Skip to main content

Advertisement

Log in

Fucoxanthin, a Functional Food Ingredient: Challenges in Bioavailability

  • REVIEW
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Fucoxanthin is an orange-red xanthophyll carotenoid found in brown seaweeds and known for its many bioactive properties. In recent years, the bioactive properties of fucoxanthin have been widely explored, making it a compound of immense interest for various health applications like anti-cancer, anti-tumour, anti-diabetic and anti-obesity properties. However, the poor bioavailability and instability of fucoxanthin in the gastrointestinal tract have major limitations. Encapsulation is a promising approach to overcome these challenges by enclosing fucoxanthin in a protective layer, such as liposomes or nano-particles. Encapsulation can improve the stability of fucoxanthin by protecting it from exposure to heat, pH, illumination, gastric acids and enzymes that can accelerate its degradation.

Recent Findings

Studies have shown that lipid-based encapsulation systems such as liposomes or nano-structured lipid carriers may solubilise fucoxanthin and enhance its bioavailability (from 25 to 61.2%). In addition, encapsulation can also improve the solubility of hydrophobic fucoxanthin, which is important for its absorption and bioavailability.

Summary

This review highlights the challenges involved in the absorption of fucoxanthin in the living system, role of micro- and nano-encapsulation of fucoxanthin and their potential to enhance intestinal absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ABTS:

2,2-Azinobis [3-ethylbenzothiazoline-6-sulfonic acid]—diammonium salt

Adrb3:

β3-Adrenergic receptor

AGE:

Advanced glycation end products

ASC:

Apoptosis-attached-speck-like protein containing a CARD

Bcl-2:

B-cell lymphoma 2

CMT-U27:

Mammalian tumour cells

COX-2:

Cyclooxygenase-2

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

FAS:

Fatty acid synthase

FBS:

Fasting blood glucose

G6PD:

Glucose-6-phosphate dehydrogenase

GA:

Gum arabica

HO-1:

Hemeoxygenase 1

HRAR:

Human recombinant aldose reductase

HUVECs:

Human umbilical vein endothelial cells

IL-1β:

Interleukin-1β

IL-6:

Interleukin-6

iNOS:

Inducible nitric oxide synthase

I/R:

Ischemia/reperfusion

JAK/STAT:

Janus kinase- signal transducer and activator of transcription

LPS:

Lipopolysaccharide

MAPK:

Mitogen-activated protein kinases

MCP-1:

Monocyte chemoattractant protein-1

MCT:

Medium chain triglyceride

MD:

Maltodextrin

ME:

Malic enzyme

MPO:

Myeloperoxidase

NLRP3:

Nucleotide-binding domain, leucine-rich-repeat-containing family, pyrin domain- containing 3

Nrf2:

Nuclear factor E2-related factor 2

NQO1:

Quinine oxidoreductase-1

PI3KAkt/mTOR:

Phosphatidylinositol-3-kinase/mammalian target of rapamycin

ROS:

Reactive oxygen species

RLAR:

Rat lens aldose reductase

SAPK/JNK:

Stress-activated protein kinase/Jun amina-terminal kinase

TE/g:

Trolox equivalent of one gram

TLC:

Thin layer chromatography

TNF-α:

Tumour necrosis factor-α

UCP1:

Uncoupling protein 1

WAT:

White adipose tissue

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Matsuno T. Aquatic animal carotenoids. Fish Sci. 2001;67(5):771–83.

    Article  CAS  Google Scholar 

  2. Miyashita K, Nishikawa S, Beppu F, Tsukui T, Abe M, Hosokawa M. The allenic carotenoid fucoxanthin, a novel marine nutraceutical from brown seaweeds. J Sci Food Agric. 2011;91(7):1166–74.

    Article  CAS  PubMed  Google Scholar 

  3. Sun X, Xu Y, Zhao L, Yan H, Wang S, Wang D. The stability and bioaccessibility of fucoxanthin in spray-dried microcapsules based on various biopolymers. RSC Adv. 2018;8(61):35139–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zapata M, Fraga S, Rodríguez F, Garrido JL. Pigment-based chloroplast types in dinoflagellates. Mar Ecol Prog Ser. 2012;465(3):33–52.

    Article  CAS  Google Scholar 

  5. Shannon E, Abu-Ghannam N. Optimisation of fucoxanthin extraction from Irish seaweeds by response surface methodology. J Appl Phycol. 2017;29(2):1027–36.

