the glucose transport test. J Plast Reconstr Aesthet Surg. 2010;63:482–7.

    Article  PubMed  Google Scholar 

  44. Kim IH, Yang JD, Lee DG, Chung HY, Cho BC. Evaluation of centrifugation technique and effect of epinephrine on fat cell viability in autologous fat injection. Aesthet Surg J. 2009;29:35–9.

    Article  PubMed  Google Scholar 

  45. Kurita M, Matsumoto D, Shigeura T, Sato K, Gonda K, Harii K, et al. Influences of centrifugation on cells and tissues in liposuction aspirates: optimized centrifugation for lipotransfer and cell isolation. Plast Reconstr Surg. 2008;121:1033–41.

    Article  CAS  PubMed  Google Scholar 

  46. Coleman SR. Avoidance of arterial occlusion from injection of soft tissue fillers. Aesthet Surg J. 2002;22:555–7.

    Article  PubMed  Google Scholar 

  47. Pallua N, Pulsfort AK, Suschek C, Wolter TP. Content of the growth factors bFGF, IGF-1, VEGF, and PDGF-BB in freshly harvested lipoaspirate after centrifugation and incubation. Plast Reconstr Surg. 2009;123:826–33.

    Article  CAS  PubMed  Google Scholar 

  48. Canizares O, Scharff CL, Nguyen PD. Centrifugation creates unique fractions of lipoaspirate: implications for fat graft survival. Plast Reconstr Surg. 2009;126:S75.

    Google Scholar 

  49. Sherman JE, Fanzio PM, White H, Leifer D. Blindness and necrotizing fasciitis after liposuction and fat transfer. Plast Reconstr Surg. 2010;126:1358–63.

    Article  CAS  PubMed  Google Scholar 

  50. Anwar UM, Ahmad M, Sharpe DT. Necrotizing fasciitis after liposculpture. Aesthet Surg J. 2004;28:426–7.

    Article  Google Scholar 

  51. Gibbons MD, Lim RB, Carter PL. Necrotizing fasciitis after tumescent liposuction. Am Surg. 1998;64:458–60.

    CAS  PubMed  Google Scholar 

  52. Heitmann C, Czermak C, Germann G. Rapidly fatal necrotizing fasciitis after aesthetic liposuction. Aesthetic Plast Surg. 2000;24:344–7.

    Article  CAS  PubMed  Google Scholar 

  53. Karacaoglu E, Kizilkaya E, Cermik H, Zienowicz R. The role of recipient sites in fat-graft survival: experimental study. Ann Plast Surg. 2005;55:63–8.

    Article  CAS  PubMed  Google Scholar 

  54. Nishimura T, Hashimoto H, Nakanishi I, Furukawa M. Microvascular angiogenesis and apoptosis in the survival of free fat grafts. Laryngoscope. 2000;110:1333–8.

    Article  CAS  PubMed  Google Scholar 

  55. Bourne DA, James IB, Wang SS, Marra KG, Rubin JP. The architecture of fat grafting: what lies beneath the surface? Plast Reconstr Surg. 2016;137:1072–9.

    Article  CAS  PubMed  Google Scholar 

  56. Mahoney CM, Imbarlina C, Yates CC, Marra KG. Current therapeutic strategies for adipose tissue defects/repair using engineered biomaterials and biomolecule formulations. Front Pharmacol. 2018;9:507.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Strong AL, Cederna PS, Rubin JP, Coleman SR, Levi B. The current state of fat grafting: a review of harvesting, processing, and injection techniques. Plast Reconstr Surg. 2015;136:897–912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schäffler A, Büchler C. Concise review: adipose tissue-derived stromal cells-basic and clinical implications for novel cell-based therapies. Stem Cells. 2007;25:818–27.

    Article  PubMed  CAS  Google Scholar 

  59. Kim EH, Heo CY. Current applications of adipose-derived stem cells and their future perspectives. World J Stem Cells. 2014;6:65–8.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Jeon O, Rhie JW, Kwon IK, Kim JH, Kim BS, Lee SH. In vivo bone formation following transplantation of human adipose–derived stromal cells that are not differentiated osteogenically. Tissue Eng Part A. 2008;14:1285–94.

