Skip to main content

Decellularized Adipose Tissue Scaffolds for Soft Tissue Regeneration and Adipose-Derived Stem/Stromal Cell Delivery

  • Protocol
Adipose-Derived Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1773))

Abstract

Surgically discarded adipose tissue is not only an abundant source of multipotent adipose-derived stem/stromal cells (ASCs) but can also be decellularized to obtain a biomimetic microenvironment for tissue engineering applications. The decellularization methods involve processing excised fat through a series of chemical, mechanical, and enzymatic treatment stages designed to extract cells, cellular components, and lipid from the tissues. This process yields a complex 3D bioscaffold enriched in collagens that mimics the biochemical and biomechanical properties of the native extracellular matrix (ECM). For ASC culture and delivery, decellularized adipose tissue (DAT) provides a cell-supportive platform that is conducive to adipogenesis. While DAT can be applied in its intact form as an off-the-shelf adipogenic matrix, it can also be used as an ECM source for the fabrication of an array of other scaffold formats including adipose ECM-derived microcarriers and porous foams. In this chapter, we describe the methods developed in our lab to decellularize human adipose tissue and to further process it into a variety of scaffolding materials for a range of applications in soft tissue regeneration, wound healing, and cell culture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kyriakides TR, Bornstein P (2003) Matricellular proteins as modulators of wound healing and the foreign body response. Thromb Haemost 90(6):986–992. https://doi.org/10.1267/THRO03060986

    Article  PubMed  CAS  Google Scholar 

  2. Bellon G, Martiny L, Robinet A (2004) Matrix metalloproteinases and matrikines in angiogenesis. Crit Rev Oncol Hematol 49(3):203–220. https://doi.org/10.1016/j.critrevonc.2003.10.004

    Article  PubMed  Google Scholar 

  3. Maquart FX, Bellon G, Pasco S, Monboisse JC (2005) Matrikines in the regulation of extracellular matrix degradation. Biochimie 87(3–4):353–360. https://doi.org/10.1016/j.biochi.2004.10.006

    Article  PubMed  CAS  Google Scholar 

  4. Walker JT, Kim SS, Michelsons S, Creber K, Elliott CG, Leask A, Hamilton DW (2015) Cell–matrix interactions governing skin repair: matricellular proteins as diverse modulators of cell function. Res Rep Biochem 2015(5):73–88

    Google Scholar 

  5. Vlodavsky I, Miao HQ, Medalion B, Danagher P, Ron D (1996) Involvement of heparan sulfate and related molecules in sequestration and growth promoting activity of fibroblast growth factor. Cancer Metastasis Rev 15(2):177–186

    Article  CAS  PubMed  Google Scholar 

  6. Flynn LE, Prestwich GD, Semple JL, Woodhouse KA (2008) Proliferation and differentiation of adipose-derived stem cells on naturally derived scaffolds. Biomaterials 29(12):1862–1871. https://doi.org/10.1016/j.biomaterials.2007.12.028

    Article  PubMed  CAS  Google Scholar 

  7. Flynn LE (2010) The use of decellularized adipose tissue to provide an inductive microenvironment for the adipogenic differentiation of human adipose-derived stem cells. Biomaterials 31(17):4715–4724. https://doi.org/10.1016/j.biomaterials.2010.02.046

    Article  PubMed  CAS  Google Scholar 

  8. Moutos FT, Estes BT, Guilak F (2010) Multifunctional hybrid three-dimensionally woven scaffolds for cartilage tissue engineering. Macromol Biosci 10(11):1355–1364. https://doi.org/10.1002/mabi.201000124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Frohlich M, Grayson WL, Marolt D, Gimble JM, Kregar-Velikonja N, Vunjak-Novakovic G (2010) Bone grafts engineered from human adipose-derived stem cells in perfusion bioreactor culture. Tissue Eng A 16(1):179–189. https://doi.org/10.1089/ten.TEA.2009.0164

    Article  Google Scholar 

  10. Lee HY, Yang HJ, Rhie JW, Han KT (2014) Adipose tissue regeneration in vivo using micronized acellular allogenic dermis as an injectable scaffold. Aesthetic Plast Surg 38(5):1001–1010. https://doi.org/10.1007/s00266-014-0379-2

    Article  PubMed  Google Scholar 

  11. Flynn LE (2015) Decellularized adipose tissue. U.S. Patent No. 9,034,386 (B2); Issue date May 19, 2015

    Google Scholar 

  12. Nakajima I, Yamaguchi T, Ozutsumi K, Aso H (1998) Adipose tissue extracellular matrix: newly organized by adipocytes during differentiation. Diff Res Biol Div 63(4):193–200. https://doi.org/10.1111/j.1432-0436.1998.00193.x

    Article  CAS  Google Scholar 

  13. Kubo Y, Kaidzu S, Nakajima I, Takenouchi K, Nakamura F (2000) Organization of extracellular matrix components during differentiation of adipocytes in long-term culture. In Vitro Cell Dev Biol Anim 36(1):38–44. https://doi.org/10.1290/1071-2690(2000)036<0038:OOEMCD=2.0.CO;2