    Article  CAS  Google Scholar 

  6. Bae M, Kim MB, Park YK, Lee JY. Health benefits of fucoxanthin in the prevention of chronic diseases. Biochim Biophys Acta Mol Cell Biol Lipids. 2020;1865(11): 158618.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Y, Wu H, Wen H, Fang H, Hong Z, Yi R, et al. Simultaneous determination of fucoxanthin and its deacetylated metabolite fucoxanthinol in rat plasma by liquid chromatography-tandem mass spectrometry. Mar Drugs. 2015;13(10):6521–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sangeetha RK, Bhaskar N, Divakar S, Baskaran V. Bioavailability and metabolism of fucoxanthin in rats: structural characterization of metabolites by LC-MS (APCI). Mol Cell Biochem. 2010;333(1–2):299–310.

    Article  CAS  PubMed  Google Scholar 

  9. Peng J, Yuan JP, Wu CF, Wang JH. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health. Mar Drugs. 2011;9(10):1806–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sachindra NM, Sato E, Maeda H, Hosokawa M, Niwano Y, Kohno M, et al. Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites. J Agric Food Chem. 2007;55(21):8516–22.

    Article  CAS  PubMed  Google Scholar 

  11. Kumar SR, Hosokawa M, Miyashita K. Fucoxanthin: a marine carotenoid exerting anti-cancer effects by affecting multiple mechanisms. Mar Drugs. 2013;11(12):5130–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zorofchian Moghadamtousi S, Karimian H, Khanabdali R, Razavi M, Firoozinia M, Zandi K, et al. Anticancer and antitumor potential of fucoidan and fucoxanthin, two main metabolites isolated from brown algae. Scic World J. 2014.

  13. Neumann U, Derwenskus F, Flister VF, Schmid-Staiger U, Hirth T, Bischoff SC. Fucoxanthin, a carotenoid derived from Phaeodactylum tricornutum exerts antiproliferative and antioxidant activities in vitro. Antioxidants. 2019;8(6):1–11.

    Article  Google Scholar 

  14. Staleva-Musto H, Kuznetsova V, West RG, Keşan G, Minofar B, Fuciman M, et al. Nonconjugated acyloxy group deactivates the intramolecular charge-transfer state in the carotenoid fucoxanthin. J Phys Chem B. 2018;122(11):2922–30.

    Article  CAS  PubMed  Google Scholar 

  15. Wang C, Chen X, Nakamura Y, Yu C, Qi H. Fucoxanthin activities motivate its nano/micro-encapsulation for food or nutraceutical application: a review. Food Funct. 2020;11(11):9338–58.

    Article  CAS  PubMed  Google Scholar 

  16. • Oliyaei N, Moosavi-Nasab M, Tamaddon AM, Fazaeli M. Encapsulation of fucoxanthin in binary matrices of porous starch and halloysite. Food Hydrocoll. 2020;100:105458. https://doi.org/10.1016/j.foodhyd.2019.105458This study demonstrated the improved stability and thermal behaviour of fucoxanthin via double encapsulation. The wall materials used were porous starch and halloysite nano-tube which contributed for fucoxanthin stability at different temperatures.

  17. •• Foo SC, Khong NMH, Yusoff FM. Physicochemical, microstructure and antioxidant properties of microalgae-derived fucoxanthin rich microcapsules. Algal Res. 2020;51:102061. https://doi.org/10.1016/j.algal.2020.102061This paper focuses on micro-encapsulating fucoxanthin exracted from the micro-algae Chaetoceros calcitrans, via spray drying and freeze drying. The study found freeze-dried fucoxanthin to possess the highest carotenoid and antioxidant activities.

  18. Koo SY, Mok IK, Pan CH, Kim SM. Preparation of fucoxanthin-loaded nanoparticles composed of casein and chitosan with improved fucoxanthin bioavailability. J Agric Food Chem. 2016;64(49):9428–35.

    Article  CAS  PubMed  Google Scholar 

  19. McClure DD, Luiz A, Gerber B, Barton GW, Kavanagh JM. An investigation into the effect of culture conditions on fucoxanthin production using the marine microalgae Phaeodactylum tricornutum. Algal Res. 2018;29:41–8.

  20. Foo SC, Yusoff FM, Ismail M, Basri M, Yau SK, Khong NMH, et al. Antioxidant capacities of fucoxanthin-producing algae as influenced by their carotenoid and phenolic contents. J Biotechnol. 2017;241:175–83.

    Article  CAS  PubMed  Google Scholar 

  21. Raji V, Loganathan C, Sadhasivam G, Kandasamy S, Poomani K, Thayumanavan P. Purification of fucoxanthin from Sargassum wightii Greville and understanding the inhibition of angiotensin 1-converting enzyme: an in vitro and in silico studies. Int J Biol Macromol. 2020;148:696–703.

    Article  CAS  PubMed  Google Scholar 

  22. Shannon E, Abu-Ghannam N. Enzymatic extraction of fucoxanthin from brown seaweeds. Int J Food Sci Technol. 2018;53(9):2195–204.

    Article  CAS  Google Scholar 

  23. Koduvayur Habeebullah SF, Surendraraj A, Jacobsen C. Isolation of fucoxanthin from brown algae and its antioxidant activity: in vitro and 5% fish oil-in-water emulsion. JAOCS, J Am Oil Chem Soc. 2018;95(7):835–43.

    Article  CAS  Google Scholar 

  24. Mohamadnia S, Tavakoli O, Faramarzi MA, Shamsollahi Z. Production of fucoxanthin by the microalga Tisochrysis lutea: a review of recent developments. Vol. 516, Aquaculture. Elsevier B.V.; 2020. 734637.

  25. Lange KW, Hauser J, Nakamura Y, Kanaya S. Dietary seaweeds and obesity. Food Sci Human Wellness. 2015;4(3):87–96.

    Article  Google Scholar 

  26. Mamatha BS, Sangeetha RK, Baskaran V. Provitamin-A and xanthophyll carotenoids in vegetables and food grains of nutritional and medicinal importance. Int J Food Sci Technol. 2011;46(2):315–23.

    Article  CAS  Google Scholar 

  27. Bhat I, Haripriya G, Jogi N, Mamatha BS. Carotenoid composition of locally found seaweeds of Dakshina Kannada district in India. Algal Res. 2021;53:102154.

    Article  Google Scholar 

  28. Matsuno T, Ookubo M, Komori T. Carotenoids of tunicates, III. The structural elucidation of two new marine carotenoids, amarouciaxanthin A and B. J Nat Prod. 1985;48(4):606–13.

  29. Mariani G. The role of nuclear medicine procedures in the functional characterization of patients: exclusive, complementary or alternative to other technologies. Journal of Nuclear Biology and Medicine. 1994;38:119–22.

    CAS  Google Scholar 

  30. Symonds RC, Kelly MS, Caris-Veyrat C, Young AJ. Carotenoids in the sea urchin Paracentrotus lividus: occurrence of 9′-cis-echinenone as the dominant carotenoid in gonad colour determination. Comp Biochem Physiol B Biochem Mol Biol. 2007;148(4):432–44.

    Article  PubMed  Google Scholar 

  31. Daigo K, Nakano Y, Casareto BE, Suzuki Y, Shioi Y. High-performance liquid chromatographic analysis of photosynthetic pigments in corals: an existence of a variety of epizoic, endozoic and endolithic algae. Proceedings on the 11th International Coral Reef Symposium. 2008;(5):7–11.

  32. Kantha SS. Carotenoids of edible molluscs; a review. J Food Biochem. 1989;13(6):429–42.

    Article  CAS  Google Scholar 

  33. Hagen MK, Ludke A, Araujo AS, Mendes RH, Fernandes TG, Mandarino JMG, et al. Antioxidant characterization of soy derived products in vitro and the effect of a soy diet on peripheral markers of oxidative stress in a heart disease model. Can J Physiol Pharmacol. 2012;90(8):1095–103.

    Article  CAS  PubMed  Google Scholar 

  34. Yan X, Chuda Y, Suzuki M, Nagata T. Fucoxanthin as the major antioxidant in hijikia fusiformis, a common edible seaweed. Biosci Biotechnol Biochem. 1999;Vol. 63:605–7.

    Article  Google Scholar 

  35. Airanthi MKWA, Hosokawa M, Miyashita K. Comparative antioxidant activity of edible Japanese brown seaweeds. J Food Sci. 2011;76(1).

  36. Galasso C, Corinaldesi C, Sansone C. Carotenoids from marine organisms: biological functions and industrial applications. Antioxidants. 2017;6(4).

  37. Satomi Y. Antitumor and cancer-preventative function of fucoxanthin: a marine carotenoid. Anticancer Res. 2017;37(4):1557–62.

    Article  CAS  PubMed  Google Scholar 

  38. Okuzumi J, Takahashi T, Yamane T, Kitao Y, Inagake M, Ohya K, et al. Inhibitory effects of fucoxanthin, a natural carotenoid, on N-ethyl-N′-nitro-N-nitrosoguanidine-induced mouse duodenal carcinogenesis. Cancer Lett. 1993;68(2–3):159–68.

    Article  CAS  PubMed  Google Scholar 

  39. Satomi Y, Nishino H. Implication of mitogen-activated protein kinase in the induction of G1 cell cycle arrest and gadd45 expression by the carotenoid fucoxanthin in human cancer cells. Biochim Biophys Acta Gen Subj. 2009;1790(4):260–6.

    Article  CAS  Google Scholar 

  40. Hou LL, Gao C, Chen L, Hu GQ, Xie SQ. Essential role of autophagy in fucoxanthin-induced cytotoxicity to human epithelial cervical cancer HeLa cells. Acta Pharmacol Sin. 2013;34(11):1403–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Martin LJ. Fucoxanthin and its metabolite fucoxanthinol in cancer prevention and treatment. Mar Drugs. 2015;13(8):4784–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Patel DK, Kumar R, Laloo D, Hemalatha S. Diabetes mellitus: an overview on its pharmacological aspects and reported medicinal plants having antidiabetic activity. Asian Pac J Trop Biomed. 2012;2(5):411–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chukwuma CI, Matsabisa MG, Ibrahim MA, Erukainure OL, Chabalala MH, Islam MS. Medicinal plants with concomitant anti-diabetic and anti-hypertensive effects as potential sources of dual acting therapies against diabetes and hypertension: a review. J Ethnopharmacol. 2019;235:329–60.

    Article  CAS  PubMed  Google Scholar 

  44. • Oliyaei N, Moosavi-Nasab M, Tamaddon AM, Tanideh N. Antidiabetic effect of fucoxanthin extracted from Sargassum angustifolium on streptozotocin-nicotinamide-induced type 2 diabetic mice. Food Sci Nutr. 2021;9(7):3521–9. This work studied the anti-diabetic effect of encapsulated fucoxanthin in comparison with metformin. The results showed that fucoxanthin loaded Porous starch prevented the weight gain, decreased fasting blood glucose level and increased plasma insulin.

  45. Hosokawa M, Miyashita T, Nishikawa S, Emi S, Tsukui T, Beppu F, et al. Fucoxanthin regulates adipocytokine mRNA expression in white adipose tissue of diabetic/obese KK-Ay mice. Arch Biochem Biophys. 2010;504(1):17–25.

    Article  CAS  PubMed  Google Scholar 

  46. Abdel-Aal ESM, Akhtar H, Zaheer K, Ali R. Dietary sources of lutein and zeaxanthin carotenoids and their role in eye health. Nutrients. 2013;5(4):1169–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fruh SM. Obesity: risk factors, complications, and strategies for sustainable long-term weight management. J Am Assoc Nurse Pract. 2017;29:S3-14.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Maeda H, Kanno S, Kodate M, Hosokawa M, Miyashita K. Fucoxanthinol, metabolite of fucoxanthin, improves obesity-induced inflammation in adipocyte cells. Mar Drugs. 2015;13(8):4799–813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yoneshiro T, Aita S, Matsushita M, Kayahara T, Kameya T, Kawai Y, et al. Recruited brown adipose tissue as an antiobesity agent in humans. J Clin Investig. 2013;123(8):3404–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. palomo ig. Palomo IG, Jaramillo JC, Alarcon ML, Gutierrez CL, Moore-Carrasco R, Segovia FM, Leiva EM, Mujica VE, Icaza G, Diaz NS. Increased concentrations of soluble vascular cell adhesion molecule-1 and soluble CD40L in subjects with metabolic syndrome. Mol Med Rep. 2008;1:667–71.

  51. Woo MN, Jeon SM, Shin YC, Lee MK, Kang MA, Choi MS. Anti-obese property of fucoxanthin is partly mediated by altering lipid-regulating enzymes and uncoupling proteins of visceral adipose tissue in mice. Mol Nutr Food Res. 2009;53(12):1603–11.

    Article  CAS  PubMed  Google Scholar 

  52. Grasa-López A, Miliar-García Á, Quevedo-Corona L, Paniagua-Castro N, Escalona-Cardoso G, Reyes-Maldonado E, et al. Undaria pinnatifida and fucoxanthin ameliorate lipogenesis and markers of both inflammation and cardiovascular dysfunction in an animal model of diet-induced obesity. Mar Drugs. 2016;14(8).

  53. Kang S Il, Shin HS, Kim HM, Yoon SA, Kang SW, Kim JH, et al. Petalonia binghamiae extract and its constituent fucoxanthin ameliorate high-fat diet-induced obesity by activating AMP-activated protein kinase. J Agric Food Chem. 2012;60(13):3389–95.