    Article  CAS  PubMed  Google Scholar 

  61. Yoon HH, Bhang SH, Shin JY, Shin J, Kim BS. Enhanced cartilage formation via three-dimensional cell engineering of human adipose-derived stem cells. Tissue Eng Part A. 2012;18:1949–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liau LL, Makpol S, Azurah AGN, Chua KH. Human adipose-derived mesenchymal stem cells promote recovery of injured HepG2 cell line and show sign of early hepatogenic differentiation. Cytotechnology. 2018;70:1221–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Timper K, Seboek D, Eberhardt M, Linscheid P, Christ-Crain M, Keller U, et al. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem Biophys Res Commun. 2006;341:1135–40.

    Article  CAS  PubMed  Google Scholar 

  64. Kang SK, Lee DH, Bae YC, Kim HK, Baik SY, Jung JS. Improvement of neurological deficits by intracerebral transplantation of human adipose tissue-derived stromal cells after cerebral ischemia in rats. Exp Neurol. 2003;183:355–66.

    Article  CAS  PubMed  Google Scholar 

  65. Seo MJ, Suh SY, Bae YC, Jung JS. Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem Biophys Res Commun. 2005;328:258–64.

    Article  CAS  PubMed  Google Scholar 

  66. Zhu Y, Liu T, Song K, Fan X, Ma X, Cui Z. Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem Funct. 2008;26:664–75.

    Article  CAS  PubMed  Google Scholar 

  67. Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res. 2007;100:1249–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rodbell M. Metabolism of isolated fat cells II. The similar effects of phospholipase C (Clostridium perfringens α toxin) and of insulin on glucose and amino acid metabolism. J Biol Chem. 1966;241:130–9.

    CAS  PubMed  Google Scholar 

  69. Hauner H, Entenmann G, Wabitsch M, Gaillard D, Ailhaud G, Negrel R, et al. Promoting effect of glucocorticoids on the differentiation of human adipocyte precursor cells cultured in a chemically defined medium. J Clin Invest. 1989;84:1663–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13:4279–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lee RH, Kim B, Choi I, Kim H, Choi HS, Suh K, et al. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem. 2004;14:311–24.

    Article  CAS  PubMed  Google Scholar 

  72. Van Harmelen V, Röhrig K, Hauner H. Comparison of proliferation and differentiation capacity of human adipocyte precursor cells from the omental and subcutaneous adipose tissue depot of obese subjects. Metabolism. 2004;53:632–7.

    Article  PubMed  CAS  Google Scholar 

  73. Liu L, Liu H, Chen M, Ren S, Cheng P, Zhang H. miR-301b~miR-130b-PPARγ axis underlies the adipogenic capacity of mesenchymal stem cells with different tissue origins. Sci Rep. 2017;7:1160.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Moustaid N, Lasnier F, Hainque B, Quignard-Boulange A, Pairault J. Analysis of gene expression during adipogenesis in 3T3-F442A preadipocytes: insulin and dexamethasone control. J Cell Biochem. 1990;42:243–54.

    Article  CAS  PubMed  Google Scholar 

  75. Smas CM, Chen L, Zhao L, Latasa MJ, Sul HS. Transcriptional repression of pref-1 by glucocorticoids promotes 3T3-L1 adipocyte differentiation. J Biol Chem. 1999;274:12632–41.

    Article  CAS  PubMed  Google Scholar 

  76. Wu Z, Bucher NL, Farmer SR. Induction of peroxisome proliferator-activated receptor gamma during the conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBPbeta, C/EBPdelta, and glucocorticoids. Mol Cell Biol. 1996;16:4128–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol Rev. 1998;78:783–809.

    Article  CAS  PubMed  Google Scholar 

  78. Mauney JR, Volloch V, Kaplan DL. Matrix-mediated retention of adipogenic differentiation potential by human adult bone marrow-derived mesenchymal stem cells during ex vivo expansion. Biomaterials. 2005;26:6167–75.

    Article  CAS  PubMed  Google Scholar 

  79. Kim WS, Park BS, Sung JH, Yang JM, Park SB, Kwak SJ, et al. Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J Dermatol Sci. 2007;48:15–24.

    Article  CAS  PubMed  Google Scholar 

  80. Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy. 2013;15:641–8.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Varma MJ, Breuls RG, Schouten TE, Jurgens WJ, Bontkes HJ, Schuurhuis GJ, et al. Phenotypical and functional characterization of freshly isolated adipose tissue-derived stem cells. Stem Cells Dev. 2007;16:91–104.

