Skip to main content
Log in

Beta-carotene: Digestion, Microencapsulation, and In Vitro Bioavailability

  • Review
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Beta-carotene is an important nutrient for human health, but its low absorption from natural sources has led to the development of microencapsulation methods to improve stability and bioavailability. To properly design a gastrointestinal delivery system for beta-carotene, the processes occurring during digestion from mastication to absorption must first be understood. This review provides an overview of beta-carotene digestion and microencapsulation methods, with an emphasis placed on spray-drying and gelation. Given the lack of a standardized in vitro model to study the bioavailability of beta-carotene, important parameters that have been shown to affect bioavailability of beta-carotene (i.e., pH, enzyme concentration, type of model) are discussed to ensure measurements are made using physiologically relevant conditions. Current quantitative methods to measure beta-carotene after digestion are evaluated to ensure accuracy and precision of measurements. This study contributes to the knowledge concerning beta-carotene digestion, release, and absorption and provides guidelines for developing microencapsulation methods and in vitro digestion protocols to accurately measure in vitro bioavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abreu, F. O. M. S., Bianchini, C., Forte, M. M. C., & Kist, T. B. L. (2008). Influence of the composition and preparation method on the morphology and swelling behavior of alginate–chitosan hydrogels. Carbohydrate Polymers, 74(2), 283–289.

    Article  CAS  Google Scholar 

  • Aherne, S. A., Daly, T., Jiwan, M. A., O'Sullivan, L., & O'Brien, N. M. (2010). Bioavailability of β-carotene isomers from raw and cooked carrots using an in vitro digestion model coupled with a human intestinal Caco-2 cell model. Food Research International, 43(5), 1449–1454.

    Article  CAS  Google Scholar 

  • Barba, A. I. O., Hurtado, M. C., Mata, M. C. S., Ruiz, V. F., & Tejada, M. L. S. (2006). Application of a UV–vis detection-HPLC method for a rapid determination of lycopene and β-carotene in vegetables. Food Chemistry, 95(2), 328–336.

    Article  Google Scholar 

  • Ben-Amotz, A., & Levy, Y. (1996). Bioavailability of a natural isomer mixture compared with synthetic all-trans beta-carotene in human serum. The American Journal of Clinical Nutrition, 63(5), 729–734.

    CAS  Google Scholar 

  • Biehler, E., Kaulmann, A., Hoffmann, L., Krause, E., & Bohn, T. (2011). Dietary and host-related factors influencing carotenoid bioaccessibility from spinach (Spinacia oleracea). Food Chemistry, 125(4), 1328–1334.

    Article  CAS  Google Scholar 

  • Biswas, A. K., Sahoo, J., & Chatli, M. K. (2011). A simple UV–vis spectrophotometric method for determination of β-carotene content in raw carrot, sweet potato and supplemented chicken meat nuggets. LWT - Food Science and Technology, 44(8), 1809–1813.

    Article  CAS  Google Scholar 

  • Blanquet-Diot, S., Soufi, M., Rambeau, M., Rock, E., & Alric, M. (2009). Digestive stability of xanthophylls exceeds that of carotenes as studied in a dynamic in vitro gastrointestinal system. The Journal of Nutrition, 139(5), 876–883.

    Article  CAS  Google Scholar 

  • Blatt, Y., Pinto, R., Safronchik, O., Sedlov, T., & Zelkha, M. (2003). WIPO Patent No. 2003018186. Geneva, Switzerland: World Intellectual Property Organization.

  • Burey, P., Bhandari, B. R., Howes, T., & Gidley, M. J. (2008). Hydrocolloid gel particles: formation, characterization, and application. Critical Reviews in Food Science and Nutrition, 48(5), 361–377.

    Article  CAS  Google Scholar 

  • Champagne, C. P., & Fustier, P. (2007). Microencapsulation for the improved delivery of bioactive compounds into foods. Current Opinion in Biotechnology, 18(2), 184–190.

    Article  CAS  Google Scholar 

  • Chan, L. W., Lee, H. Y., & Heng, P. W. S. (2006). Mechanisms of external and internal gelation and their impact on the functions of alginate as a coat and delivery system. Carbohydrate Polymers, 63(2), 176–187.

    Article  CAS  Google Scholar 

  • Chen, B. H., & Tang, Y. C. (1998). Processing and stability of carotenoid powder from carrot pulp waste. Journal of agricultural and food chemistry, 46(6), 2312–2318.

