Skip to main content
Log in

Insights into renewable biohydrogen production from algal biomass: technical hurdles and economic analysis

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

With the rapid growth of the global population and economy, consumption for fossil resources like coal, oil, and natural gases has soared. The release of greenhouse gases from fossil fuels causes catastrophic changes in the Earth’s climate. Because of their non-renewability, fossil fuels will be depleted within a few decades. To replace fossil fuels, many researchers are motivated to develop alternative renewable energy sources. Recently, it has been discovered that microalgae have great promise for the generation of biodiesel and biohydrogen. Under specific circumstances, green microalgae use sunlight to split aqueous particles producing oxygenation and molecular hydrogen. Photosynthetic bacteria have also been suggested as a potential feedstock for the manufacture of biofuels, which is believed to be the best alternative to gasoline diesel. In this study, several techniques for producing biohydrogen from microalgae including indirect and direct biophotolysis, trans-esterification, and lipid synthesis are briefly reviewed. Hence, this article is useful for examining theories that may be applied in later research to produce hydrogen and biohydrogen from biomass resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The dataset generated and/or analyzed during the current study is available from the corresponding author (S. Venkatkumar), upon reasonable request.

References

  1. Azwar MY, Hussain MA, Abdul-Wahab AK (2014) Development of biohydrogen production by photo biological: fermentation and electrochemical processes: a review. Renew Sustain Energy Rev 31:158–173

    Article  Google Scholar 

  2. Saifuddin N, Priatharsini P (2016) Developments in bio-hydrogen production from algae: a review Res. J Appl Sci Eng Technol 12:968–982

    Google Scholar 

  3. Sherrif SA, Barbir FA, Veziroglu TN (2003) Principles of hydrogen energy production, storage and utilization. J Sci Ind Res 62:46–63

    Google Scholar 

  4. Chang FY, Lin CY (2004) Biohydrogen production using an up-flow anaerobic sludge blanket reactor. Int J Hydrogen Energy 29:33–39

    Article  Google Scholar 

  5. Badawi EY, Elkharsa RA, Abdelfattah EA (2023) Value proposition of bio-hydrogen production from different biomass sources. Energy Nexus 10:100194

    Article  Google Scholar 

  6. Moreno-Garrido I (2008) Microalgae immobilization: current techniques and uses. Bioresour Technol 99:3949–3964

    Article  Google Scholar 

  7. Dincer I (2012) Green methods for hydrogen production. Int J Hydrogen Energy 37(2):1954–19718

    Article  Google Scholar 

  8. Kotay SM, Das D (2007) Microbial hydrogen production with Bacillus coagulans IIT-BT S1 isolated from anaerobic sewage sludge. Bioresour Technol 98(6):1183–1190.9

    Article  Google Scholar 

  9. Manish S, Banerjee R (2008) Comparison of biohydrogen production processes. Int J Hydrogen Energy 33(1):279–286

    Article  Google Scholar 

  10. Boodhun BSF, Mudhoo A, Kumar G, Kim S-H, Lin C-Y (2017) Research perspectives on constraints, prospects and opportunities in biohydrogen production. Int J Hydrogen Energy 42:27471e81. https://doi.org/10.1016/j.ijhydene.2017.04.077

    Article  Google Scholar 

  11. Oey M, Sawyer AL, Ross IL, Hankamer B (2016) Challenges and opportunities for hydrogen production from microalgae. Plant Biotechnol J 14(7):1487–1499

    Article  Google Scholar 

  12. Menezes AO, Rodrigues MT, Zimmaro A, Borges LE, Fraga MA (2011) Production of renewable hydrogen from aqueous-phase reforming of glycerol over Pt catalysts supported on different oxides. Renew Energy 36(2):595–599

    Article  Google Scholar 

  13. Lakshmikandan M, Murugesan AG (2016) Enhancement of growth and biohydrogen production potential of Chlorella vulgaris MSU-AGM 14 by utilizing seaweed aqueous extract of Valoniopsispachynema. Renew. Energy 96:390e9. https://doi.org/10.1016/j.renene.2016.04.097

    Article  Google Scholar 

  14. Rahman SNA, Masdar MS, Rosli MI, Majlan EH, Husaini T, Kamarudin SK et al (2016) Overview biohydrogen technologies and application in fuel cell technology. Renew Sustain Energy Rev 66:137e62. https://doi.org/10.1016/j.rser.2016.07.047

    Article  Google Scholar 

  15. Ramanna L, Rawat I, Bux F (2017) Light enhancement strategies improve microalgal biomass productivity. Renew Sustain Energy Rev 80:765–773

    Article  Google Scholar 

  16. Lopez-Hidalgo AM, Alvarado-Cuevas ZD, De LeonRodriguez A (2018) Biohydrogen production from mixtures of agro-industrial wastes: chemometric analysis, optimization and scaling up. Energy 159:32–41. https://doi.org/10.1016/j.energy.2018.06.124

    Article  Google Scholar 

  17. Sarkar S, Kumar A (2010) Large-scale biohydrogen production from bio-oil. Bioresour Technol 101(19):7350–7361

    Article  Google Scholar 

  18. Kotasthane T (2017) Potential of microalgae for sustainable biofuel production. J Mar Sci Res Dev 7(2):223. https://doi.org/10.4172/2155-9910.1000223

  19. Xu C, Paone E, Rodríguez-Padrón D, Luque R, Mauriello F (2020) Reductive catalytic routes towards sustainable production of hydrogen, fuels and chemicals from biomass derived polyols. Renew Sustain Energy Rev 127:109852

    Article  Google Scholar 

  20. Moriarty P, Honnery D (2021) New energy technologies: microalgae, photolysis and airborne wind turbines. Sci 1(2):43

    Article  Google Scholar 

  21. Lunprom S, Phanduang O, Salakkam A (2019) A sequential process of anaerobic solid-state fermentation followed by dark fermentation for bio-hydrogen production from Chlorella sp. Int J Hydrogen Energy 44(6):3306–3316

    Article  Google Scholar 

  22. Faloye FD, Gueguim Kana EB, Schmidt S (2014) Optimization of biohydrogen inoculum development via a hybrid pH and microwave treatment technique–Semi pilot scale production assessment. Int J Hydrogen Energy 39(11):5607–5616

    Article  Google Scholar 

  23. Antal TK, Krendeleva TE, Rubin AB (2011) Acclimation of green algae to sulfur deficiency: underlying mechanisms and application for hydrogen production. Appl Microbiol Biotechnol 89(1):3–15

