Skip to main content
Log in

Growth and antioxidant phenolic compounds in cherry tomato seedlings grown under monochromatic light-emitting diodes

  • Research Report
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Light-emitting diodes (LEDs) can be used in closed-type plant production systems as an artificial light source. Here, we determined the effects of monochromatic LEDs on the growth and production of phenolic antioxidants in cherry tomato seedlings (Solanum lycopersicum L. ‘Cuty’). Two week-old seedlings germinated under normal growing conditions were transplanted into a growth chamber equipped with various monochromatic LEDs and fluorescent lamps (control), and cultivated for 4 weeks. Fresh weights of shoots and roots under LED treatment, especially, red or green, were higher than those under the control light at 4 weeks. The SPAD value of seedlings grown under blue LEDs was significantly lower than in seedlings grown under other LEDs. The plant height, stem length, and internode length of tomato seedlings grown under blue LEDs were the highest. Blue LEDs induced 1.5–2.2-fold higher stem length than red and white LEDs. Expansin gene expression was the highest under blue LEDs, consistent with the effect on stem length. Blue LEDs stimulated the biosynthesis of total phenolics, antioxidants, and total flavonoids in tomato seedlings. Specifically, the antioxidant capacity of seedlings grown under blue LEDs was 2.1-folds higher than that in seedlings grown under green LEDs. Thus, manipulating light quality using LEDs is a crucial factor for growth and antioxidant production in cherry tomato seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ainsworth, E.A. and K.M. Gillespie. 2007. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nature Protocols 2:875–877.

    Article  CAS  PubMed  Google Scholar 

  • Alexieva, V., I. Sergiev, S. Mapelli, and E. Karanov. 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 24:1337–1344.

    Article  CAS  Google Scholar 

  • Awika, J.M., L.W. Rooney, X. Wu, R.L. Prior, and L. Cisneros-Zevallos. 2003. Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. J. Agr. Food Chem. 51: 6657–6662.

    Article  CAS  Google Scholar 

  • Bergougnoux, V. 2014. The history of tomato: From domestication to biopharming. Biotechnol. Advances 32:170–189.

    Article  CAS  Google Scholar 

  • Buso, G.S.C. and F.A. Bliss. 1988. Variability among lettuce cultivars grown at two levels of available phosphorus. Plant Soil 111:67–73.

    Article  CAS  Google Scholar 

  • Buwalda, F., E.J. van Henten, A. de Gelder, J. Bontsema, and J. Hemming. 2006. Toward an optimal control strategy for sweet pepper cultivation. 1. A dynamic crop model. Acta Hort. 718:391–398.

    Google Scholar 

  • Carvalho, R.F., M. Takaki, and R.A. Azevedo. 2011. Plant pigments: The many face of light perception. Acta Physiol. Plant. 33:241–248.

    Article  CAS  Google Scholar 

  • Cosgrove, D.J. 2000. Loosening of plant cell walls by expansins. Nature 407:321–326.

    Article  CAS  PubMed  Google Scholar 

  • Dewanto, V., X. Wu, K.K. Adom, and R.H. Liu. 2002. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agr. Food Chem. 51:615–622.

    Google Scholar 

  • Ebisawa, M., K. Shoji, M. Kato, K. Shimomura, F. Goto, and T. Yoshihara. 2008. Supplementary ultraviolet radiation B together with blue light at night increased qercetin content and flavonol systhase gene expression in leaf lettuce (Lactuca sativa L.). Environ. Control Biol. 46:1–11.

    Article  CAS  Google Scholar 

  • Eisinger, W.R., R.A. Bogomolni, and L. Taiz. 2003. Interactions between a blue-green reversible photoreceptor and a separate UV-B receptor in stomatal guard cells. Amer. J. Bot. 90:1560–1566.