  54. Maeda H, Hosokawa M, Sashima T, Miyashita K. Dietary combination of fucoxanthin and fish oil attenuates the weight gain of white adipose tissue and decreases blood glucose in obese/diabetic KK-A y mice. J Agric Food Chem. 2007;55(19):7701–6.

    Article  CAS  PubMed  Google Scholar 

  55. Hitoe S, Shimoda H. Seaweed fucoxanthin supplementation improves obesity parameters in mild obese Japanese subjects. Functional Foods in Health and Disease. 2017;7(4):246.

    Article  CAS  Google Scholar 

  56. Seo MJ, Seo YJ, Pan CH, Lee OH, Kim KJ, Lee BY. Fucoxanthin suppresses lipid accumulation and ROS production during differentiation in 3T3-L1 adipocytes. Phytother Res. 2016;30(11):1802–8.

    Article  CAS  PubMed  Google Scholar 

  57. Heo SJ, Yoon WJ, Kim KN, Ahn GN, Kang SM, Kang DH, et al. Evaluation of anti-inflammatory effect of fucoxanthin isolated from brown algae in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food Chem Toxicol. 2010;48(8–9):2045–51.

  58. Li Y, Liu L, Sun P, Zhang Y, Wu T, Sun H, et al. Fucoxanthinol from the diatom Nitzschia laevis ameliorates neuroinflammatory responses in lipopolysaccharide-stimulated BV-2 microglia. Mar Drugs. 2020;18(2):1–15.

    Article  CAS  Google Scholar 

  59. Lee JC, Hou MF, Huang HW, Chang FR, Yeh CC, Tang JY, et al. Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties. Cancer Cell Int. 2013;13(1):1–7.

    Article  Google Scholar 

  60. • Jang H, Choi J, Park JK, Won G, Seol JW. Fucoxanthin exerts anti-tumor activity on canine mammary tumor cells via tumor cell apoptosis induction and angiogenesis inhibition. Animals. 2021;11(6). This paper evaluated fucoxanthin against CMT-U27 cells and HUVECs. The results showed that fucoxanthin induced apoptosis and suppressed angiogenesis in CMT-U27 cells proposing fucoxanthin as a potential anti-tumor agent.

  61. Rodriguez-Luna A, Ávila-Román J, Oliveira H, Motilva V, Talero E. Fucoxanthin and rosmarinic acid combination has anti-inflammatory effects through regulation of marine drugs. 2019;17(8):451.

    CAS  PubMed  Google Scholar 

  62. Rodríguez-Luna A, Ávila-Román J, González-Rodríguez ML, Cózar MJ, Rabasco AM, Motilva V, et al. Fucoxanthin-containing cream prevents epidermal hyperplasia and UVB-induced skin erythema in mice. Mar Drugs. 2018;16(10).

  63. Hu L, Chen W, Tian F, Yuan C, Wang H, Yue H. Neuroprotective role of fucoxanthin against cerebral ischemic/reperfusion injury through activation of Nrf2/HO-1 signaling. Biomed Pharmacother. 2018;106(1):1484–9.

    Article  CAS  PubMed  Google Scholar 

  64. Zhang L, Wang H, Fan Y, Gao Y, Li X, Hu Z, et al. Fucoxanthin provides neuroprotection in models of traumatic brain injury via the Nrf2-ARE and Nrf2-autophagy pathways. Sci Rep. 2017;7:1–15.

    Google Scholar 

  65. Woo MN, Jeon SM, Kim HJ, Lee MK, Shin SK, Shin YC, et al. Fucoxanthin supplementation improves plasma and hepatic lipid metabolism and blood glucose concentration in high-fat fed C57BL/6N mice. Chem Biol Interact. 2010;186(3):316–22.

    Article  CAS  PubMed  Google Scholar 

  66. Jeon SM, Kim HJ, Woo MN, Lee MK, Chul Shin Y, Bok Park Y, et al. Fucoxanthin-rich seaweed extract suppresses body weight gain and improves lipid metabolism in high-fat-fed C57BL/6J mice. Biotechnol J. 2010;5(9):961–9.

    Article  CAS  PubMed  Google Scholar 

  67. Martin HD, Ruck C, Schmidt M, Sell S, Beutner S, Mayer B, et al. Chemistry of carotenoid oxidation and free radical reactions. Pure Appl Chem. 1999;71(12):2253–62.

    Article  CAS  Google Scholar 

  68. Sugawara T, Kushiro M, Zhang H, Nara E, Ono H, Nagao A. Lysophosphatidylcholine enhances carotenoid uptake from mixed micelles by Caco-2 human intestinal cells. J Nutr. 2001;131(11):2921–7.