    Article  Google Scholar 

  24. Wadjeam P, Reungsang A, Imai T, Plangklang P (2019) Co-digestion of cassava starch wastewater with buffalo dung for bio-hydrogen production. Int J Hydrogen Energy 44(29):14694–14706

    Article  Google Scholar 

  25. Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25(4):455–501. https://doi.org/10.1111/j.1574-6976.2001.tb00587.x

    Article  Google Scholar 

  26. Kotay SM, Das D (2008) Biohydrogen as a renewable energy resource—prospects and potentials. Int J Hydrogen Energy 33(1):258–263

    Article  Google Scholar 

  27. Alves HJ, Junior CB, Niklevicz RR, Frigo EP, Frigo MS, Coimbra-Araújo CH (2013) Overview of hydrogen production technologies from biogas and the applications in fuel cells. Int J Hydrogen Energy 38(13):5215–5225

    Article  Google Scholar 

  28. Adamczyk M, Lasek J, Skawińska A (2016) CO2 Biofixation and Growth Kinetics of Chlorella vulgaris and Nannochloropsis gaditana. Appl Biochem Biotechnol 179(7):1248–1261

    Article  Google Scholar 

  29. Maneeruttanarungroj C, Lindblad P, Incharoensakdi A A newly isolated green alga, Tetraspora sp. CU2551, from Thailand with efficient hydrogen production. Int J Hydrogen Energy 35(24):13193–13199. https://doi.org/10.1016/j.ijhydene.2010.08.096

  30. Arimbrathodi SP, Javed MA, Hamouda MA, Hassan AA, Ahmed ME (2023) BioH2 production using microalgae: highlights on recent advancements from a bibliometric analysis. Water 15(1):185. https://doi.org/10.3390/w15010185

    Article  Google Scholar 

  31. Pfaffinger CE, Schöne D, Trunz S, Löwe H, Weuster-Botz D (2016) Model-based optimization of microalgae areal productivity in flat-plate gas-lift photobioreactors. Algal Res 20:153–163

    Article  Google Scholar 

  32. Morya R, Raj T, Lee Y, Pandey AK, Kumar D, Singhania RR, Singh S, Prakash J (2022) Recent updates in biohydrogen production strategies and life–cycle assessment for sustainable future. Bioresour Technol 366:128159

    Article  Google Scholar 

  33. Borowitzka MA (2013) High-value products from microalgae-their development and commercialisation. J Appl Phycol 25(3):743–756

    Article  Google Scholar 

  34. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M et al (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54(4):621–639

    Article  Google Scholar 

  35. Sforza E, Simionato D, Giacometti GM, Bertucco A, Morosinotto T (2012) Adjusted light and dark cycles can optimize photosynthetic efficiency in algae growing in photobioreactors. PloS One 7(6):e38975. https://doi.org/10.1371/journal.pone.0038975

  36. Zhang S, Zhang L, Xu G, Li F, Li X (2022) A review on biodiesel production from microalgae: influencing parameters and recent advanced technologies. Front Microbiol 13:970028

    Article  Google Scholar 

  37. Milledge JJ, Nielsen BV, Maneein S, Harvey PJ (2019) A brief review of anaerobic digestion of algae for bioenergy. Energies 12:1166

    Article  Google Scholar 

  38. Charisiou ND, Italiano C, Pino L, Sebastian V, Vita A, Goula MA (2020) Hydrogen production via steam reforming of glycerol over Rh/γ-Al2O3 catalysts modified with CeO2, MgO or La2O3. Renew Energy 162:908–925

    Article  Google Scholar 

  39. Wijffels RH, Barbosa MJ, Eppink MHM (2010) Microalgae for the production of bulk chemicals and biofuels. Biofuels Bioprod Biorefin 4(3):287–295

    Article  Google Scholar 

  40. Holladay J, Hu J, King DL, Wang Y (2009) An overview of hydrogen production technologies. Catalysis Today 139(4):244–260

    Article  Google Scholar 

  41. Sánchez-Bastardo N, Schlögl R, Ruland H (2021) Methane pyrolysis for zero-emission hydrogen production: a potential bridge technology from fossil fuels to a renewable and sustainable hydrogen economy. Ind Eng Chem Res 60(32):11855–11881

    Article  Google Scholar 

  42. Obradović A, Likozar B, Levec J (2013) Steam methane reforming over Ni-based pellet-type and Pt/Ni/Al 2O3 structured plate-type catalyst: intrinsic kinetics study. Ind Eng Chem Res 52(38):13597–13606

    Article  Google Scholar 

  43. Živković LA, Pohar A, Likozar B, Nikačević NM (2016) Kinetics and reactor modeling for CaO sorption-enhanced high-temperature water–gas shift [SE–WGS] reaction for hydrogen production. Appl Energy 178:844–855. https://doi.org/10.1016/j.apenergy.2016.06.071

    Article  Google Scholar 

  44. John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102(1):186–193. https://doi.org/10.1016/j.biortech.2010.06.139

    Article  Google Scholar 

  45. Wang C, Dou B, Chen H, Song Y, Xu Y, Du X et al (2013) Hydrogen production from steam reforming of glycerol by Ni–Mg–Al based catalysts in a fixed-bed reactor. Chem Eng J 220:133–142

    Article  Google Scholar 

  46. Chen CY, Liu CH, Lo YC, Chang JS (2011) Perspectives on cultivation strategies and photobioreactor designs for photo-fermentative hydrogen production. Bioresour Technol 102(18):8484–8492. https://doi.org/10.1016/j.biortech.2011.05.082

    Article  Google Scholar 

  47. Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102(1):71–81. https://doi.org/10.1016/j.biortech.2010.06.159

    Article  Google Scholar 

  48. Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14(2):557–577. https://doi.org/10.1016/j.rser.2009.10.009

    Article  Google Scholar 

  49. Yen HW, Hu IC, Chen CY, Ho SH, Lee DJ, Chang JSV (2013) Microalgae-based biorefinery--from biofuels to natural products. Bioresour Technol 135:166–174. https://doi.org/10.1016/j.biortech.2012

    Article  Google Scholar 

  50. Gonzalez-Fernandez C, Sialve B, Molinuevo-Salces B (2015) Anaerobic digestion of microalgal biomass: challenges, opportunities and research needs. Bioresour Technol 198:896–906. https://doi.org/10.1016/j.biortech.2015.09.095