    Article  PubMed  Google Scholar 

  82. Calderon D, Planat-Benard V, Bellamy V, Vanneaux V, Kuhn C, Peyrard S, et al. Immune response to human embryonic stem cell-derived cardiac progenitors and adipose-derived stromal cells. J Cell Mol Med. 2012;16:1544–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Frese L, Dijkman PE, Hoerstrup SP. Adipose tissue-derived stem cells in regenerative medicine. Transfus Med Hemother. 2016;43:268–74.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Villena JA, Cousin B, Pénicaud L, Casteilla L. Adipose tissues display differential phagocytic and microbicidal activities depending on their localization. Int J Obes Relat Metab Disord. 2001;25:1275–80.

    Article  CAS  PubMed  Google Scholar 

  85. Choi JS, Choi YC, Kim JD, Kim EJ, Lee HY, Kwon IC, et al. Adipose tissue: a valuable resource of biomaterials for soft tissue engineering. Macromol Res. 2014;22:932–47.

    Article  CAS  Google Scholar 

  86. Cen L, Liu W, Cui L, Zhang W, Cao Y. Collagen tissue engineering: development of novel biomaterials and applications. Pediatr Res. 2008;63:492–6.

    Article  CAS  PubMed  Google Scholar 

  87. Muiznieks LD, Keeley FW. Molecular assembly and mechanical properties of the extracellular matrix: a fibrous protein perspective. Biochim Biophys Acta. 2013;1832:866–75.

    Article  CAS  PubMed  Google Scholar 

  88. Bayrak A, Prüger P, Stock UA, Seifert M. Absence of immune responses with xenogeneic collagen and elastin. Tissue Eng Part A. 2013;19:1592–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Willard JJ, Drexler JW, Das A, Roy S, Shilo S, Shoseyov O, et al. Plant-derived human collagen scaffolds for skin tissue engineering. Tissue Eng Part A. 2013;19:1507–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bernfield M, Götte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, et al. Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem. 1999;68:729–77.

    Article  CAS  PubMed  Google Scholar 

  91. Yurchenco PD, Amenta PS, Patton BL. Basement membrane assembly, stability and activities observed through a developmental lens. Matrix Biol. 2004;22:521–38.

    Article  CAS  PubMed  Google Scholar 

  92. Migliorini E, Thakar D, Sadir R, Pleiner T, Baleux F, Lortat-Jacob H, et al. Well-defined biomimetic surfaces to characterize glycosaminoglycan-mediated interactions on the molecular, supramolecular and cellular levels. Biomaterials. 2014;35:8903–15.

    Article  CAS  PubMed  Google Scholar 

  93. Calonder C, Matthew HW, Van Tassel PR. Adsorbed layers of oriented fibronectin: a strategy to control cell–surface interactions. J Biomed Mater Res A. 2005;75:316–23.

    Article  PubMed  CAS  Google Scholar 

  94. Liang Y, Kiick KL. Heparin-functionalized polymeric biomaterials in tissue engineering and drug delivery applications. Acta Biomater. 2014;10:1588–600.

    Article  CAS  PubMed  Google Scholar 

  95. Rosenbloom J, Abrams WR, Mecham R. Extracellular matrix 4: the elastic fiber. FASEB J. 1993;7:1208–18.

    Article  CAS  PubMed  Google Scholar 

  96. Brooke BS, Bayes-Genis A, Li DY. New insights into elastin and vascular disease. Trends Cardiovasc Med. 2003;13:176–81.

    Article  CAS  PubMed  Google Scholar 

  97. Waterhouse A, Wise SG, Ng MK, Weiss AS. Elastin as a nonthrombogenic biomaterial. Tissue Eng Part B Rev. 2011;17:93–9.

    Article  CAS  PubMed  Google Scholar 

  98. Simionescu DT, Lu Q, Song Y, Lee JS, Rosenbalm TN, Kelley C, et al. Biocompatibility and remodeling potential of pure arterial elastin and collagen scaffolds. Biomaterials. 2006;27:702–13.

    Article  CAS  PubMed  Google Scholar 

  99. Trayhurn P, Wood IS. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr. 2004;92:347–55.

    Article  CAS  PubMed  Google Scholar 

  100. Wang B, Jenkins JR, Trayhurn P. Expression and secretion of inflammation-related adipokines by human adipocytes differentiated in culture: integrated response to TNF-α. Am J Physiol Endocrinol Metab. 2005;288:E731–40.