    Article  CAS  Google Scholar 

  • Cutting, S. M. (2011). Bacillus probiotics. Food Microbiology, 28(2), 214–220.

    Article  Google Scholar 

  • de Vos, P., Faas, M. M., Spasojevic, M., & Sikkema, J. (2010). Encapsulation for preservation of functionality and targeted delivery of bioactive food components. International Dairy Journal, 20(4), 292–302.

    Article  Google Scholar 

  • Desobry, S. A., Netto, F. M., & Labuza, T. P. (1997). Comparison of spray-drying, drum-drying and freeze-drying for β-carotene encapsulation and preservation. Journal of Food Science, 62(6), 1158–1162.

    Article  CAS  Google Scholar 

  • Edwards, A. J., Nguyen, C. H., You, C.-S., Swanson, J. E., Emenhiser, C., & Parker, R. S. (2002). α- and β-Carotene from a commercial carrot puree are more bioavailable to humans than from boiled-mashed carrots, as determined using an extrinsic stable isotope reference method. The Journal of Nutrition, 132(2), 159–167.

    CAS  Google Scholar 

  • Ekmekcioglu, C. (2002). A physiological approach for preparing and conducting intestinal bioavailability studies using experimental systems. Food Chemistry, 76(2), 225–230.

    Article  CAS  Google Scholar 

  • Erdman, J. W., Bierer, T. L., & Gugger, E. T. (1993). Absorption and transport of carotenoids. Annals of the New York Academy of Sciences, 691(1), 76–85.

    Article  CAS  Google Scholar 

  • Faria, A. F., Mignone, R. A., Montenegro, M. A., Mercadante, A. Z., & Borsarelli, C. D. (2010). Characterization and singlet oxygen quenching capacity of spray-dried microcapsules of edible biopolymers containing antioxidant molecules. Journal of Agricultural and Food Chemistry, 58(13), 8004–8011.

    Article  CAS  Google Scholar 

  • Faulks, R. M., & Southon, S. (2005). Challenges to understanding and measuring carotenoid bioavailability. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1740(2), 95–100.

    Article  CAS  Google Scholar 

  • Fernández-García, E., Carvajal-Lérida, I., Jarén-Galán, M., Garrido-Fernández, J., Pérez-Gálvez, A., & Hornero-Méndez, D. (2012). Carotenoids bioavailability from foods: from plant pigments to efficient biological activities. Food Research International, 46(2), 438–450.

    Article  Google Scholar 

  • Ferruzzi, M. G., Lumpkin, J. L., Schwartz, S. J., & Failla, M. (2006). Digestive stability, micellarization, and uptake of β-carotene isomers by Caco-2 human intestinal cells. Journal of Agricultural and Food Chemistry, 54(7), 2780–2785.

    Article  CAS  Google Scholar 

  • Fuller, C. J., Butterfoss, D. N., & Failla, M. L. (2001). Relative bioavailability of β-carotene from supplement sources. Nutrition Research, 21(9), 1209–1215.

    Article  CAS  Google Scholar 

  • Garrett, D. A., Failla, M. L., & Sarama, R. J. (1999). Development of an in vitro digestion method to assess carotenoid bioavailability from meals. Journal of Agricultural and Food Chemistry, 47(10), 4301–4309.

    Article  CAS  Google Scholar 

  • Gåserød, O., Smidsrød, O., & Skjåk-Bræk, G. (1998). Microcapsules of alginate-chitosan—I: a quantitative study of the interaction between alginate and chitosan. Biomaterials, 19(20), 1815–1825.

    Article  Google Scholar 

  • Gåserød, O., Sannes, A., & Skjåk-Bræk, G. (1999). Microcapsules of alginate–chitosan. II. A study of capsule stability and permeability. Biomaterials, 20(8), 773–783.

    Article  Google Scholar 

  • Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Research International, 40(9), 1107–1121.

    Article  CAS  Google Scholar 

  • Gibbs, B. F., Kermasha, S., Alli, I., & Mulligan, C. N. (1999). Encapsulation in the food industry: a review. International Journal of Food Sciences and Nutrition, 50(3), 213–224.

    Article  CAS  Google Scholar 

  • Gonnet, M., Lethuaut, L., & Boury, F. (2010). New trends in encapsulation of liposoluble vitamins. Journal of Controlled Release, 146(3), 276–290.