    Article  Google Scholar 

  51. Chen W-H, Lin B-J, Huang M-Y, Chang J-S (2015) Thermochemical conversion of microalgal biomass into biofuels: a review. Bioresour Technol 184:314–327

    Article  Google Scholar 

  52. Kumar G, Shobana S, Chen W-H, Bach Q-V, Kim S-H, Atabanif AE, Chang J-S (2017) A review of thermochemical conversion of microalgal biomass for biofuels: chemistry and processes. Green Chem 19:44–67

    Article  Google Scholar 

  53. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001

    Article  Google Scholar 

  54. Chaumont D (1993) Biotechnology of algal biomass production: a review of systems for outdoor mass culture. J Appl Phycol 5(6):593–604

    Article  Google Scholar 

  55. Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57(3):287–293

    Article  Google Scholar 

  56. Zhou W, Chen P, Min M, Ma X, Wang J, Griffith R, Fida Hussain P, Peng QX, Li Y, Shi J, Meng J, Ruan R (2014) Environment-enhancing algal biofuel production using wastewaters. Renew Sustain Energy Rev 36:256–269

    Article  Google Scholar 

  57. Flickinger M, Drew S (1990) Encyclopedia of bioprocess technology: fermentation, biocatalysis, and bioseparation. https://apps.dtic.mil/sti/citations/AD1142284

  58. Fang HHP, Zhu H, Zhang T (2006) Phototrophic hydrogen production from glucose by pure and cocultures of Clostridium butyricum and Rhodobacter sphaeroides. Int J Hydrogen Energy 31(15):2223–2230

    Article  Google Scholar 

  59. Hoffmann JP (1998) Wastewater treatment with suspended and nonsuspended algae. J Phycol 34(5):757–763

    Article  Google Scholar 

  60. Chowdhury H, Loganathan B (2019) Third generation biofuels from microalgae: a review. Curr Opin Green Sustain Chem 20:39–44

    Article  Google Scholar 

  61. Oh YK, Seol EH, Kim JR, Park S (2003) Fermentative biohydrogen production by a new chemoheterotrophic bacterium Citrobacter sp. Y19. Int J Hydrogen Energy 28(12):1353–1359

    Article  Google Scholar 

  62. Plöhn M, Spain O, Sirin S et al (2021) Wastewater treatment by microalgae. Physiol Plant 173:568–578. https://doi.org/10.1111/ppl.13427

    Article  Google Scholar 

  63. Berner F, Heimann K, Sheehan M (2015) Microalgal biofilms for biomass production. J Appl Phycol 27:1793–1804. https://doi.org/10.1007/s10811-014-0489-x

    Article  Google Scholar 

  64. Mantzorou A, Ververidis F (2019) Microalgal biofilms: a further step over current microalgal cultivation techniques. Sci Total Environ 651:3187–3201. https://doi.org/10.1016/j.scitotenv.2018.09.355

    Article  Google Scholar 

  65. Li S, Li X, Ho S-H (2022) Microalgae as a solution of third world energy crisis for biofuels production from wastewater toward carbon neutrality: an updated review. Chemosphere 291:132863. https://doi.org/10.1016/j.chemosphere.2021.132863

    Article  Google Scholar 

  66. Gross M, Jarboe D, Wen Z (2015) Biofilm-based algal cultivation systems. Appl Microbiol Biotechnol 99:5781–5789. https://doi.org/10.1007/s00253-015-6736-5

    Article  Google Scholar 

  67. Pradhan RR, Pradhan RR, Das S et al (2017) Bioenergy combined with carbon capture potential by microalgae at flue gas-based carbon sequestration plant of NALCO as accelerated carbon sink. In: Goel M, Sudhakar M (eds) Carbon utilization: applications for the energy industry. Springer, Singapore, pp 231–244

    Chapter  Google Scholar 

  68. Schnurr PJ, Molenda O, Edwards E et al (2016) Improved biomass productivity in algal biofilms through synergistic interactions between photon flux density and carbon dioxide concentration. Bioresour Technol 219:72–79. https://doi.org/10.1016/j.biortech.2016.06.129

    Article  Google Scholar 

  69. Bohutskyi P, Liu K, Kessler BA et al (2014) Mineral and non-carbon nutrient utilization and recovery during sequential phototrophic-heterotrophic growth of lipid-rich algae. Appl Microbiol Biotechnol 98:5261–5273. https://doi.org/10.1007/s00253-014-5655-1

    Article  Google Scholar 

  70. Ryu B-G, Kim J, Farooq W et al (2014) Algal–bacterial process for the simultaneous detoxification of thiocyanate-containing wastewater and maximized lipid production under photoautotrophic/photoheterotrophic conditions. Bioresour Technol 162:70–79. https://doi.org/10.1016/j.biortech.2014.03.084

    Article  Google Scholar 

  71. Choudhary P, Malik A, Pant KK (2017) Algal biofilm systems: an answer to algal biofuel dilemma. In: Gupta SK, Malik A, Bux F (eds) Algal biofuels: recent advances and future prospects. Springer International Publishing, Cham, pp 77–96

    Chapter  Google Scholar 

  72. Yang X, Zhao Y, Zhang L, Wang Z, Zhao Z, Zhu W, Ma J, Shen B (2023) Effects of torrefaction pretreatment on the structural features and combustion characteristics of biomass-based fuel. Molecules. 28(12):4732. https://doi.org/10.3390/molecules28124732

    Article  Google Scholar 

  73. Brachi P, Chirone R, Miccio M, Ruoppolo G (2019) Fluidized bed torrefaction of biomass pellets: a comparison between oxidative and inert atmosphere. Powder Technol 357:97–107

    Article  Google Scholar 

  74. Zhang Q, Li X, Guo D et al (2018) Operation of a vertical algal biofilm enhanced raceway pond for nutrient removal and microalgae-based byproducts production under different wastewater loadings. Bioresour Technol 253:323–332. https://doi.org/10.1016/j.biortech.2018.01.014

    Article  Google Scholar 

  75. Khan S, Naushad M, Iqbal J et al (2022) Production and harvesting of microalgae and an efficient operational approach to biofuel production for a sustainable environment. Fuel 311:122543. https://doi.org/10.1016/j.fuel.2021.122543

    Article  Google Scholar 

  76. Kaloudas D, Pavlova N, Penchovsky R (2021) Phycoremediation of wastewater by microalgae: a review. Environ Chem Lett 19:2905–2920. https://doi.org/10.1007/s10311-021-01203-0