    Article  CAS  PubMed  Google Scholar 

  69. Sugawara T, Baskaran V, Tsuzuki W, Nagao A. Brown algae fucoxanthin is hydrolyzed to fucoxanthinol during absorption by Caco-2 human intestinal cells and mice. J Nutr. 2002;132(5):946–51.

    Article  CAS  PubMed  Google Scholar 

  70. Asai A, Sugawara T, Ono H, Nagao A. Biotransformation of fucoxanthinol into amarouciaxanthin a in mice and HepG2 cells: formation and cytotoxicity of fucoxanthin metabolites. Drug Metab Dispos. 2004;32(2):205–11.

    Article  CAS  PubMed  Google Scholar 

  71. Hashimoto T, Ozaki Y, Taminato M, Das SK, Mizuno M, Yoshimura K, et al. The distribution and accumulation of fucoxanthin and its metabolites after oral administration in mice. Br J Nutr. 2009;102(2):242–8.

    Article  CAS  PubMed  Google Scholar 

  72. Yonekura L, Kobayashi M, Terasaki M, Nagao A. Keto-carotenoids are the major metabolites of dietary lutein and fucoxanthin in mouse tissues. J Nutr. 2010;140(10):1824–31.

    Article  CAS  PubMed  Google Scholar 

  73. Hashimoto T, Ozaki Y, Mizuno M, Yoshida M, Nishitani Y, Azuma T, et al. Pharmacokinetics of fucoxanthinol in human plasma after the oral administration of kombu extract. Br J Nutr. 2012;107(11):1566–9.

    Article  CAS  PubMed  Google Scholar 

  74. Ravi H, Baskaran V. Chitosan-glycolipid nanocarriers improve the bioavailability of fucoxanthin via up-regulation of PPARγ and SRB1 and antioxidant activity in rat model. J Funct Foods. 2017;28:215–26.

    Article  CAS  Google Scholar 

  75. Hii S ling, Choong P yi, Woo K kit, Wong C lee, Tunku U, Rahman A, et al. Stability studies of fucoxanthin from Sargassum binderi Department of Chemical Engineering, 2 Department of Science , Faculty of Engineering and. 2010;4(10):4580–4.

  76. Kawee-ai A, Kuntiya A, Kim SM. Anticholinesterase and antioxidant activities of fucoxanthin purified from the microalga Phaeodactylum tricornutum. Nat Prod Commun. 2013;8(10):1381–6.

    CAS  PubMed  Google Scholar 

  77. Zhao D, Yu D, Kim M, Gu MY, Kim SM, Pan CH, et al. Effects of temperature, light, and pH on the stability of fucoxanthin in an oil-in-water emulsion. Food Chem. 2019;291:87–93.

    Article  CAS  PubMed  Google Scholar 

  78. Maeda H, Hosokawa M, Sashima T, Funayama K, Miyashita K. 56615. 2007;621(12):615–21.

  79. Okada T, Mizuno Y, Sibayama S, Hosokawa M, Miyashita K. Antiobesity effects of Undaria lipid capsules prepared with scallop phospholipids. J Food Sci. 2011;76(1):2–6.

    Article  Google Scholar 

  80. Lai CS, Tsai ML, Badmaev V, Jimenez M, Ho CT, Pan MH. Xanthigen suppresses preadipocyte differentiation and adipogenesis through down-regulation of PPARγ and C/EBPs and modulation of SIRT-1, AMPK, and FoxO pathways. J Agric Food Chem. 2012;60(4):1094–101.

    Article  CAS  PubMed  Google Scholar 

  81. Hu X, Li Y, Li C, Fu Y, Cai F, Chen Q, et al. Combination of fucoxanthin and conjugated linoleic acid attenuates body weight gain and improves lipid metabolism in high-fat diet-induced obese rats. Arch Biochem Biophys. 2012;519(1):59–65.

    Article  CAS  PubMed  Google Scholar 

  82. •• Oliyaei N, Moosavi-Nasab M, Tamaddon AM, Fazaeli M. Double encapsulation of fucoxanthin using porous starch through sequential coating modification with maltodextrin and gum Arabic. Food Sci Nutr. 2020;8(2):1226–36. This study assessed the effect of double encapsulation of fucoxanthin with gum arabic and maltodextrin. The results demonstrated that stability of fucoxanthin increased vastly and degradation decreased from 85 to 58%. Additionally, the mixture of MD + GA exhibited the highest fucoxanthin retention upto 91.6% during the storage period.