    Article  CAS  Google Scholar 

  • Granado-Lorencio, F., Olmedilla-Alonso, B., Herrero-Barbudo, C., Blanco-Navarro, I., Pérez-Sacristán, B., & Blázquez-García, S. (2007). In vitro bioaccessibility of carotenoids and tocopherols from fruits and vegetables. Food Chemistry, 102(3), 641–648.

    Article  CAS  Google Scholar 

  • Grune, T., Lietz, G., Palou, A., Ross, A. C., Stahl, W., Tang, G., et al. (2010). Beta-carotene is an important vitamin A source for humans. Journal of Nutrition, 140(12), 2268S–2285S.

    Article  CAS  Google Scholar 

  • Guadarrama-Lezama, A. Y., Dorantes-Alvarez, L., Jaramillo-Flores, M. E., Pérez-Alonso, C., Niranjan, K., Gutiérrez-López, G. F., et al. (2012). Preparation and characterization of non-aqueous extracts from chilli (Capsicum annuum L.) and their microencapsulates obtained by spray-drying. Journal of Food Engineering, 112(1), 29–37.

    Article  CAS  Google Scholar 

  • Guerra, A., Etienne-Mesmin, L., Livrelli, V., Denis, S., Blanquet-Diot, S., & Alric, M. (2012). Relevance and challenges in modeling human gastric and small intestinal digestion. Trends in Biotechnology, 30(11), 591–600.

    Article  CAS  Google Scholar 

  • Gutiérrez, F. J., Albillos, S. M., Casas-Sanz, E., Cruz, Z., García-Estrada, C., García-Guerra, A., et al. (2013). Methods for the nanoencapsulation of β-carotene in the food sector. Trends in Food Science & Technology, 32(2), 73–83.

    Google Scholar 

  • Han, J., Guenier, A.-S., Salmieri, S., & Lacroix, M. (2008). Alginate and chitosan functionalization for micronutrient encapsulation. Journal of Agricultural and Food Chemistry, 56(7), 2528–2535.

    Article  CAS  Google Scholar 

  • Haskell, M. J. (2012). The challenge to reach nutritional adequacy for vitamin A: beta-carotene bioavailability and conversion—evidence in humans. American Journal of Clinical Nutrition, 96(5), 1193S–1203S.

    Article  CAS  Google Scholar 

  • Hedren, E., Diaz, V., & Svanberg, U. (2002). Estimation of carotenoid accessibility from carrots determined by an in vitro digestion method. European Journal of Clinical Nutrition, 56(5), 425.

    Article  CAS  Google Scholar 

  • Hollander, D., & Ruble, P. (1978). Beta-carotene intestinal absorption: bile, fatty acid, pH, and flow rate effects on transport. American Journal of Physiology-Gastrointestinal and Liver Physiology, 235(6), G686–G691.

    Google Scholar 

  • Hornero-Méndez, D., & Mínguez Mosquera, M. I. (2007). Bioaccessibility of carotenes from carrots: effect of cooking and addition of oil. Innovative Food Science & Emerging Technologies, 8(3), 407–412.

    Article  Google Scholar 

  • Huo, T., Ferruzzi, M. G., Schwartz, S. J., & Failla, M. L. (2007). Impact of fatty acyl composition and quantity of triglycerides on bioaccessibility of dietary carotenoids. Journal of Agricultural and Food Chemistry, 55(22), 8950–8957.

    Article  CAS  Google Scholar 

  • Hur, S. J., Lim, B. O., Decker, E., & McClements, D. J. (2011). In vitro human digestion models for food applications. Food Chemistry, 125(1), 1–12.

    Article  CAS  Google Scholar 

  • Jantratid, E., Janssen, N., Reppas, C., & Dressman, J. (2008). Dissolution media simulating conditions in the proximal human gastrointestinal tract: an update. Pharmaceutical Research, 25(7), 1663–1676.

    Article  CAS  Google Scholar 

  • Jeffery, J. L., Turner, N. D., & King, S. R. (2012). Carotenoid bioaccessibility from nine raw carotenoid-storing fruits and vegetables using an in vitro model. Journal of the Science of Food and Agriculture, 92(13), 2603–2610.

    Article  CAS  Google Scholar 

  • Kalantzi, L., Goumas, K., Kalioras, V., Abrahamsson, B., Dressman, J., & Reppas, C. (2006). Characterization of the human upper gastrointestinal contents under conditions simulating bioavailability/bioequivalence studies. Pharmaceutical Research, 23(1), 165–176.