    Article  Google Scholar 

  77. Shen Y, Wang S, Ho S-H et al (2018) Enhancing lipid production in attached culture of a thermotolerant microalga Desmodesmus sp. F51 using light-related strategies. Biochem Eng J 129:119–128. https://doi.org/10.1016/j.bej.2017.09.017

    Article  Google Scholar 

  78. Durak H, Genel S (2023) Characterization of bio-oil and bio-char obtained from black cumin seed by hydrothermal liquefaction: investigation of potential as an energy source. Energy Sources A: Recovery Util. Environ Eff 45(2):3205–3215

    Article  Google Scholar 

  79. Sundar Rajan P, Gopinath KP, Arun J, Grace Pavithra K (2019) Hydrothermal liquefaction of Scenedesmus abundans biomass spent for sorption of petroleum residues from wastewater and studies on recycling of post hydrothermal liquefaction wastewater. Bioresour Technol 283:36–44. https://doi.org/10.1016/j.biortech.2019.03.077

    Article  Google Scholar 

  80. Meng Y, Du H, Lu S, Liu Y, Zhang J, Li H (2023) In situ synergistic catalysis hydrothermal liquefaction of spirulina by CuO-CeO2 and Ni-Co to improve bio-oil production. ACS Omega 8(9):8219–8226. https://doi.org/10.1021/acsomega.2c05619

    Article  Google Scholar 

  81. Suparmaniam U, Lam MK, Uemura Y et al (2019) Insights into the microalgae cultivation technology and harvesting process for biofuel production: a review. Renew Sustain Energy Rev 115:109361. https://doi.org/10.1016/j.rser.2019.109361

    Article  Google Scholar 

  82. Andrade DS, Amaral HF, Gavilanes FZ et al (2021) Microalgae: cultivation, biotechnological, environmental, and agricultural applications. In: Maddela NR, García Cruzatty LC, Chakraborty S (eds) Advances in the domain of environmental biotechnology: microbiological developments in industries, wastewater treatment and agriculture. Springer, Singapore, pp 635–701

    Chapter  Google Scholar 

  83. Prathima Devi M, Venkata Subhash G, Venkata Mohan S (2012) Heterotrophic cultivation of mixed microalgae for lipid accumulation and wastewater treatment during sequential growth and starvation phases: effect of nutrient supplementation. Renew Energy 43:276–283. https://doi.org/10.1016/j.renene.2011.11.021

    Article  Google Scholar 

  84. Cao Y, Leijie F, Mofrad A (2019) Combined-gasification of biomass and municipal solid waste in a fluidized bed gasifier. J Energy Inst 92(6):1683–1688

    Article  Google Scholar 

  85. Kumar R, Strezov V, Weldekidan H, He J, Singh S, Kan T, Dastjerdi B (2020) Lignocellulose biomass pyrolysis for bio-oil production: a review of biomass pre-treatment methods for production of drop-in fuels. Renew Sustain Energy Rev 123:109763

    Article  Google Scholar 

  86. Zhang L, Li Y, Liu X, Rena AN, Ding J (2019) Lignocellulosic hydrogen production using dark fermentation by Clostridium lentocellum strain Cel10 newly isolated from Ailuropoda melanoleuca excrement. RSC Adv 9:11179–11185

    Article  Google Scholar 

  87. Yin Y, Jun H, Wang J (2019) Fermentative hydrogen production from macroalgae Laminaria japonica pretreated by microwave irradiation. Int J Hydrogen Energy 44(21):10398–10406

    Article  Google Scholar 

  88. Dinesh Kumar M, Yukesh Kannah R, Kumar G, Sivashanmugam P, Rajesh Banu J (2020)A novel energetically efficient combinative microwave pretreatment for achieving profitable hydrogen production from marine macro algae (Ulva reticulate). Bioresour Technol 301:122759. https://doi.org/10.1016/j.biortech.2020.122759.

  89. Kucharska K, Rybarczyk P, Hołowacz I, Konopacka-Łyskawa D, Słupek E, Makoś P, Cieśliński H, Kamiński M (2020) Influence of alkaline and oxidative pre-treatment of waste corn cobs on biohydrogen generation efficiency via dark fermentation. Biomass Bioenergy 141:105691

    Article  Google Scholar 

  90. Rodríguez-Valderrama S, Escamilla-Alvarado C, Magnin J-P, Rivas-García P, Valdez-Vazquez I (2020) Batch biohydrogen production from dilute acid hydrolyzates of fruits-and-vegetables wastes and corn stover as co-substrates. Biomass Bioenergy 140:105666

    Article  Google Scholar 

  91. Casper T, D’Silva SAK, Kumar S, Kumar D, Isha A, Deb S, Yadav S, Illathukandy B, Chandra R, Vijay VK, Subbarao PMV, Bagi Z, Kovács KL, Yu L, Gandhi BP, Semple KT (2023) Biohydrogen production through dark fermentation from waste biomass: Current status and future perspectives on biorefinery development. Fuel 350:128842

    Article  Google Scholar 

  92. Zhang J, Xue D, Wang C, Fang D, Cao L, Gong C (2023) Genetic engineering for biohydrogen production from microalgae. iScience 26(8):107255. https://doi.org/10.1016/j.isci.2023.107255

    Article  Google Scholar 

  93. Kajol Goria, Har Mohan Singh, Anita Singh, Richa Kothari, V.V. Tyagi(2023) Insights into biohydrogen production from algal biomass: challenges, recent advancements and future directions. Int J Hydrogen Energy https://doi.org/10.1016/j.ijhydene.2023.03.174.