    Article  CAS  PubMed  Google Scholar 

  101. Trayhurn P, Beattie JH. Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc Nutr Soc. 2001;60:329–39.

    Article  CAS  PubMed  Google Scholar 

  102. Yudkin JS. Adipose tissue, insulin action and vascular disease: inflammatory signals. Int J Obes Relat Metab Disord. 2003;27:S25–8.

    Article  CAS  PubMed  Google Scholar 

  103. Fonseca-Alaniz MH, Takada J, Alonso-Vale MI, Lima FB. Adipose tissue as an endocrine organ: from theory to practice. J Pediatr (Rio J). 2007;83:S192–203.

    Article  Google Scholar 

  104. Cao Y. Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic diseases. Nat Rev Drug Discov. 2010;9:107–15.

    Article  CAS  PubMed  Google Scholar 

  105. Peinado JR, Pardo M, de la Rosa O, Malagón MM. Proteomic characterization of adipose tissue constituents, a necessary step for understanding adipose tissue complexity. Proteomics. 2012;12:607–20.

    Article  CAS  PubMed  Google Scholar 

  106. Trujillo ME, Scherer PE. Adipose tissue-derived factors: impact on health and disease. Endocr Rev. 2006;27:762–78.

    Article  CAS  PubMed  Google Scholar 

  107. Cheung HK, Han TT, Marecak DM, Watkins JF, Amsden BG, Flynn LE. Composite hydrogel scaffolds incorporating decellularized adipose tissue for soft tissue engineering with adipose-derived stem cells. Biomaterials. 2014;35:1914–23.

    Article  CAS  PubMed  Google Scholar 

  108. Badylak SF. The extracellular matrix as a scaffold for tissue reconstruction. Semin Cell Dev Biol. 2002;13:377–83.

    Article  CAS  PubMed  Google Scholar 

  109. Kim BS, Choi JS, Kim JD, Choi YC, Cho YW. Recellularization of decellularized human adipose-tissue-derived extracellular matrix sheets with other human cell types. Cell Tissue Res. 2012;348:559–67.

    Article  CAS  PubMed  Google Scholar 

  110. Yu C, Bianco J, Brown C, Fuetterer L, Watkins JF, Samani A, et al. Porous decellularized adipose tissue foams for soft tissue regeneration. Biomaterials. 2013;34:3290–302.

    Article  CAS  PubMed  Google Scholar 

  111. Francis MP, Sachs PC, Madurantakam PA, Sell SA, Elmore LW, Bowlin GL, et al. Electrospinning adipose tissue-derived extracellular matrix for adipose stem cell culture. J Biomed Mater Res A. 2012;100:1716–24.

    Article  PubMed  CAS  Google Scholar 

  112. Brown BN, Freund JM, Han L, Rubin JP, Reing JE, Jeffries EM, et al. Comparison of three methods for the derivation of a biologic scaffold composed of adipose tissue extracellular matrix. Tissue Eng Part C Methods. 2011;17:411–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Keane TJ, Swinehart IT, Badylak SF. Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods. 2015;84:25–34.

    Article  CAS  PubMed  Google Scholar 

  114. Choi JS, Kim BS, Kim JD, Choi YC, Lee EK, Park K, et al. In vitro expansion of human adipose-derived stem cells in a spinner culture system using human extracellular matrix powders. Cell Tissue Res. 2011;345:415–23.

    Article  PubMed  Google Scholar 

  115. Choi JS, Yang HJ, Kim BS, Kim JD, Lee SH, Lee EK, et al. Fabrication of porous extracellular matrix scaffolds from human adipose tissue. Tissue Eng Part C Methods. 2010;16:387–96.

    Article  CAS  PubMed  Google Scholar 

  116. Choi JS, Kim BS, Kim JD, Choi YC, Lee HY, Cho YW. In vitro cartilage tissue engineering using adipose-derived extracellular matrix scaffolds seeded with adipose-derived stem cells. Tissue Eng Part A. 2012;18:80–92.

    Article  CAS  PubMed  Google Scholar 

  117. Kim EJ, Choi JS, Kim JS, Choi YC, Cho YW. Injectable and thermosensitive soluble extracellular matrix and methylcellulose hydrogels for stem cell delivery in skin wounds. Biomacromolecules. 2016;17:4–11.