    Article  CAS  Google Scholar 

  • Kern, F., Birkner, H. J., & Ostrower, V. S. (1978). Binding of bile acids by dietary fiber. The American Journal of Clinical Nutrition, 31(10), S175–S179.

    Google Scholar 

  • Kong, F., & Singh, R. P. (2010). A human gastric simulator (HGS) to study food digestion in human stomach. Journal of Food Science, 75(9), E627–E635.

    Article  CAS  Google Scholar 

  • Kowalski, R. E., Mergens, W. J., & Scialpi, L. J. (2000). U.S. Patent No. 6,093,348. Washington, DC: U.S. Patent and Trademark Office.

  • Laos, K., Lõugas, T., Mändmets, A., & Vokk, R. (2007). Encapsulation of β-carotene from sea buckthorn (Hippophaë rhamnoides L.) juice in furcellaran beads. Innovative Food Science & Emerging Technologies, 8(3), 395–398.

    Article  CAS  Google Scholar 

  • Leach, G., Oliveira, G., & Morais, R. (1998). Spray-drying of Dunaliella salina to produce a β-carotene rich powder. Journal of Industrial Microbiology and Biotechnology, 20(2), 82–85.

    Article  CAS  Google Scholar 

  • Lemmens, L., Van Buggenhout, S., Oey, I., Van Loey, A., & Hendrickx, M. (2009). Towards a better understanding of the relationship between the β-carotene in vitro bio-accessibility and pectin structural changes: a case study on carrots. Food Research International, 42(9), 1323–1330.

    Article  CAS  Google Scholar 

  • Lemmens, L., Van Buggenhout, S., Van Loey, A. M., & Hendrickx, M. E. (2010). Particle size reduction leading to cell wall rupture is more important for the β-carotene bioaccessibility of raw compared to thermally processed carrots. Journal of Agricultural and Food Chemistry, 58(24), 12769–12776.

    Article  CAS  Google Scholar 

  • Li, Y., Hu, M., Du, Y., Xiao, H., & McClements, D. J. (2011). Control of lipase digestibility of emulsified lipids by encapsulation within calcium alginate beads. Food Hydrocolloids, 25(1), 122–130.

    Article  CAS  Google Scholar 

  • Liang, R., Huang, Q., Ma, J., Shoemaker, C. F., & Zhong, F. (2013a). Effect of relative humidity on the store stability of spray-dried beta-carotene nanoemulsions. Food Hydrocolloids, 33(2), 225–233.

    Article  CAS  Google Scholar 

  • Liang, R., Shoemaker, C. F., Yang, X., Zhong, F., & Huang, Q. (2013b). Stability and bioaccessibility of beta-carotene in nanoemulsions stabilized by modified starches. Journal of Agricultural and Food Chemistry, 61(6), 1249–1257.

    Article  CAS  Google Scholar 

  • Liu, C.-S., Glahn, R. P., & Liu, R. H. (2004). Assessment of carotenoid bioavailability of whole foods using a Caco-2 cell culture model coupled with an in vitro digestion. Journal of Agricultural and Food Chemistry, 52(13), 4330–4337.

    Article  CAS  Google Scholar 

  • Liu, Y., Hou, Z., Lei, F., Chang, Y., & Gao, Y. (2012). Investigation into the bioaccessibility and microstructure changes of β-carotene emulsions during in vitro digestion. Innovative Food Science & Emerging Technologies, 15, 86–95.

    Article  Google Scholar 

  • Loksuwan, J. (2007). Characteristics of microencapsulated β-carotene formed by spray drying with modified tapioca starch, native tapioca starch and maltodextrin. Food Hydrocolloids, 21(5–6), 928–935.

    Article  CAS  Google Scholar 

  • McClements, D. J., & Li, Y. (2010). Structured emulsion-based delivery systems: controlling the digestion and release of lipophilic food components. Advances in Colloid and Interface Science, 159(2), 213–228.

    Article  CAS  Google Scholar 

  • Muhamad, I. I., Fen, L. S., Hui, N. H., & Mustapha, N. A. (2011). Genipin-cross-linked kappa-carrageenan/carboxymethyl cellulose beads and effects on beta-carotene release. Carbohydrate Polymers, 83(3), 1207–1212.

    Article  CAS  Google Scholar 

  • Netzel, M., Netzel, G., Zabaras, D., Lundin, L., Day, L., Addepalli, R., et al. (2011). Release and absorption of carotenes from processed carrots (Daucus carota) using in vitro digestion coupled with a Caco-2 cell trans-well culture model. Food Research International, 44(4), 868–874.