  94. Phuttaro C, Sawatdeenarunat C, Surendra KC, Boonsawang P, Chaiprapat S, Khanal SK (2019) Anaerobic digestion of hydrothermally-pretreated lignocellulosic biomass: influence of pretreatment temperatures, inhibitors and soluble organics on methane yield. Bioresour Technol 284:128–138. https://doi.org/10.1016/j.biortech.2019.03.114

    Article  Google Scholar 

  95. Olatunji KO, Ahmed NA, Ogunkunle O (2021) Optimization of biogas yield from lignocellulosic materials with different pretreatment methods: a review. Biotechnol Biofuels 14(1):159. https://doi.org/10.1186/s13068-021-02012-x

    Article  Google Scholar 

  96. Sharma A, Arya SK (2017) Hydrogen from algal biomass: a review of production process. Biotechnol Rep (Amst) 15:63–69. https://doi.org/10.1016/j.btre.2017.06.001

    Article  Google Scholar 

  97. Gonzalez-Ballester D, Luis Jurado-Oller J, Fernandez E (2015) Relevance of nutrient media composition for hydrogen production in Chlamydomonas. Photosynth Res 125:395–406

    Article  Google Scholar 

  98. Yan Z, Dai Z, Zheng W, Lei Z, Qiu J, Kuang W, Feng C (2021) Facile ammonium oxidation to nitrogen gas in acid wastewater by in situ photogenerated chlorine radicals. Water Res 205:117678

    Article  Google Scholar 

  99. Xuan J, He L, Wen W, Feng Y (2023) Hydrogenase and nitrogenase: key catalysts in biohydrogen production. Molecules. 28(3):1392. https://doi.org/10.3390/molecules28031392

    Article  Google Scholar 

  100. Vogt S, Lyon EJ, Shima S, Thauer RK (2008) The exchange activities of [Fe] hydrogenase (iron-sulfur-cluster-free hydrogenase) from methanogenic archaea in comparison with the exchange activities of [FeFe] and [NiFe] hydrogenases. J Biol Inorg Chem 13(1):97–106. https://doi.org/10.1007/s00775-007-0302-2

    Article  Google Scholar 

  101. Peters JW, Schut GJ, Boyd ES, Mulder DW, Shepard EM, Broderick JB, King PW, Adams MWW (2012) Enhancing hydrogen production of microalgae by redirecting electrons from photosystem I to hydrogenase. Biochim Biophys Acta, Mol Cell Res 1853:1350–1369

    Article  Google Scholar 

  102. Sun Y, He J, Yang G, Sun G, Sage V (2019) A review of the enhancement of biohydrogen generation by chemicals addition. Catalysts. 9(4):353

    Article  Google Scholar 

  103. Buŕen S, Rubio LM (2018) State of the art in eukaryotic nitrogenase engineering. FEMS Microbiol Lett 365(2):fnx274

    Article  Google Scholar 

  104. Einsle O, Rees DC (2020) Structural enzymology of nitrogenase enzymes. Chem Rev 120(12):4969–5004

    Article  Google Scholar 

  105. Giang TT, Lunprom S, Liao Q, Reungsang A, Salakkam A (2019) Improvement of hydrogen production from Chlorella sp. biomass by acid-thermal pretreatment. Peer J 7:e6637. https://doi.org/10.7717/peerj.6637

    Article  Google Scholar 

  106. Wieczorek N, Kucuker MA, Kuchta K (2014) Fermentative hydrogen and methane production from microalgal biomass (Chlorella vulgaris) in a two-stage combined process. Appl Energy 132:108e17

    Article  Google Scholar 

  107. Ghirardi ML Implementation of photobiological H2 production: the O2 sensitivity of hydrogenases. Photosynth Res 125(3):383–393. https://doi.org/10.1007/s11120-015-0158-1

  108. Bothe H, Schmitz O, Yates MG, Newton WE Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiol Mol Biol Rev 74(4):529–551. https://doi.org/10.1128/MMBR.00033-10

  109. Srirangan K, Pyne ME, Perry Chou C (2011) Biochemical and genetic engineering strategies to enhance hydrogen production in photosynthetic algae and cyanobacteria. Bioresour Technol 102(18):8589–8604. https://doi.org/10.1016/j.biortech.2011.03.087

    Article  Google Scholar 

  110. Liu C-H, Chang C-Y, Cheng C-L, Lee D-J, Chang J-S (2012) Fermentative hydrogen production by Clostridium butyricum CGS5 using carbohydrate-rich microalgal biomass as feedstock. Int J Hydrogen Energy 37:15458–15464

    Article  Google Scholar 

  111. Lakaniemi A-M, Tuovinen OH, Puhakka JA (2013) Anaerobic conversion of microalgal biomass to sustainable energy carriers e a review. Bioresour Technol 135:222–231

    Article  Google Scholar 

  112. Torzillo G, Scoma A, Faraloni C, Giannelli L (2015) Advances in the biotechnology of hydrogen production with the microalga Chlamydomonas reinhardtii. Crit Rev Biotechnol 35(4):485–496

    Article  Google Scholar 

  113. Levin DB, Chahine R (2010) Challenges for renewable hydrogen production from biomass. Int J Hydrogen Energy 35:4962–4969

    Article  Google Scholar 

  114. Gomez X, Moran A, Cuetos MJ, Sanchez ME (2006) The production of hydrogen by dark fermentation of municipal solid wastes and slaughterhouse waste: a two-phase process. J Power Sources 157:727 732

  115. Akkerman I, Janssen M, Rocha J, Wijffels RH (2002) Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int J Hydrogen Energy 27(11-12):1195–1208

    Article  Google Scholar 

  116. Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9(4):486–501

    Article  Google Scholar 

  117. Farghaly A, Tawfik A (2017) Simultaneous hydrogen and methane production through multi-phase anaerobic digestion of paperboard mill wastewater under different operating conditions. Appl Biochem Biotechnol 181:142–156

    Article  Google Scholar 

  118. Phanduang O, Lunprom S, Salakkam A, Reungsang A (2017) Anaerobic solid-state fermentation of bio-hydrogen from microalgal Chlorella sp. biomass. Int J Hydrogen Energy 42:9650–9659

    Article  Google Scholar 

  119. Motte J-C, Trably E, Escudie R, Hamelin J, Steyer J-P, Bernet N (2013) Total solids content: a key parameter of metabolic pathways in dry anaerobic digestion. Biotechnol Biofuels 6:164

    Article  Google Scholar 

  120. Koutinas AA, Wang RH (2005) Webb C (2005) Development of a process for the production of nutrient supplements for fermentations based on fungal autolysis. Enzyme Microb Technol 36:629–638

    Article  Google Scholar 

  121. Khanna N, Raleiras P, Lindblad P (2016) Fundamentals and recent advances in hydrogen production and nitrogen fixation in cyanobacteria. The Physiology of Microalgae:101–127

  122. Nicolaisen K, Hahn A, Schleiff E (2009) The cell wall in heterocyst formation by Anabaena sp. PCC 7120. J Basic Microbiol 49(1):5–24

    Article  Google Scholar 

  123. Srivastava N, Srivastava M, Mishra PK, Kausar MA, Saeed M, Gupta VK, Singh R, Ramteke PW (2020) Advances in nanomaterials induced biohydrogen production using waste biomass. Bioresour Technol 307:123094