  83. Salvia-Trujillo L, Qian C, Martín-Belloso O, McClements DJ. Influence of particle size on lipid digestion and β-carotene bioaccessibility in emulsions and nanoemulsions. Food Chem. 2013;141(2):1472–80. https://doi.org/10.1016/j.foodchem.2013.03.050.

    Article  CAS  PubMed  Google Scholar 

  84. Fu F, Hu L. Temperature sensitive colour-changed composites. Advanced High Strength Natural Fibre Composites in Construction. 2017;405–23.

  85. Dubey R. Microencapsulation technology and applications. Def Sci J. 2009;59(1):82.

    CAS  Google Scholar 

  86. Indrawati R, Sukowijoyo H, Indriatmoko, Wijayanti RDE, Limantara L. Encapsulation of brown seaweed pigment by freeze drying: characterization and its stability during storage. Procedia Chem. 2015;14:353–60.

  87. Ravi H, Arunkumar R, Baskaran V. Chitosan-glycolipid nanogels loaded with anti-obese marine carotenoid fucoxanthin: acute and sub-acute toxicity evaluation in rodent model. J Biomater Appl. 2015;30(4):420–34.

    Article  CAS  PubMed  Google Scholar 

  88. Huang Z, Xu L, Zhu X, Hu J, Peng H, Zeng Z, et al. Stability and bioaccessibility of fucoxanthin in nanoemulsions prepared from pinolenic acid-contained structured lipid. Int J Food Eng. 2017;13(1).

  89. Salvia-Trujillo L, Sun Q, Um BH, Park Y, McClements DJ. In vitro and in vivo study of fucoxanthin bioavailability from nanoemulsion-based delivery systems: impact of lipid carrier type. J Funct Foods. 2015;17:293–304.

    Article  CAS  Google Scholar 

  90. Quan J, Kim SM, Pan CH, Chung D. Characterization of fucoxanthin-loaded microspheres composed of acetyl palmitate-based solid lipid core and fish gelatin-gum arabic coacervate shell. Food Res Int. 2013;50(1):31–7.

    Article  CAS  Google Scholar 

  91. Yang C, Fischer M, Kirby C, Liu R, Zhu H, Zhang H, et al. Bioaccessibility, cellular uptake and transport of luteins and assessment of their antioxidant activities. Food Chem. 2018;249:66–76.

    Article  CAS  PubMed  Google Scholar 

  92. Noviendri D, Jaswir I, Taher M, Mohamed F, Salleh HM, Noorbatcha IA, et al. Fabrication of fucoxanthin-loaded microsphere (F-LM) by two steps double-emulsion solvent evaporation method and characterization of fucoxanthin before and after microencapsulation. J Oleo Sci. 2016;65(8):641–53.

    Article  CAS  PubMed  Google Scholar 

  93. McClements DJ. Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter. 2011;7(6):2297–316.

    Article  CAS  Google Scholar 

  94. McClements DJ, Xiao H. Potential biological fate of ingested nanoemulsions: influence of particle characteristics. Food Funct. 2012;3(3):202–20.

    Article  CAS  PubMed  Google Scholar 

  95. Donhowe EG, Kong F. Beta-carotene: digestion, microencapsulation, and in vitro bioavailability. Food Bioproc Tech. 2014;7(2):338–54.

    Article  CAS  Google Scholar 

  96. Yonekura L, Nagao A. Intestinal absorption of dietary carotenoids. Mol Nutr Food Res. 2007;51(1):107–15.

    Article  CAS  PubMed  Google Scholar 

  97. Qian C, Decker EA, Xiao H, McClements DJ. Nanoemulsion delivery systems: influence of carrier oil on β-carotene bioaccessibility. Food Chem. 2012;135(3):1440–7.

    Article  CAS  PubMed  Google Scholar 

  98. Vo DT, Saravana PS, Woo HC, Chun BS. Fucoxanthin-rich oil encapsulation using biodegradable polyethylene glycol and particles from gas-saturated solutions technique. J CO2 Util. 2018;26. 359–69.

  99. Ravi H, Kurey N, Manabe Y, Sugawara T, Baskaran V. Polymeric chitosan-glycolipid nanocarriers for an effective delivery of marine carotenoid fucoxanthin for induction of apoptosis in human colon cancer cells (Caco-2 cells). Mater Sci Eng, C. 2017;2018(91):785–95.

    Google Scholar 

  100. Kim SM, Kang SW, Kwon ON, Chung D, Pan CH. Fucoxanthin as a major carotenoid in Isochrysis aff. galbana: characterization of extraction for commercial application. J Korean Soc Appl Biol Chem. 2012;55(4):477–83.