    Article  CAS  PubMed  Google Scholar 

  118. Poon CJ, Pereira E Cotta MV, Sinha S, Palmer JA, Woods AA, Morrison WA, et al. Preparation of an adipogenic hydrogel from subcutaneous adipose tissue. Acta Biomater. 2013;9:5609–20.

    Article  CAS  PubMed  Google Scholar 

  119. Uriel S, Labay E, Francis-Sedlak M, Moya ML, Weichselbaum RR, Ervin N, et al. Extraction and assembly of tissue-derived gels for cell culture and tissue engineering. Tissue Eng Part C Methods. 2009;15:309–21.

    Article  CAS  PubMed  Google Scholar 

  120. Young DA, Ibrahim DO, Hu D, Christman KL. Injectable hydrogel scaffold from decellularized human lipoaspirate. Acta Biomater. 2011;7:1040–9.

    Article  CAS  PubMed  Google Scholar 

  121. Flynn LE. The use of decellularized adipose tissue to provide an inductive microenvironment for the adipogenic differentiation of human adipose-derived stem cells. Biomaterials. 2010;31:4715–24.

    Article  CAS  PubMed  Google Scholar 

  122. Huleihel L, Hussey GS, Naranjo JD, Zhang L, Dziki JL, Turner NJ, et al. Matrix-bound nanovesicles within ECM bioscaffolds. Sci Adv. 2016;2:e1600502.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Turner AE, Yu C, Bianco J, Watkins JF, Flynn LE. The performance of decellularized adipose tissue microcarriers as an inductive substrate for human adipose-derived stem cells. Biomaterials. 2012;33:4490–9.

    Article  CAS  PubMed  Google Scholar 

  124. Adam Young D, Bajaj V, Christman KL. Decellularized adipose matrix hydrogels stimulate in vivo neovascularization and adipose formation. J Biomed Mater Res A. 2014;102:1641–51.

    Article  CAS  PubMed  Google Scholar 

  125. Yu C, Kornmuller A, Brown C, Hoare T, Flynn LE. Decellularized adipose tissue microcarriers as a dynamic culture platform for human adipose-derived stem/stromal cell expansion. Biomaterials. 2017;120:66–80.

    Article  CAS  PubMed  Google Scholar 

  126. Steven FS. Nishihara technique for the solubilization of collagen: application to the preparation of soluble collagens from normal and rheumatoid connective tissue. Ann Rheum Dis. 1964;23:300–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhang S, Lu Q, Cao T, Toh WS. Adipose tissue and extracellular matrix development by injectable decellularized adipose matrix loaded with basic fibroblast growth factor. Plast Reconstr Surg. 2016;137:1171–80.

    Article  CAS  PubMed  Google Scholar 

  128. Thomas-Porch C, Li J, Zanata F, Martin EC, Pashos N, Genemaras K, et al. Comparative proteomic analyses of human adipose extracellular matrices decellularized using iternative procedures. J Biomed Mater Res A. 2018;106:2481–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sano H, Orbay H, Terashi H, Hyakusoku H, Ogawa R. Acellular adipose matrix as a natural scaffold for tissue engineering. J Plast Reconstr Aesthet Surg. 2014;67:99–106.

    Article  PubMed  Google Scholar 

  130. Wang JQ, Fan J, Gao JH, Zhang C, Bai SL. Comparison of in vivo adipogenic capabilities of two different extracellular matrix microparticle scaffolds. Plast Reconstr Surg. 2013;131:174e–87.

    Article  CAS  PubMed  Google Scholar 

  131. Pati F, Jang J, Ha DH, Kim SW, Rhie JW, Shim JH, et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014;5:3935.

    Article  CAS  PubMed  Google Scholar 

  132. Kochhar A, Wu I, Mohan R, Condé-Green A, Hillel AT, Byrne PJ, et al. A comparison of the rheologic properties of an adipose-derived extracellular matrix biomaterial, lipoaspirate, calcium hydroxylapatite, and cross-linked hyaluronic acid. JAMA Facial Plast Surg. 2014;16:405–9.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Lee K, Kuo CK. Extracellular matrix remodeling and mechanical stresses as modulators of adipose tissue metabolism and inflammation. In: Benayahu D, Gefen A, editors. The mechanobiology of obesity and related diseases. Studies in mechanobiology, tissue engineering and biomaterials. Cham: Springer; 2013. p. 105–22.