    Article  PubMed  CAS  Google Scholar 

  14. Pierleoni C, Verdenelli F, Castellucci M, Cinti S (1998) Fibronectins and basal lamina molecules expression in human subcutaneous white adipose tissue. Eur J Histochem 42(3):183–188

    PubMed  CAS  Google Scholar 

  15. Przybyt E, van Luyn MJ, Harmsen MC (2015) Extracellular matrix components of adipose derived stromal cells promote alignment, organization, and maturation of cardiomyocytes in vitro. J Biomed Mater Res A 103(5):1840–1848. https://doi.org/10.1002/jbm.a.35311

    Article  PubMed  CAS  Google Scholar 

  16. Kong P, Cavalera M, Frangogiannis NG (2014) The role of thrombospondin (TSP)-1 in obesity and diabetes. Adipocytes 3(1):81–84. https://doi.org/10.4161/adip.26990

    Article  CAS  Google Scholar 

  17. Tartare-Deckert S, Chavey C, Monthouel MN, Gautier N, Van Obberghen E (2001) The matricellular protein SPARC/osteonectin as a newly identified factor up-regulated in obesity. J Biol Chem 276(25):22231–22237. https://doi.org/10.1074/jbc.M010634200

    Article  PubMed  CAS  Google Scholar 

  18. Van Hul M, Frederix L, Lijnen HR (2012) Role of thrombospondin-2 in murine adipose tissue angiogenesis and development. Obesity 20(9):1757–1762. https://doi.org/10.1038/oby.2011.260

    Article  PubMed  CAS  Google Scholar 

  19. Fain JN (2006) Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to the nonfat cells. Vitam Horm 74:443–477. https://doi.org/10.1016/S0083-6729(06)74018-3

    Article  PubMed  CAS  Google Scholar 

  20. Omidi E, Fuetterer L, Reza Mousavi S, Armstrong RC, Flynn LE, Samani A (2014) Characterization and assessment of hyperelastic and elastic properties of decellularized human adipose tissues. J Biomech 47(15):3657–3663. https://doi.org/10.1016/j.jbiomech.2014.09.035

    Article  PubMed  Google Scholar 

  21. Turner AE, Yu C, Bianco J, Watkins JF, Flynn LE (2012) The performance of decellularized adipose tissue microcarriers as an inductive substrate for human adipose-derived stem cells. Biomaterials 33(18):4490–4499. https://doi.org/10.1016/j.biomaterials.2012.03.026

    Article  PubMed  CAS  Google Scholar 

  22. Yu C, Bianco J, Brown C, Fuetterer L, Watkins JF, Samani A, Flynn LE (2013) Porous decellularized adipose tissue foams for soft tissue regeneration. Biomaterials 34(13):3290–3302. https://doi.org/10.1016/j.biomaterials.2013.01.056

    Article  PubMed  CAS  Google Scholar 

  23. Cheung HK, Han TT, Marecak DM, Watkins JF, Amsden BG, Flynn LE (2014) Composite hydrogel scaffolds incorporating decellularized adipose tissue for soft tissue engineering with adipose-derived stem cells. Biomaterials 35(6):1914–1923. https://doi.org/10.1016/j.biomaterials.2013.11.067

    Article  PubMed  CAS  Google Scholar 

  24. Wu I, Nahas Z, Kimmerling KA, Rosson GD, Elisseeff JH (2012) An injectable adipose matrix for soft-tissue reconstruction. Plast Reconstr Surg 129(6):1247–1257. https://doi.org/10.1097/PRS.0b013e31824ec3dc

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Adam Young D, Bajaj V, Christman KL (2014) Award winner for outstanding research in the PhD category, 2014 Society for Biomaterials annual meeting and exposition, Denver, Colorado, April 16-19, 2014: Decellularized adipose matrix hydrogels stimulate in vivo neovascularization and adipose formation. J Biomed Mater Res A 102(6):1641–1651. https://doi.org/10.1002/jbm.a.35109

    Article  PubMed  CAS  Google Scholar 

  26. Yu C, Kornmuller A, Brown CFC, Hoare T, and Flynn LE (2017) Decellularized adipose tissue microcarriers as a dynamic culture platform for human adipose-derived stem/stromal cell expansion. Biomaterials 120:66–80. https://doi.org/10.1016/j.biomaterials.2016.12.017

    Article  CAS  PubMed  Google Scholar 

  27. Flynn LE, Yu C (2015) Collagenous foam materials. U.S. Patent No. 9,629,939; Issue date April 25, 2017

    Google Scholar 

  28. Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27(19):3675–3683. https://doi.org/10.1016/j.biomaterials.2006.02.014

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren E. Flynn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Morissette Martin, P., Shridhar, A., Yu, C., Brown, C., Flynn, L.E. (2018). Decellularized Adipose Tissue Scaffolds for Soft Tissue Regeneration and Adipose-Derived Stem/Stromal Cell Delivery. In: Bunnell, B.A., Gimble, J.M. (eds) Adipose-Derived Stem Cells. Methods in Molecular Biology, vol 1773. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7799-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7799-4_6

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7797-0

  • Online ISBN: 978-1-4939-7799-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics