Skip to main content
Log in

Optimisation of fucoxanthin extraction from Irish seaweeds by response surface methodology

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Fucoxanthin is a xanthophyll pigment which occurs in marine brown algae (Phaeophyceae). The anti-diabetic, anti-obesity, anti-cancer, and antioxidant properties of fucoxanthin have been widely reported. Macroalgae, particularly brown seaweeds, grow prolifically around Irish coasts, representing a valuable resource of nutraceuticals such as fucoxanthin for functional food applications. The aim of this study was to maximise the solvent extraction yield from three anatomically discrete regions of the seaweed thallus: blade, stipe, and holdfast. Response surface methodology was applied to determine optimum parameters for extraction of fucoxanthin from the seaweed, Fucus vesiculosus, as a model species. A central composite design was applied with four extraction variables: time (30–70 min), temperature (30–70 °C), solvent pH (5.0–9.0), and percentage acetone (30–70 %). Fucoxanthin content of extracts was quantified by high-performance liquid chromatography. Percentage acetone was found to have the most significant (P = 0.0002) effect on fucoxanthin yield, followed by pH (P = 0.028) and temperature (P = 0.049). Multiple response optimisation determined that fucoxanthin yield from F. vesiculosus may be maximised by incubating at 30.0 °C for 36.5 min, pH 5.7, with 62.2 % acetone. Optimised responses were applied to a further nine brown seaweeds; Alaria esculenta, Ascophyllum nodosum, Fucus serratus, Himanthalia elongata, Laminaria digitata, Laminaria hyperborea, Pelvetia canaliculata, Saccharina latissima, and Saccorhiza polyschides. In all species, the blades contained significantly more fucoxanthin than stipes, while holdfasts contained the least. Alaria esculenta blade had the greatest yield (0.870 mg g−1 dry mass), followed by F. vesiculosus blade (0.699 mg g−1) and L. digitata blade (0.650 mg g−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abidov M, Ramazanov Z, Seifulla R, Grachev S (2010) The effects of Xanthigen™ in the weight management of obese premenopausal women with non-alcoholic fatty liver disease and normal liver fat. Diabetes Obes Metab 12:72–81

    Article  CAS  PubMed  Google Scholar 

  • Beppu F, Hosokawa M, Niwano Y, Miyashita K (2012) Effects of dietary fucoxanthin on cholesterol metabolism in diabetic/obese KK-A y mice. Lipids Health Dis 11:1–8

    Article  Google Scholar 

  • Bidigare RR, Van Heukelem L, Trees CC (2005) Analysis of algal pigments by high-performance liquid chromatography. In: Andersen RA (ed) Algal culturing techniques. Academic Press, NY, pp. 327–345

    Google Scholar 

  • Billakanti JM, Catchpole OJ, Fenton TA, Mitchell KA, MacKenzie AD (2013) Enzyme-assisted extraction of fucoxanthin and lipids containing polyunsaturated fatty acids from Undaria pinnatifida using dimethyl ether and ethanol. Process Biochem 48:1999–2008

    Article  CAS  Google Scholar 

  • Borowitzka MA (2013) High-value products from microalgae—their development and commercialisation. J Appl Phycol 25:743–756

    Article  CAS  Google Scholar 

  • Briglia M, Calabró S, Signoretto E, Alzoubi K, Laufer S, Faggio C, Lang F (2015) Fucoxanthin induced suicidal death of human erythrocytes. Cell Physiol Biochem 37:2464–2475

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith T, Chao EEY (2006) Phylogeny and megasystematics of phagotrophic heterokonts (kingdom Chromista). J Mol Evol 62:388–420

    Article  CAS  PubMed  Google Scholar 

  • Dring M, Edwards M, Watson L (2013) Development and demonstration of viable hatchery and ongoing methodologies for seaweed species with identified commercial potential. Marine Institute Report no. 2009–3195, Dublin, Ireland

  • Fung A, Hamid N, Lu J (2013) Fucoxanthin content and antioxidant properties of Undaria pinnatifida. Food Chem 136:1055–1062

    Article  CAS  PubMed  Google Scholar 

  • Gosch BJ, Paul NA, de Nys R, Magnusson M (2015) Seasonal and within-plant variation in fatty acid content and composition in the brown seaweed Spatoglossum macrodontum (Dictyotales, Phaeophyceae). J Appl Phycol 27:387–398

    Article  CAS  Google Scholar 

  • Grosso C, Valentao P, Ferreres F, Andrade PB (2015) Alternative and efficient extraction methods for marine-derived compounds. Mar Drugs 13:3182–3230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hargreaves CR, Manley JB (2008) Collaboration to deliver a solvent selection guide for the pharmaceutical industry. ACS GCI, Pharmaceutical Roundtable. Philadelphia, pp 9–11

  • Henley WJ, Dunton KH (1995) A seasonal comparison of carbon, nitrogen, and pigment content in Laminaria solidungula and L. saccharina (Phaeophyta) in the Alaskan Arctic. J Phycol 31:325–331

    Article  Google Scholar 

  • Hurd CL, Harrison PJ, Bischof K, Lobban CS (2014) Seaweed ecology and physiology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Indrawati R, Sukowijoyo H, Wijayanti RDE, Limantara L (2015) Encapsulation of brown seaweed pigment by freeze drying: characterization and its stability during storage. Procedia Chem 14:353–360

    Article  CAS  Google Scholar 

  • Jaswir I, Noviendri D, Salleh HM, Taher M, Miyashita K (2013) Isolation of fucoxanthin and fatty acids analysis of Padina australis and cytotoxic effect of fucoxanthin on human lung cancer (H1299) cell lines. Afr J Biotechnol 10:18855–18862

    Google Scholar 

  • Joel J (2016) Global fucoxanthin market 2016 industry trends, sales, supply, demand. Analysis & Forecast, New York

    Google Scholar 

  • Jung HA, Ali MY, Choi RJ, Jeong HO, Chung HY, Choi JS (2016) Kinetics and molecular docking studies of fucosterol and fucoxanthin, BACE1 inhibitors from brown algae Undaria pinnatifida and Ecklonia stolonifera. Food Chem Toxicol doi: 10.1016/j.fct.2016.01.014

  • Kanda H, Kamo Y, Machmudah S, Goto M (2014) Extraction of fucoxanthin from raw macroalgae excluding drying and cell wall disruption by liquefied dimethyl ether. Mar Drugs 12:2383–2396

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaneko M, Nagamine T, Nakazato K, Mori M (2013) The anti-apoptotic effect of fucoxanthin on carbon tetrachloride-induced hepatotoxicity. J Toxicol Sci 38:115–126

    Article  CAS  PubMed  Google Scholar 

  • Kang M-C, Lee S-H, Lee W-W, Kang N, Kim E-A, Kim SY, Lee DH, Kim D, Jeon Y-J (2014) Protective effect of fucoxanthin isolated from Ishige okamurae against high-glucose induced oxidative stress in human umbilical vein endothelial cells and zebrafish model. J Funct Foods 11:304–312

    Article  CAS  Google Scholar 

  • Kita S, Fujii R, Cogdell RJ, Hashimoto H (2015) Characterization of fucoxanthin aggregates in mesopores of silica gel: electronic absorption and circular dichroism spectroscopies. J Photochem Photobiol A 313:3–8

  • Landrum JT (2009) Carotenoids: physical, chemical, and biological functions and properties. CRC Press, Boca Raton

    Book  Google Scholar 

  • Lobban CS, Harrison PJ (1994) Seaweed ecology and physiology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Maeda H, Hosokawa M, Sashima T, Funayama K, Miyashita K (2005) Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCP1 expression in white adipose tissues. Biochem Biophys Res Commun 332:392–397

    Article  CAS  PubMed  Google Scholar 

  • Maeda H, Hosokawa M, Sashima T, Miyashita K (2007) Dietary combination of fucoxanthin and fish oil attenuates the weight gain of white adipose tissue and decreases blood glucose in obese/diabetic KK-Ay mice. J Agric Food Chem 55:7701–7706

    Article  CAS  PubMed  Google Scholar 

  • Martin LJ (2015) Fucoxanthin and its metabolite fucoxanthinol in cancer prevention and treatment. Mar Drugs 13:4784–4798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikami K, Hosokawa M (2013) Biosynthetic pathway and health benefits of fucoxanthin, an algae-specific xanthophyll in brown seaweeds. Int J Mol Sci 14:13763–13781

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakazawa Y, Sashima T, Hosokawa M, Miyashita K (2009) Comparative evaluation of growth inhibitory effect of stereoisomers of fucoxanthin in human cancer cell lines. J Funct Foods 1:88–97

    Article  CAS  Google Scholar 

  • Oh J-H, Kim J, Lee Y (2016) Anti-inflammatory and anti-diabetic effects of brown seaweeds in high-fat diet-induced obese mice. Nutr Res Pract 10:42–48

    Article  PubMed  PubMed Central  Google Scholar 

  • Oryza (2011) Fucoxanthin: dietary ingredient for prevention of metabolic syndrome, antioxidation and cosmetics, <http://www.oryza.co.jp/pdf/english/Fucoxanthin_1.0.pdf> Oryza Oil & Fat Chemical CO., LTD, Tokyo, Japan. Accessed 10 May 2016

  • Prabhasankar P, Ganesan P, Bhaskar N, Hirose A, Stephen N, Gowda LR, Hosokawa M, Miyashita K (2009) Edible Japanese seaweed, wakame (Undaria pinnatifida) as an ingredient in pasta: chemical, functional and structural evaluation. Food Chem 115:501–508

    Article  CAS  Google Scholar 

  • Quitain AT, Kai T, Sasaki M, Goto M (2013) Supercritical carbon dioxide extraction of fucoxanthin from Undaria pinnatifida. J Agric Food Chem 61:5792–5797

    Article  CAS  PubMed  Google Scholar 

  • Rajauria G, Jaiswal AK, Abu-Ghannam N, Gupta S (2013) Antimicrobial, antioxidant and free radical-scavenging capacity of brown seaweed Himanthalia elongata from western coast of Ireland. J Food Biochem 37:322–335

    Article  CAS  Google Scholar 

  • Ramus J, Lemons F, Zimmerman C (1977) Adaptation of light-harvesting pigments to downwelling light and the consequent photosynthetic performance of the eulittoral rockweeds Ascophyllum nodosum and Fucus vesiculosus. Mar Biol 42:293–303

    Article  CAS  Google Scholar 

  • Roh M-K, Uddin MS, Chun B-S (2008) Extraction of fucoxanthin and polyphenol from Undaria pinnatifida using supercritical carbon dioxide with co-solvent. Biotechnol Bioprocess Eng 13:724–729

    Article  CAS  Google Scholar 

  • Schmid M, Stengel DB (2015) Intra-thallus differentiation of fatty acid and pigment profiles in some temperate Fucales and Laminariales. J Phycol 51:25–36

    Article  CAS  PubMed  Google Scholar 

  • Shang YF, Kim SM, Lee WJ, Um B-H (2011) Pressurized liquid method for fucoxanthin extraction from Eisenia bicyclis (Kjellman) Setchell. J Biosci Bioeng 111:237–241

    Article  CAS  PubMed  Google Scholar 

  • Shiratori K, Ohgami K, Ilieva I, Jin X-H, Koyama Y, Miyashita K, Yoshida K, Kase S, Ohno S (2005) Effects of fucoxanthin on lipopolysaccharide-induced inflammation in vitro and in vivo. Exp Eye Res 81:422–428

    Article  CAS  PubMed  Google Scholar 

  • Sivagnanam SP, Yin S, Choi JH, Park YB, Woo HC, Chun BS (2015) Biological properties of fucoxanthin in oil recovered from two brown seaweeds using supercritical CO2 extraction. Mar Drugs 13:3422–3442

    Article  CAS  PubMed  Google Scholar 

  • Stengel DB, Dring MJ (1998) Seasonal variation in the pigment content and photosynthesis of different thallus regions of Ascophyllum nodosum (Fucales, Phaeophyta) in relation to position in the canopy. Phycologia 37:259–268

    Article  Google Scholar 

  • Sudhakar MP, Ananthalakshmi JS, Nair BB (2013) Extraction, purification and study on antioxidant properties of fucoxanthin from brown seaweeds. J Chem Pharm Res 5:169–175

    CAS  Google Scholar 

  • Taelman SE, Champenois J, Edwards MD, De Meester S, Dewulf J (2015) Comparative environmental life cycle assessment of two seaweed cultivation systems in North West Europe with a focus on quantifying sea surface occupation. Algal Res 11:173–183

    Article  Google Scholar 

  • Terasaki M, Kawagoe C, Ito A, Kumon H, Narayan B, Hosokawa M, Miyashita K (2016) Spatial and seasonal variations in the biofunctional lipid substances (fucoxanthin and fucosterol) of the laboratory-grown edible Japanese seaweed (Sargassum horneri Turner) cultured in the open sea. Saudi J Biol Sci doi. doi:10.1016/j.sjbs.2016.01.009

  • Ulrich M (2015) The Global Market for Carotenoids - Report Code FOD025E. BCC Research. Online. <http://www.bccresearch.com/market-research/food-and-beverage/carotenoids-global-market-report-fod025e.html>. Accessed 20 Aug 2016.

  • Walsh M (2016) Seaweed Production in Ireland 2016. E-mail edn. Bord Iascaigh Mhara—Irish Sea Fisheries Board, Galway, Ireland

  • Walsh M, Watson L (2011) A market analysis towards the further development of seaweed aquaculture in Ireland. Bord Iascaigh Mhara—Irish Sea Fisheries Board, Galway, Ireland

  • Willstätter R, Page HJ (1914) Untersuchungen über Chlorophyll. XXIV Über die Pigmente der Braunalgen. Justus Liebigs Ann Chem 404:237–271

  • Zaragozá MC, López D, Sáiz M, Poquet M, Pérez J, Puig-Parellada P, Marmol F, Simonetti P, Gardana C, Lerat Y (2008) Toxicity and antioxidant activity in vitro and in vivo of two Fucus vesiculosus extracts. J Agric Food Chem 56:7773–7780

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge funding from the Fiosraigh PhD Scholarship Programme, Dublin Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nissreen Abu-Ghannam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shannon, E., Abu-Ghannam, N. Optimisation of fucoxanthin extraction from Irish seaweeds by response surface methodology. J Appl Phycol 29, 1027–1036 (2017). https://doi.org/10.1007/s10811-016-0983-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-016-0983-4

Keywords

Navigation