    Article  CAS  Google Scholar 

  • O'Sullivan, L., Galvin, K., Aisling Aherne, S., & O'Brien, N. M. (2010a). Effects of cooking on the profile and micellarization of 9-cis-, 13-cis- and all-trans-β-carotene in green vegetables. Food Research International, 43(4), 1130–1135.

    Article  Google Scholar 

  • O'Sullivan, L., Jiwan, M., Daly, T., O'Brien, N. M., & Aherne, S. A. (2010b). Bioaccessibility, uptake, and transport of carotenoids from peppers (Capsicum spp.) using the coupled in vitro digestion and human intestinal Caco-2 cell model. Journal of Agricultural and Food Chemistry, 58(9), 5374–5379.

    Article  Google Scholar 

  • Orset, S., Leach, G. C., & Morais, R. (1999). Spray-drying of the microalga Dunaliella salina: effects on β-carotene content and isomer composition. Journal of Agricultural and Food Chemistry, 47(11), 82–90.

    Article  Google Scholar 

  • Ozcelik, B., Karadag, A., & Ersen, S. (2009). Bioencapsulation of beta-carotene in three different methods. Poster at XVIIth International Conference on Bioencapsulation. Netherlands: Groningen.

    Google Scholar 

  • Parker, R. S. (1996). Absorption, metabolism, and transport of carotenoids. Federation of American Societies for Experimental Biology Journal, 10(5), 542–551.

    CAS  Google Scholar 

  • Peng, H., Xiong, H., Li, J., Xie, M., Liu, Y., Bai, C., et al. (2010). Vanillin cross-linked chitosan microspheres for controlled release of resveratrol. Food Chemistry, 121(1), 23–28.

    Article  CAS  Google Scholar 

  • Prince, M. R., & Frisoli, J. K. (1993). Beta-carotene accumulation in serum and skin. The American Journal of Clinical Nutrition, 57(2), 175–181.

    CAS  Google Scholar 

  • Pugliese, A., O'Callaghan, Y., Tundis, R., Galvin, K., Menichini, F., O'Brien, N., et al. (2013). In vitro investigation of the bioaccessibility of carotenoids from raw, frozen and boiled red chili peppers (Capsicum annuum). European journal of nutrition, 1–10.

  • Qian, C., Decker, E. A., Xiao, H., & McClements, D. J. (2012). Nanoemulsion delivery systems: influence of carrier oil on beta-carotene bioaccessibility. Food Chemistry, 135(3), 1440–1447.

    Article  CAS  Google Scholar 

  • Reboul, E., Richelle, M., Perrot, E., Desmoulins-Malezet, C., Pirisi, V., & Borel, P. (2006). Bioaccessibility of carotenoids and vitamin E from their main dietary sources. Journal of Agricultural and Food Chemistry, 54(23), 8749–8755.

    Article  CAS  Google Scholar 

  • Rein, M. J., Renouf, M., Cruz‐Hernandez, C., Actis‐Goretta, L., Thakkar, S. K., & da Silva Pinto, M. (2013). Bioavailability of bioactive food compounds: a challenging journey to bioefficacy. British Journal of Clinical Pharmacology, 75(3), 588–602.

    CAS  Google Scholar 

  • Ribeiro, A. J., Neufeld, R. J., Arnaud, P., & Chaumeil, J. C. (1999). Microencapsulation of lipophilic drugs in chitosan-coated alginate microspheres. International Journal of Pharmaceutics, 187(1), 115–123.

    Article  CAS  Google Scholar 

  • Rich, G. T., Fillery-Travis, A., & Parker, M. L. (1998). Low pH enhances the transfer of carotene from carrot juice to olive oil. Lipids, 33(10), 985–992.

    Article  CAS  Google Scholar 

  • Rich, G. T., Bailey, A. L., Faulks, R. M., Parker, M. L., Wickham, M. S., & Fillery-Travis, A. (2003). Solubilization of carotenoids from carrot juice and spinach in lipid phases: I. Modeling the gastric lumen. Lipids, 38(9), 933–945.

    CAS  Google Scholar 

  • Riedl, J., Linseisen, J., Hoffmann, J., & Wolfram, G. (1999). Some dietary fibers reduce the absorption of carotenoids in women. The Journal of Nutrition, 129(12), 2170–2176.