    Article  CAS  Google Scholar 

  • Garcia-Closas, R., A. Berenguer, M.J. Tormo, M.J. Sanchez, J.R. Quiros, C. Navarro, R. Amaud, M. Dorronsoro, M.D. Chirlaque, A. Barricarte, E. Ardanaz, P. Amiano, C. Martinez, A. Agudo, and C.A. Gonzalez. 2004. Dietary sources of vitamin C, vitamin E, and specific carotenoids in Spain. Brit. J. Nutr. 91:1005–1011.

    Article  CAS  PubMed  Google Scholar 

  • Jeong, S.W., S. Park, J.S. Jin, O.N. Seo, G.S. Kim, Y.H. Kim, H. Bae, G. Lee, S.T. Kim, W.S. Lee, and S.C. Shin. 2012. Influences of four different light-emitting diode lights on flowering and polyphenol variations in the leaves of chrysanthemum (Chrysanthemum morifolium). J. Agr. Food Chem. 60:9793–9800.

    Article  CAS  Google Scholar 

  • Johkan, M.H., K. Shoji, F. Goto, S. Hahida, and T. Yoshihara. 2010. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience 45:1809–1814.

    Google Scholar 

  • Kim, H.H., G.D. Goins, R.M. Wheeler, and J.C. Sager. 2004a. Stomatal conductance of lettuce grown under or exposed to different light quality. Ann. Bot. 94:691–697.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim, H.H., G.D. Goins, R.M. Wheeler, and J.C. Sager. 2004b. Greenlight supplementation for enhanced lettuce growth under red- and blue-light-emitting diodes. HortScience 39:1617–1622.

    PubMed  Google Scholar 

  • Kim, S.J., E.J. Hahn, J.W. Heo, and K.Y. Paek. 2004c. Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Sci. Hort. 101:143–151.

    Article  Google Scholar 

  • Klein, R.M., P.C. Edsall, and A.C. Gentile. 1965. Effects of near ultraviolet and green radiations on plant growth. Plant Physiol. 40:903–906.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kozai, T., C. Chun, and K. Ohyama. 2004. Closed systems with lamps for commercial production of transplants using minimal resources. Acta Hort. 630:239–254.

    Google Scholar 

  • Lian, M.L., H.N. Murthy, and K.Y. Paek. 2002. Effect of light emitting diodes (LEDs) on the in vitro induction and growth of bulblets of Lillum oriental hybrid ‘Pesaro’. Sci. Hort. 94:365–370.

    Article  Google Scholar 

  • Liu, X.Y., S.R. Guo, T.T. Chang, Z.G. Xu, and T. Takafumi. 2012. Regulation of the growth and photosynthesis of cherry tomato seedlings by different light irradiations of light emitting diodes (LED). Afr. J. Biotechnol. 11:6169–6177.

    CAS  Google Scholar 

  • Lee, J.S., H.I. Lee, and Y.H. Kim. 2012. Seedling quality and early yield after transplanting of paprika nursed under light-emitting diodes, fluorescent lamps and natural light. J. Bio-Environ. Control 21:220–227.

    Google Scholar 

  • Massa, G.D., H.H. Kim, R.M. Wheeler, and C.A. Mitchell. 2008. Plant productivity in response to LED lighting. HortScience 43:1951–2008.

    Google Scholar 

  • Matsuda, R., K. Ohashi-Kaneko, K. Fujiwara, E. Goto, and K. Kurata. 2004. Photosynthetic characteristics of rice leaves grown under red light with or without supplemental blue light. Plant Cell Physiol. 45:1870–1874.

    Article  CAS  PubMed  Google Scholar 

  • Miller, N.J. and C.A. Rice-Evans. 1996. Spectrophotometric determination of antioxidant activity. Redox Rep. 2:161–171.

    CAS  Google Scholar 

  • Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7:405–410.

    Article  CAS  PubMed  Google Scholar 

  • Moran, J.F., M. Becana, I. Iturbe-Ormaetxe, S. Frechilla, R.V. Klucas, and P. Aparicio-Tejo. 1994. Drought induces oxidative stress in pea plants. Planta 194:346–352.