    Article  Google Scholar 

  124. Bhatia SK, Jagtap SS, Bedekar AA, Bhatia RK, Rajendran K, Pugazhendhi A, Yang YH (2021) Renewable biohydrogen production from lignocellulosic biomass using fermentation and integration of systems with other energy generation technologies. Sci Total Environ 765:144429

    Article  Google Scholar 

  125. Sambusiti C, Bellucci M, Zabaniotou A, Beneduce L, Monlau F (2015) Algae as promising feedstocks for fermentative biohydrogen production according to a biorefinery approach: a comprehensive review. Renew Sustain Energy Rev 44:20–36

    Article  Google Scholar 

  126. Soares JF, Confortin TC, Todero I, Mayer FD, Mazutti MA (2020) Dark fermentative biohydrogen production from lignocellulosic biomass: technological challenges and future prospects. Renew Sustain Energy Rev 117:109484

    Article  Google Scholar 

  127. Compaoré J, Stal LJ (2010) Oxygen and the light-dark cycle of nitrogenase activity in two unicellular cyanobacteria. Environ Microbiol 12(1):54–62

    Article  Google Scholar 

  128. Kumar MD, Kannah RY, Kumar G, Sivashanmugam P, Banu JR (2020) A novel energetically efficient combinative microwave pretreatment for achieving profitable hydrogen production from marine macro algae (Ulva reticulate). Bioresour Technol 301:122759

    Article  Google Scholar 

  129. Eroglu E, Melis A (2011) Photobiological hydrogen production: Recent advances and state of the art. Bioresour Technol 102(18):8403–8413. https://doi.org/10.1016/j.biortech.2011.03.026

    Article  Google Scholar 

  130. Kapdan IK, Kargi F, Oztekin R, Argun H (2009) Bio-hydrogen production from acid hydrolyzed wheat starch by photo-fermentation using different Rhodobacter sp. Int J Hydrogen Energy 34(5):2201–2207

    Article  Google Scholar 

  131. Bundschuh J, Chen G (2014) Sustainable energy solutions in agriculture. CRC Press

    Book  Google Scholar 

  132. Wang J, Yin Y (2018) Fermentative hydrogen production using pretreated microalgal biomass as feedstock. Microb Cell Fact 17(1):22. https://doi.org/10.1186/s12934-018-0871-5

    Article  Google Scholar 

  133. Burrows EH, Chaplen FWR, Ely RL (2011) Effects of selected electron transport chain inhibitors on 24-h hydrogen production by Synechocystis sp. PCC 6803. Bioresour Technol 102:3062–3070. https://doi.org/10.1016/j.biortech.2010.10.042

    Article  Google Scholar 

  134. El-Sheekh M, Elshobary M, Abdullah E, Abdel-Basset R, Metwally M (2023) Application of a novel biological-nanoparticle pretreatment to Oscillatoria acuminata biomass and coculture dark fermentation for improving hydrogen production. Microb Cell Fact 22(1):34. https://doi.org/10.1186/s12934-023-02036-y

  135. Ban S, Lin W, Wu F, Luo J (2018) Algal-bacterial cooperation improves algal photolysis-mediated hydrogen production. Bioresour Technol 251:350–357

    Article  Google Scholar 

  136. Maurya R, Chokshi K, Ghosh T, Trivedi K, Pancha I, Kubavat D, Mishra S, Ghosh A (2016) Lipid extracted microalgal biomass residue as a fertilizer substitute for Zea mays L. Front Plant Sci 6:1266

    Article  Google Scholar 

  137. Bhatia SK, Rajesh Banu J, Singh V, Kumar G, Yang YH (2023) Algal biomass to biohydrogen: pretreatment, influencing factors, and conversion strategies. Bioresour Technol 368:128332. https://doi.org/10.1016/j.biortech.2022.128332

    Article  Google Scholar 

  138. Maurya R, Paliwal C, Ghosh T, Pancha I, Chokshi K, Mitra M, Ghosh A, Mishra S (2016) Applications of de-oiled microalgal biomass towards development of sustainable biorefinery. Bioresour Technol 214:787–796. https://doi.org/10.1016/j.biortech.2016.04.115

    Article  Google Scholar 

  139. Fan X, Wang H, Guo R, Yang D, Zhang Y, Yuan X, Qiu Y, Yang Z, Zhao X (2016) Comparative study of the oxygen tolerance of Chlorella pyrenoidosa and Chlamydomonas reinhardtii CC124 in photobiological hydrogen production. Algal Research 16:240–244

    Article  Google Scholar 

  140. Vargas SR, Zaiat M, do Carmo Calijuri M (2020) Influence of culture age, ammonium and organic carbon in hydrogen production and nutrient removal by Anabaena sp. in nitrogen-limited cultures. Int J Hydrogen Energy 45(55):30222–30231

    Article  Google Scholar 

  141. Kumar G, Nguyen DD, Sivagurunathan P, Kobayashi T, Xu K, Chang SW (2018) Cultivation of microalgal biomass using swine manure for biohydrogen production: Impact of dilution ratio and pretreatment. Bioresour Technol 260:16–22. https://doi.org/10.1016/j.biortech.2018.03.029

    Article  Google Scholar 

  142. Kumar G, Shobana S, Nagarajan D, Lee DJ, Lee KS, Lin CY, Chen CY, Chang JS (2018) Biomass based hydrogen production by dark fermentation-recent trends and opportunities for greener processes. Curr Opin Biotechnol 50:136–145. https://doi.org/10.1016/j.copbio.2017.12.024

    Article  Google Scholar 

  143. Naresh Kumar A, Min B, Venkata Mohan S (2018) Defatted algal biomass as feedstock for short chain carboxylic acids and biohydrogen production in the biorefinery format. Bioresour Technol 269:408–416. https://doi.org/10.1016/j.biortech.2018.08.059

    Article  Google Scholar 

  144. Skjånes K, Andersen U, Heidorn T, Borgvang SA (2016) Design and construction of a photobioreactor for hydrogen production, including status in the field. J Appl Phycol 28:2205–2223. https://doi.org/10.1007/s10811-016-0789-4

    Article  Google Scholar 

  145. Šafarič L, Björn A, Svensson BH, Bastviken D, Shakeri Yekta S (2023) Rheology, micronutrients, and process disturbance in continuous stirred-tank biogas reactors. Ind Eng Chem Res 62(43):17372–17384