    CAS  Google Scholar 

  • Robert, P., Carlsson, R. M., Romero, N., & Masson, L. (2003). Stability of spray-dried encapsulated carotenoid pigments from rosa mosqueta (Rosa rubiginosa) oleoresin. Journal of the American Oil Chemists Society, 80(11), 1115–1120.

    Article  CAS  Google Scholar 

  • Rock, C. L., & Swendseid, M. E. (1992). Plasma beta-carotene response in humans after meals supplemented with dietary pectin. The American Journal of Clinical Nutrition, 55(1), 96–99.

    CAS  Google Scholar 

  • Rock, C. L., Lovalvo, J. L., Emenhiser, C., Ruffin, M. T., Flatt, S. W., & Schwartz, S. J. (1998). Bioavailability of β-carotene is lower in raw than in processed carrots and spinach in women. The Journal of Nutrition, 128(5), 913–916.

    CAS  Google Scholar 

  • Rodriguez-Amaya, D. B. (2010). Quantitative analysis, in vitro assessment of bioavailability and antioxidant activity of food carotenoids—a review. Journal of Food Composition and Analysis, 23(7), 726–740.

    Article  CAS  Google Scholar 

  • Roman, M. J., Burri, B. J., & Singh, R. P. (2012). Release and bioaccessibility of β-carotene from fortified almond butter during in vitro digestion. Journal of Agricultural and Food Chemistry, 60(38), 9659–9666.

    Article  CAS  Google Scholar 

  • Roodenburg, A. J., Leenen, R., van het Hof, K. H., Weststrate, J. A., & Tijburg, L. B. (2000). Amount of fat in the diet affects bioavailability of lutein esters but not of α-carotene, β-carotene, and vitamin E in humans. The American Journal of Clinical Nutrition, 71(5), 1187–1193.

    CAS  Google Scholar 

  • Schweiggert, R. M., Mezger, D., Schimpf, F., Steingass, C. B., & Carle, R. (2012). Influence of chromoplast morphology on carotenoid bioaccessibility of carrot, mango, papaya, and tomato. Food Chemistry, 135(4), 2736–2742.

    Article  CAS  Google Scholar 

  • Spada, J. C., Marczak, L. D. F., Tessaro, I. C., & Noreña, C. P. Z. (2012). Microencapsulation of β-carotene using native pinhão starch, modified pinhão starch and gelatin by freeze-drying. International journal of food science & technology., 47(1), 186–194.

    Article  CAS  Google Scholar 

  • Sutter, S. C., Buera, M. P., & Elizalde, B. E. (2007). Beta-carotene encapsulation in a mannitol matrix as affected by divalent cations and phosphate anion. International Journal of Pharmaceutics, 332(1–2), 45–54.

    Article  CAS  Google Scholar 

  • Tang, G., Serfaty-Lacrosniere, C., Camilo, M. E., & Russell, R. M. (1996). Gastric acidity influences the blood response to a beta-carotene dose in humans. The American Journal of Clinical Nutrition, 64(4), 622–626.

    CAS  Google Scholar 

  • Thakkar, S. K., Maziya-Dixon, B., Dixon, A. G., & Failla, M. L. (2007). β-Carotene micellarization during in vitro digestion and uptake by Caco-2 cells is directly proportional to β-carotene content in different genotypes of cassava. The Journal of nutrition, 137(10), 2229–2233.

    CAS  Google Scholar 

  • Thürmann, P. A., Steffen, J., Zwernemann, C., Aebischer, C.-P., Cohn, W., Wendt, G., et al. (2002). Plasma concentration response to drinks containing β-carotene as carrot juice or formulated as a water dispersible powder. European Journal of Nutrition, 41(5), 228–235.

    Article  Google Scholar 

  • Torres-Escribano, S., Denis, S., Blanquet-Diot, S., Calatayud, M., Barrios, L., Vélez, D., et al. (2011). Comparison of a static and a dynamic in vitro model to estimate the bioaccessibility of As, Cd, Pb and Hg from food reference materials Fucus sp. (IAEA-140/TM) and lobster hepatopancreas (TORT-2). Science of the Total Environment, 409(3), 604–611.

    Article  CAS  Google Scholar 

  • Trif, M., Ansorge-Schumacher, M. B., Socaciu, C., & Diehl, H. A. (2008). Bioencapsulated seabuckthorn oil: controlled release rates in different solvents. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Animal Science and Biotechnologies, 65(1–2).