    Google Scholar 

  134. Song M, Liu Y, Hui L. Preparation and characterization of acellular adipose tissue matrix using a combination of physical and chemical treatments. Mol Med Rep. 2018;17:138–46.

    CAS  PubMed  Google Scholar 

  135. Khater R, Atanassova P. Autologous fat grafting—factors of influence on the therapeutic results. In: Agullo F editor. Current concepts in plastic surgery. InTech; 2012. p. 183–210.

  136. Marcus BC. The use of autologous fat for facial rejuvenation. Obstet Gynecol Clin North Am. 2010;37:521–31.

    Article  PubMed  Google Scholar 

  137. Piccinno MS, Veronesi E, Loschi P, Pignatti M, Murgia A, Grisendi G, et al. Adipose stromal/stem cells assist fat transplantation reducing necrosis and increasing graft performance. Apoptosis. 2013;18:1274–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Liao HT, Marra KG, Rubin JP. Application of platelet-rich plasma and platelet-rich fibrin in fat grafting: basic science and literature review. Tissue Eng Part B Rev. 2014;20:267–76.

    Article  CAS  PubMed  Google Scholar 

  139. Gentile P, De Angelis B, Pasin M, Cervelli G, Curcio CB, Floris M, et al. Adipose-derived stromal vascular fraction cells and platelet-rich plasma: basic and clinical evaluation for cell-based therapies in patients with scars on the face. J Craniofac Surg. 2014;25:267–72.

    Article  PubMed  Google Scholar 

  140. Tanikawa DY, Aguena M, Bueno DF, Passos-Bueno MR, Alonso N. Fat grafts supplemented with adipose-derived stromal cells in the rehabilitation of patients with craniofacial microsomia. Plast Reconstr Surg. 2013;132:141–52.

    Article  CAS  PubMed  Google Scholar 

  141. Van Nieuwenhove I, Tytgat L, Ryx M, Blondeel P, Stillaert F, Thienpont H, et al. Soft tissue fillers for adipose tissue regeneration: from hydrogel development toward clinical applications. Acta Biomater. 2017;63:37–49.

    Article  PubMed  CAS  Google Scholar 

  142. Sivashanmugam A, Kumar RA, Priya MV, Nair SV, Jayakumar R. An overview of injectable polymeric hydrogels for tissue engineering. Eur Polym J. 2015;72:543–65.

    Article  CAS  Google Scholar 

  143. Chun SY, Lim JO, Lee EH, Han MH, Ha YS, Lee JN, et al. Preparation and characterization of human adipose tissue-derived extracellular matrix, growth factors, and stem cells: a concise review. Tissue Eng Regen Med. 2019;16:385–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Morissette Martin P, Shridhar A, Yu C, Brown C, Flynn LE. Decellularized adipose tissue scaffolds for soft tissue regeneration and adipose-derived stem/stromal cell delivery. In: Bunnell BA, Gimble JM, editors. Adipose-derived stem cells: Methods in Molecular Biology. New York: Humana Press; 2018. p. 53–71.

    Chapter  Google Scholar 

  145. Huang YB, Lin MW, Liu MY, Chen CL. Composite of decellular adipose tissue with chitosan-based scaffold for tissue engineering with adipose-derived stem cells. J Biomater Tissue Eng. 2015;5:56–63.

    Article  CAS  Google Scholar 

  146. Niemelä S, Miettinen S, Sarkanen JR, Ashammakhi N. Adipose tissue and adipocyte differentiation: molecular and cellular aspects and tissue engineering applications. In: Ashammakhi N, Reis R, Chiellini F. editor. Topics in tissue engineering. 2008. p. 1–26.

  147. Webber MJ, Khan OF, Sydlik SA, Tang BC, Langer R. A perspective on the clinical translation of scaffolds for tissue engineering. Ann Biomed Eng. 2015;43:641–56.

    Article  PubMed  Google Scholar 

  148. Brown BN, Badylak SF. Extracellular matrix as an inductive scaffold for functional tissue reconstruction. Transl Res. 2014;163:268–85.

    Article  CAS  PubMed  Google Scholar 

  149. Cevasco M, Itani KM. Ventral hernia repair with synthetic, composite, and biologic mesh: characteristics, indications, and infection profile. Surg Infect (Larchmt). 2012;13:209–15.