    Article  Google Scholar 

  146. Ceron Chafla P, de Vrieze J, Rabaey K, van Lier J (2023) Steering the product spectrum in high pressure anaerobic processes: CO. Biotechnol Biofuels Bioprod 16(1):27

    Article  Google Scholar 

  147. Jurado-Oller JL, Dubini A, Galván A, Fernández E, González-Ballester D (2015) Low oxygen levels contribute to improve photohydrogen production in mixotrophic non-stressed Chlamydomonas cultures. Biotechnol Biofuels 8:149. https://doi.org/10.1186/s13068-015-0341-9

    Article  Google Scholar 

  148. Ren N, Wang A, Cao G, Xu J, Gao L (2009) Bioconversion of lignocellulosic biomass to hydrogen: potential and challenges. Biotechnol Adv 27(6):1051–1060. https://doi.org/10.1016/j.biotechadv.2009.05.007

    Article  Google Scholar 

  149. Zhang ZP, Show KY, Tay JH, Liang DT, Lee DJ, Jiang WJ (2006) Effect of hydraulic retention time on biohydrogen production and anaerobic microbial community. Process Biochem 41(10):2118–2123

    Article  Google Scholar 

  150. Kyazze G, Martinez-Perez N, Dinsdale R, Premier GC, Hawkes FR, Guwy AJ et al (2006) Influence of substrate concentration on the stability and yield of continuous biohydrogen production. Biotechnol Bioeng 93(5):971–979

    Article  Google Scholar 

  151. Kothari R, Kumar V, Pathak VV, Ahmad S, Aoyi O, Tyagi VV (2017) A critical review on factors influencing fermentative hydrogen production. Front Biosci (Landmark Ed) 22(8):1195–1220. https://doi.org/10.2741/4542

    Article  Google Scholar 

  152. Luo G, Talebnia F, Karakashev D, Xie L, Zhou Q, Angelidaki I (2011) Enhanced bioenergy recovery from rapeseed plant in a biorefinery concept. Bioresour Technol 102(2):1433–1439. https://doi.org/10.1016/j.biortech.2010.09.071

    Article  Google Scholar 

  153. Arashiro LT, Ferrer I, Pániker CC, Gómez-Pinchetti JL, Rousseau DPL, Van Hulle SWH et al (2020) Natural pigments and biogas recovery from microalgae grown in wastewater. ACS Sustain Chem Eng 8(29):10691–10701

    Article  Google Scholar 

  154. Choudhary P, Assemany PP, Naaz F, Bhattacharya A, Castro JS, Couto EADC, Calijuri ML, Pant KK, Malik A (2020) A review of biochemical and thermochemical energy conversion routes of wastewater grown algal biomass. Sci Total Environ 726:137961. https://doi.org/10.1016/j.scitotenv.2020.137961

    Article  Google Scholar 

  155. Wahlen BD, Wendt LM, Murphy A, Thompson VS, Hartley DS, Dempster T, Gerken H (2020) Preservation of microalgae, lignocellulosic biomass blends by ensiling to enable consistent year-round feedstock supply for thermochemical conversion to biofuels. Front Bioeng Biotechnol 8:316. https://doi.org/10.3389/fbioe.2020.00316

    Article  Google Scholar 

  156. Shobana S, Kumar G, Bakonyi P, Saratale GD, Al-Muhtaseb AH, Nemestóthy N, Bélafi-Bakó K, Xia A, Chang JS (2017) A review on the biomass pretreatment and inhibitor removal methods as key-steps towards efficient macroalgae-based biohydrogen production. Bioresour Technol 244(Pt 2):1341–1348. https://doi.org/10.1016/j.biortech.2017.05.172

    Article  Google Scholar 

  157. Winkler M, Duan J, Rutz A, Felbek C, Scholtysek L, Lampret O, Jaenecke J, Apfel UP, Gilardi G, Valetti F, Fourmond V, Hofmann E, Léger C, Happe T (2021) A safety cap protects hydrogenase from oxygen attack. Nat Commun 12(1):756. https://doi.org/10.1038/s41467-020-20861-2

    Article  Google Scholar 

  158. Betts L, Dappozze F, Guillard C (2018) Understanding the photocatalytic degradation by P25 TiO2 of acetic acid and propionic acid in the pursuit of alkane production. Appl Catal Gen 554:35–43

    Article  Google Scholar 

  159. Agyekum EB, Nutakor C, Agwa AM, Kamel S (2022) A critical review of renewable hydrogen production methods: factors affecting their scale-up and its role in future energy generation. Membranes (Basel) 12(2):173. https://doi.org/10.3390/membranes12020173

    Article  Google Scholar 

  160. Sun Y, Yang G, Zhang L, Sun Z (2017) Fischer-Tropsch synthesis in a microchannel reactor using mesoporous silica supported bimetallic Co-Ni catalyst: process optimization and kinetic modeling. Chem Eng Process: Process Intensification 119:44–61

    Article  Google Scholar 

  161. Mahmood T, Hussain N, Shahbaz A, Mulla SI, Iqbal HMN, Bilal M (2023) Sustainable production of biofuels from the algae-derived biomass. Bioprocess Biosyst Eng 46(8):1077–1097

    Article  Google Scholar 

  162. Mehta P, Sahil K, Sarao LK, Jangra MS, Bhardwaj SK (2023) Algal biofuels: clean energy to combat the climate change. Basic Research Advancement for Algal Biofuels Production, pp 187–210

    Google Scholar 

  163. Mthethwa N, Nasr M, Bux F, Kumari S (2018) Utilization of Pistia stratiotes [aquatic weed] for fermentative biohydrogen: electron-equivalent balance, stoichiometry, and cost estimation. Int J Hydrogen Energy 43(17):8243–8255

    Article  Google Scholar 

  164. Yun Y-M, Lee M-K, Im S-W, Marone A, Trably E, Shin S-R, Kim M-G, Cho S-K, Kim D-H (2018) Biohydrogen production from food waste: current status, limitations, and future perspectives. Bioresour Technol 248:79–87

    Article  Google Scholar 

  165. Ma CL, He YC (2021) Microbial lipid production from lignocellulosic biomass pretreated by effective pretreatment. In: Emerging Technologies for Biorefineries, Biofuels, and Value-Added Commodities, pp 175–206

    Chapter  Google Scholar 

  166. Deng S, Wang B, Zhang W, Su S, Dong H, Banat IM, Sun S, Guo J, Liu W, Wang L, She Y, Zhang F (2021) Elucidate microbial characteristics in a full-scale treatment plant for offshore oil produced wastewater. PloS One 16(8):e0255836. https://doi.org/10.1371/journal.pone.0255836

    Article  Google Scholar 

  167. Lin C-Y, Nguyen TM-L, Chu C-Y, Leu H-J, Lay C-H (2018) Fermentative biohydrogen production and its byproducts: a mini review of current technology developments. Renew Sustain Energy Rev 83:4215–4220

    Article  Google Scholar 

  168. Ahmed SF, Rafa N, Mofijur M, Badruddin IA, Inayat A, Ali MS, et al (2021) Biohydrogen production from biomass sources: metabolic pathways and economic analysis. Front Energy Res. 9.

  169. Chandel AK, Garlapati VK, Jeevan Kumar SP, Hans M, Singh AK, Kumar S (2020) The role of renewable chemicals and biofuels in building a bioeconomy. Biofuels Bioprod Biorefin 14(4):830–844

    Article  Google Scholar 

  170. Nikolaidis P, Poullikkas A (2017) A comparative overview of hydrogen production processes. Renew Sustain Energy Rev 67:597–611

    Article  Google Scholar 

  171. Phanduang O, Lunprom S, Salakkam A, Liao Q, Reungsang A (2019) Improvement in energy recovery from Chlorella sp. biomass by integrated dark-photo biohydrogen production and dark fermentation-anaerobic digestion processes. Int J Hydrogen Energy 44(43):23899–23911

    Article  Google Scholar 

  172. Rajesh Banu J, Ginni G, Kavitha S, Yukesh Kannah R, Adish Kumar S, Bhatia SK, Kumar G (2021) Integrated biorefinery routes of biohydrogen: possible utilization of acidogenic fermentative effluent. Bioresour Technol 319:124241. https://doi.org/10.1016/j.biortech.2020.124241

    Article  Google Scholar 

  173. Quashie FK, Feng K, Fang A, Agorinya S, Antwi P, Kabutey FT, Xing D (2021) Efficiency and key functional genera responsible for simultaneous methanation and bioelectricity generation within a continuous stirred microbial electrolysis cell (CSMEC) treating food waste. Sci Total Environ 757:143746. https://doi.org/10.1016/j.scitotenv.2020.143746

    Article  Google Scholar 

  174. Tenca A, Schievano A, Perazzolo F, Adani F, Oberti R (2011) Biohydrogen from thermophilic co-fermentation of swine manure with fruit and vegetable waste: maximizing stable production without pH control. Bioresour Technol 102(18):8582–8588. https://doi.org/10.1016/j.biortech.2011.03.102

    Article  Google Scholar 

  175. Xia A, Cheng J, Ding L, Lin R, Huang R, Zhou J, Cen K (2013) Improvement of the energy conversion efficiency of Chlorella pyrenoidosa biomass by a three-stage process comprising dark fermentation, photofermentation, and methanogenesis. Bioresour Technol 146:436–443. https://doi.org/10.1016/j.biortech.2013.07.077

    Article  Google Scholar 

  176. Xia A, Cheng J, Lin R, Lu H, Zhou J, Cen K (2013) Comparison in dark hydrogen fermentation followed by photo hydrogen fermentation and methanogenesis between protein and carbohydrate compositions in Nannochloropsis oceanica biomass. Bioresour Technol 138:204–213. https://doi.org/10.1016/j.biortech.2013.03.171

    Article  Google Scholar 

  177. Hidalgo D, Martín-Marroquín JM (2023) Enhanced production of biohydrogen through combined operational strategies. JOM 75(3):718–726

    Article  Google Scholar 

  178. Whangchai K, Souvannasouk V, Bhuyar P, Ramaraj R, Unpaprom Y (2021) Biomass generation and biodiesel production from macroalgae grown in the irrigation canal wastewater. Water Sci Technol 84(10-11):2695–2702. https://doi.org/10.2166/wst.2021.195

    Article  Google Scholar 

  179. Marangon BB, Magalhães IB, Pereira ASAP, Silva TA, Gama RCN, Ferreira J, Castro JS, Assis LR, Lorentz JF, Calijuri ML (2023) Emerging microalgae-based biofuels: Technology, life-cycle and scale-up. Chemosphere. 326:138447. https://doi.org/10.1016/j.chemosphere.2023.138447

    Article  Google Scholar 

  180. Arashiro LT, Ferrer I, Pániker CC, Gómez-Pinchetti JL, Rousseau DPL, Van Hulle SWH, Garfí M (2020) Natural pigments and biogas recovery from microalgae grown in wastewater. ACS Sustain Chem Eng 8(29):10691–10701

    Article  Google Scholar 

  181. Sahu S, Kaur A, Singh G, Kumar Arya S (2023) Harnessing the potential of microalgae-bacteria interaction for eco-friendly wastewater treatment: a review on new strategies involving machine learning and artificial intelligence. J Environ Manage 346:119004. https://doi.org/10.1016/j.jenvman.2023.119004

    Article  Google Scholar 

  182. Patwardhan SB, Pandit S, Ghosh D et al (2022) A concise review on the cultivation of microalgal biofilms for biofuel feedstock production. Biomass Conv Bioref. https://doi.org/10.1007/s13399-022-02783-9

  183. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97(12):6640–6645

    Article  Google Scholar 

  184. Qu X, Zeng H, Gao Y, Mo T, Li Y (2022) Bio-hydrogen production by dark anaerobic fermentation of organic wastewater. Front Chem 10:978907. https://doi.org/10.3389/fchem.2022.978907

    Article  Google Scholar 

  185. Je S, Yamaoka Y (2022) Biotechnological approaches for biomass and lipid production using microalgae Chlorella and its future perspectives. J Microbiol Biotechnol 32(11):1357–1372. https://doi.org/10.4014/jmb.2209.09012

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, India, for the technical support provided.

Author information

Authors and Affiliations

Authors

Contributions

Venkat Kumar S. had the idea for the article. All authors contributed to the literature search and data analysis. The first draft of the manuscript was written by Soghra Nashath Omer and all authors commented and critically revised the work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Venkatkumar Shanmugam.

Ethics declarations

Ethical approval and consent to participate

Not applicable.

Consent of publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omer, S.N., Saravanan, P., Kumar, P. et al. Insights into renewable biohydrogen production from algal biomass: technical hurdles and economic analysis. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-023-05263-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-05263-w

Keywords

Navigation