  • Tumuhimbise, G. A., Namutebi, A., & Muyonga, J. H. (2009). Microstructure and in vitro beta carotene bioaccessibility of heat processed orange fleshed sweet potato. Plant foods for human nutrition, 64(4), 312–318.

    Article  CAS  Google Scholar 

  • Tydeman, E. A., Parker, M. L., Wickham, M. S., Rich, G. T., Faulks, R. M., Gidley, M. J., et al. (2010). Effect of carrot (Daucus carota) microstructure on carotene bioaccessibilty in the upper gastrointestinal tract. 1. In vitro simulations of carrot digestion. Journal of Agricultural and Food Chemistry, 58(17), 9847–9854.

    Article  CAS  Google Scholar 

  • Tyssandier, V., Reboul, E., Dumas, J.-F., Bouteloup-Demange, C., Armand, M., Marcand, J., et al. (2003). Processing of vegetable-borne carotenoids in the human stomach and duodenum. American Journal of Physiology-Gastrointestinal and Liver Physiology, 284(6), G913–G923.

    CAS  Google Scholar 

  • van het Hof, K. H., de Boer, B. C., Tijburg, L. B., Lucius, B. R., Zijp, I., West, C. E., et al. (2000). Carotenoid bioavailability in humans from tomatoes processed in different ways determined from the carotenoid response in the triglyceride-rich lipoprotein fraction of plasma after a single consumption and in plasma after four days of consumption. Journal of Nutrition, 130(5), 1189–1196.

    Google Scholar 

  • Wang, P., Liu, H.-J., Mei, X.-Y., Nakajima, M., & Yin, L.-J. (2012). Preliminary study into the factors modulating β-carotene micelle formation in dispersions using an in vitro digestion model. Food Hydrocolloids, 26(2), 427–433.

    Article  CAS  Google Scholar 

  • Weber, D., & Grune, T. (2012). The contribution of beta-carotene to vitamin A supply of humans. Molecular Nutrition & Food Research, 56(2), 251–258.

    Article  CAS  Google Scholar 

  • West, K. P., & Darnton-Hill, I. (2001). Vitamin A deficiency. In R. D. Semba & M. W. Bloem (Eds.), Nutrition and health in developing countries (pp. 267–306). Totowa: Humana.

    Chapter  Google Scholar 

  • Wright, A. J., Pietrangelo, C., & MacNaughton, A. (2008). Influence of simulated upper intestinal parameters on the efficiency of beta carotene micellarisation using an in vitro model of digestion. Food Chemistry, 107(3), 1253–1260.

    CAS  Google Scholar 

  • Yeum, K. J., & Russell, R. M. (2002). Carotenoid bioavailability and bioconversion. Annual Review of Nutrition, 22, 483–504.

    Article  CAS  Google Scholar 

  • Yi, J., Li, Y., Zhong, F., & Yokoyama, W. (2014). The physicochemical stability and in vitro bioaccessibility of beta-carotene in oil-in-water sodium caseinate emulsions. Food Hydrocolloids, 35, 19–27.

    Article  CAS  Google Scholar 

  • Yonekura, L., & Nagao, A. (2007). Intestinal absorption of dietary carotenoids. Molecular Nutrition & Food Research, 51(1), 107–115.

    Article  CAS  Google Scholar 

  • Yonekura, L., & Nagao, A. (2009). Soluble fibers inhibit carotenoid micellization in vitro and uptake by Caco-2 cells. Bioscience, Biotechnology, and Biochemistry, 73(1), 196–199.

    Article  CAS  Google Scholar 

  • Yoo, S.-H., Song, Y.-B., Chang, P.-S., & Lee, H. G. (2006). Microencapsulation of α-tocopherol using sodium alginate and its controlled release properties. International Journal of Biological Macromolecules, 38(1), 25–30.

    Article  CAS  Google Scholar 

  • Zbicinski, I., Delag, A., Strumillo, C., & Adamiec, J. (2002). Advanced experimental analysis of drying kinetics in spray drying. Chemical Engineering Journal, 86(1–2), 207–216.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanbin Kong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donhowe, E.G., Kong, F. Beta-carotene: Digestion, Microencapsulation, and In Vitro Bioavailability. Food Bioprocess Technol 7, 338–354 (2014). https://doi.org/10.1007/s11947-013-1244-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-013-1244-z

Keywords

Navigation