  101. Vieira FA, Ventura SPM. Efficient extraction of carotenoids from Sargassum muticum using aqueous solutions of Tween 20. Mar Drugs. 2019;17(5):1–10.

    Article  Google Scholar 

  102. Susanto E, Fahmi AS, Abe M, Hosokawa M, Miyashita K. Lipids, fatty acids, and fucoxanthin content from temperate and tropical brown seaweeds. Aquat Procedia. 2016;7:66–75.

    Article  Google Scholar 

  103. Sudhakar MP, Ananthalakshmi JS, Nair BB. Extraction, purification and study on antioxidant properties of fucoxanthin from brown seaweeds. J Chem Pharm Res. 2013;5(7):169–75.

    CAS  Google Scholar 

  104. Xiao X, Si X, Yuan Z, Xu X, Li G. Isolation of fucoxanthin from edible brown algae by microwave-assisted extraction coupled with high-speed countercurrent chromatography. J Sep Sci. 2012;35(17):2313–7.

    Article  CAS  PubMed  Google Scholar 

  105. Sun X, Zhao H, Liu Z, Sun X, Zhang D, Wang S, et al. Modulation of gut microbiota by fucoxanthin during alleviation of obesity in high-fat diet-fed mice. J Agric Food Chem. 2020;68(18):5118–28.

    Article  CAS  PubMed  Google Scholar 

  106. Gille A, Stojnic B, Derwenskus F, Trautmann A, Schmid-Staiger U, Posten C, et al. A lipophilic fucoxanthin-rich Phaeodactylum tricornutum extract ameliorates effects of diet-induced obesity in C57BL/6J mice. Nutrients. 2019;11(4):1–17.

    Article  Google Scholar 

  107. Koo SY, Hwang J hyun, Yang S hoon, Um J in, Hong KW. Marine drugs anti-obesity effect of standardized extract of microalga Phaeodactylum tricornutum. 2019;1–15.

  108. Beppu F, Niwano Y, Tsukui T, Hosokawa M, Miyashita K. Single and repeated oral dose toxicity study of fucoxanthin (FX), a marine carotenoid, in mice. J Toxicol Sci. 2009;34(5):501–10.

    Article  CAS  PubMed  Google Scholar 

  109. Rokkaku T, Kimura R, Ishikawa C, Yasumoto T, Senba M, Kanaya F, et al. In vivo Antioxidant Activity of Fucoxanthin on Obese/Diabetes KK-A Mice. Int J Oncol. 2013;43(4):1176–86.

    Article  CAS  PubMed  Google Scholar 

  110. Takatani N, Taya D, Katsuki A, Beppu F, Yamano Y, Wada A, et al. Identification of paracentrone in fucoxanthin-fed mice and anti-inflammatory effect against lipopolysaccharide-stimulated macrophages and adipocytes. Mol Nutr Food Res. 2021;65(2):1–38.

    Article  Google Scholar 

  111. Sharma PP, Baskaran V. Polysaccharide (laminaran and fucoidan), fucoxanthin and lipids as functional components from brown algae (Padina tetrastromatica) modulates adipogenesis and thermogenesis in diet-induced obesity in C57BL6 mice. Algal Res. 2021;54: 102187.

    Article  Google Scholar 

  112. Mok IK, Lee JK, Kim JH, Pan CH, Kim SM. Fucoxanthin bioavailability from fucoxanthin-fortified milk: in vivo and in vitro study. Food Chem. 2018;258:79–86. https://doi.org/10.1016/j.foodchem.2018.03.047.

    Article  CAS  PubMed  Google Scholar 

  113. Dai J, Kim JC. In vivo anti-obesity efficacy of fucoxanthin-loaded emulsions stabilized with phospholipid. J Pharm Investig. 2016;46(7):669–75.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their sincere gratitude to Nitte (DU) for the facility provided to carry out any research work and to Prof. Dr. Anirban Chakraborty, Director (NUCSER), Nitte (DU), for his constant support.

Author information

Authors and Affiliations

Authors

Contributions

Vanessa Fernandes: review, writing and preparation of the manuscript. Bangera Sheshappa Mamatha: reviewing and editing.

Corresponding author

Correspondence to Bangera Sheshappa Mamatha.

Ethics declarations

Conflict of Interest

The authors no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, V., Mamatha, B.S. Fucoxanthin, a Functional Food Ingredient: Challenges in Bioavailability. Curr Nutr Rep 12, 567–580 (2023). https://doi.org/10.1007/s13668-023-00492-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-023-00492-x

Keywords

Navigation