    Article  CAS  Google Scholar 

  • Nhut, D.T., T. Takamura, H. Watanabe, K. Okamoto, and M. Tanaka. 2003. Responses of strawberry plantlets cultured in vitro under superbright red and blue light-emitting diodes (LEDs). Plant Cell Tissue Org. Cult. 73:43–52.

    Article  CAS  Google Scholar 

  • Oh, M.-M., H.N. Trick, and C.B. Rajashekar. 2009. Secondary metabolism and antioxidants are involved in environmental adaptation and stress tolerance in lettuce. J. Plant Physiol. 166:180–191.

    Article  CAS  PubMed  Google Scholar 

  • Rivero, R.M., J.M. Ruiz, and L. Romero. 2003. Can grafting in tomato plants strengthen resistance to thermal stress? J. Sci. Food Agr. 83:1315–1319.

    Article  CAS  Google Scholar 

  • Ryan, K.G., E.E. Swinny, K.R. Markham, and C. Winefield. 2002. Flavonoid gene expression and UV photoprotection in transgenic and mutant Petunia leaves. Phytochemistry 59:23–32.

    Article  CAS  PubMed  Google Scholar 

  • Saebo, A., T. Krekling and M. Appelgren. 1995. Light quality affects photosynthesis and leaf anatomy of brich plantlets in vitro. Plant Cell Tissue Org. Cult. 41:177–185.

    Article  Google Scholar 

  • Sasidharan, R., C.C. Chinnappa, L.A.C.J. Voesenek, and R. Pierik. 2009. A molecular basis for the physiological variation in shade avoidance responses. Plant Signaling Behavior 4:528–529.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sasidharan, R., C.C. Chinnappa, M. Staal, J.T.M. Elzenga, R. Yokoyama, K. Nishitani, L.A.C.J. Voesenek, and R. Pierik. 2010. Light quality-mediated petiole elongation in Arabidopsis during shade avoidance involves cell wall modification by xyloglucan endotransglucosylase/hydrolases. Plant Physiol. 154:978–990.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Son, K.H., J.H. Park, D. Kim, and M.-M. Oh. 2012. Leaf shape index, growth, and phytochemicals in two leaf lettuce cultivars grown under monochromatic light-emitting diodes. Kor. J. Hort. Sci. Technol. 30:664–672.

    CAS  Google Scholar 

  • Son, K.H. and M.-M. Oh. 2013. Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. HortScience 48:988–995.

    Google Scholar 

  • Talbott, L.D., G. Nikolova, A. Ortiz, I. Shmayevich, and E. Zeiger. 2002. Green light reversal of blue-light-stimulated stomatal opening is found in a diversity of plant species. Amer. J. Bot. 89:366–368.

    Article  Google Scholar 

  • Um, Y.C., Y.A. Jang, J.G. Lee, S.Y. Kim, S.R. Cheong, S.S. Oh, S.H. Cha, and S.C. Hong. 2009. Effects of selective light sources on seedling quality of tomato and cucumber in closed nursery system. J. Bio-Environ. Control 18:370–376.

    Google Scholar 

  • Wang, H., M. Gu, J. Cui, K. Shi, T. Zhou, and J. Yu. 2009. Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. J. Photochem. Photobiol. B. 96:30–37.

    Article  CAS  PubMed  Google Scholar 

  • Whitelam, G. and K. Halliday. 2007. Light and plant development. Blackwell Publishing, Oxford, UK.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung-Min Oh.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, EY., Park, SA., Park, BJ. et al. Growth and antioxidant phenolic compounds in cherry tomato seedlings grown under monochromatic light-emitting diodes. Hortic. Environ. Biotechnol. 55, 506–513 (2014). https://doi.org/10.1007/s13580-014-0121-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-014-0121-7

Additional key words

Navigation