    Article  Google Scholar 

  150. Romanelli M, Dini V, Bertone MS. Randomized comparison of OASIS wound matrix versus moist wound dressing in the treatment of difficult-to-heal wounds of mixed arterial/venous etiology. Adv Skin Wound Care. 2010;23:34–8.

    Article  PubMed  Google Scholar 

  151. Naranjo JD, Scarritt ME, Huleihel L, Ravindra A, Torres CM, Badylak SF. Regenerative medicine: lessons from mother nature. Regen Med. 2016;11:767–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Spear SL, Sinkin JC, Al-Attar A. Porcine acellular dermal matrix (strattice) in primary and revision cosmetic breast surgery. Plast Reconstr Surg. 2013;131:1140–8.

    Article  CAS  PubMed  Google Scholar 

  153. Woo JS, Fishbein MC, Reemtsen B. Histologic examination of decellularized porcine intestinal submucosa extracellular matrix (CorMatrix) in pediatric congenital heart surgery. Cardiovasc Pathol. 2016;25:12–7.

    Article  CAS  PubMed  Google Scholar 

  154. Swinehart IT, Badylak SF. Extracellular matrix bioscaffolds in tissue remodeling and morphogenesis. Dev Dyn. 2016;245:351–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Flynn L, Woodhouse KA. Adipose tissue engineering with cells in engineered matrices. Organogenesis. 2008;4:228–35.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Mojallal A, Lequeux C, Shipkov C, Rifkin L, Rohrich R, Duclos A, et al. Stem cells, mature adipocytes, and extracellular scaffold: what does each contribute to fat graft survival? Aesthet Plast Surg. 2011;35:1061–72.

    Article  Google Scholar 

  157. Turner AE, Flynn LE. Design and characterization of tissue-specific extracellular matrix-derived microcarriers. Tissue Eng Part C Methods. 2012;18:186–97.

    Article  CAS  PubMed  Google Scholar 

  158. Kornmuller A, Brown CF, Yu C, Flynn LE. Fabrication of extracellular matrix-derived foams and microcarriers as tissue-specific cell culture and delivery platforms. J Vis Exp. 2017;122:e55436.

    Google Scholar 

  159. Shridhar A, Gillies E, Amsden BG, Flynn LE. Composite bioscaffolds incorporating decellularized ECM as a cell-instructive component within hydrogels as in vitro models and cell delivery systems. In: Turksen K. editor. Decellularized scaffolds and organogenesis. Methods in molecular biology. Humana Press, New York. 2018. p. 183–208.

    Google Scholar 

  160. Choi JS, Yang HJ, Kim BS, Kim JD, Kim JY, Yoo B, et al. Human extracellular matrix (ECM) powders for injectable cell delivery and adipose tissue engineering. J Control Release. 2009;139:2–7.

    Article  CAS  PubMed  Google Scholar 

  161. Kayabolen A, Keskin D, Aykan A, Karslıoglu Y, Zor F, Tezcaner A. Native extracellular matrix/fibroin hydrogels for adipose tissue engineering with enhanced vascularization. Biomed Mater. 2017;12:035007.

    Article  PubMed  Google Scholar 

  162. Woo CH, Choi YC, Choi JS, Lee HY, Cho YW. A bilayer composite composed of TiO2-incorporated electrospun chitosan membrane and human extracellular matrix sheet as a wound dressing. J Biomater Sci Polym Ed. 2015;26:841–54.

    Article  CAS  PubMed  Google Scholar 

  163. Lee SS, Kim HD, Kim SH, Kim I, Kim IG, Choi JS, et al. Self-healing and adhesive artificial tissue implant for voice recovery. ACS Appl Bio Mater. 2018;1:1134–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Nanomission, Department of Science and Technology (DST), Government of India for funding under the “Thematic Projects on Frontiers of NanoScience and Technology (TPF-Nano)” program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ullas Mony or Jayakumar Rangasamy.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest.

Ethical statement

There were no animal experiments carried out for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharath, S.S., Ramu, J., Nair, S.V. et al. Human Adipose Tissue Derivatives as a Potent Native Biomaterial for Tissue Regenerative Therapies. Tissue Eng Regen Med 17, 123–140 (2020). https://doi.org/10.1007/s13770-019-00230-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-019-00230-x

Keywords

Navigation