Skip to main content

Algal Bioeconomy: A Platform for Clean Energy and Fuel

  • Chapter
  • First Online:
Biorefineries: A Step Towards Renewable and Clean Energy

Abstract

Global industrial operations and commodity productions rely on fossil fuels that are non-renewable resources, projected to be exhausted by 2050. To mitigate and compensate for the high-end use of fossil fuel consumption, the use of renewable energy resources, i.e., biomass, wind, and solar energy is getting attention recently. Using photosynthetic organisms, algae is a viable alternative to produce food, feed, and fuels as algae are considered as one of the most robust species and commercially exploited for CO2 capturing or for water clean-up (i.e., remove pollutants and heavy metals at industrial settings). Very few produce high-value products using algae, e.g., carotenoids, vitamins, and pharmaceuticals that required extensive process integration and clean operations, but biohydrogen production using the algal platform was very scarce. Considering the future clean, green, and bio-circular economy, using algal technology to produce clean fuel hydrogen will be attractive and scalable. This chapter has summarized and culminated the literature about algal microbiology, mechanisms involved in the production of biohydrogen techniques, and the various secondary metabolites co-produced during the process of the algal hydrogen production platform. The chapter also listed and discussed the effect of various parameters on improving the biohydrogen yield and knowledge gaps to address shortly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATP:

Adenosine triphosphate

C/N:

Carbon/nitrogen

Cyt. b6f:

Cytochrome b6f complex

EPBR:

Electrochemical photobioreactor

FBR:

Flat-panel bioreactor

FCEVs:

Fuel cell electric vehicles

Fd:

Ferredoxin

GHG:

Greenhouse gases

H+:

Protons

HEVs :

Hybrid electric vehicles

NAD+:

Nicotinamide adenine dinucleotide

NADP:

Nicotinamide adenine dinucleotide phosphate

NADPH:

Reduced form of NADP+

PBR:

Packed-bed bioreactor

PC:

Plastocyanin

pH:

Power of hydrogen or potential for hydrogen

PQ:

Plastoquinone

PS I:

Photosystem I

PS II:

Photosystem II

PS:

Photosystem

PUFA:

Polyunsaturated fatty acids

STBR:

Stirred-tank bioreactor

TBR:

Tubular bioreactor

References

  • Akkerman I (2002) Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int J Hydrog Energy 27(11-12):1195–1208

    Article  CAS  Google Scholar 

  • Al-Shorgani NKN, Tibin E-M, Ali E, Hamid AA, Yusoff WMW, Kalil MS (2013) Biohydrogen production from agroindustrial wastes via Clostridium saccharoperbutyl acetonicum N1-4 (ATCC 13564). Clean Techn Environ Policy 16(1):11–21

    Article  CAS  Google Scholar 

  • Antonopoulou G, Gavala HN, Skiadas IV, Angelopoulos K, Lyberatos G (2008a) Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresour Technol 99(1):110–119

    Article  CAS  PubMed  Google Scholar 

  • Antonopoulou G, Stamatelatou K, Venetsaneas N, Kornaros M, Lyberatos G (2008b) Biohydrogen and methane production from cheese whey in a two-stage anaerobic process. Ind Eng Chem Res 47(15):5227–5233

    Article  CAS  Google Scholar 

  • Asami K, Fujioka H, Yamamoto T, Ohtaguchi K (2011) Production of hydrogen by thermophilic cyanobacterium Synechococcus sp. strain H-1. J Chem Eng Jpn 44(1):37–43

    Article  CAS  Google Scholar 

  • Attard TM, Clark JH, McElroy CR (2020) Recent developments in key biorefinery areas. Curr Opin Green Sustainable Chem 21:64–74

    Article  Google Scholar 

  • Balat H, Kırtay E (2010) Hydrogen from biomass – present scenario and future prospects. Int J Hydrog Energy 35(14):7416–7426

    Article  CAS  Google Scholar 

  • Benabda O, M’hir S, Kasmi M, Mnif W, Hamdi M (2019) Optimization of protease and amylase production by Rhizopus oryzae cultivated on bread waste using solid-state fermentation. J Chem 2019:1–9

    Article  CAS  Google Scholar 

  • Benemann JR (1997) CO2 mitigation with microalgae systems. Energy Convers Manag 38:S475–S479

    Article  CAS  Google Scholar 

  • Benemann JR (1999) The technology of biohydrogen. In: Zaborsky OR, Benemann JR, Matsunaga T, Miyake J, San Pietro A (eds) BioHydrogen. Springer, Boston, pp 19–30

    Chapter  Google Scholar 

  • Benemann JR, Berenson JA, Kaplan NO, Kamen MD (1973) Hydrogen evolution by a chloroplast-ferredoxin-hydrogenase system. Proc Natl Acad Sci U S A 70(8):2317–2320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berman-Frank I, Lundgren P, Falkowski P (2003) Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Res Microbiol 154(3):157–164

    Article  CAS  PubMed  Google Scholar 

  • Bishop M, Zubeck H (2012) Evaluation of microalgae for use as nutraceuticals and nutritional supplements. J Nutr Food Sci 2(5):1000147

    Google Scholar 

  • Chader S, Hacene H, Agathos SN (2009) Study of hydrogen production by three strains of Chlorella isolated from the soil in the Algerian Sahara. Int J Hydrog Energy 34(11):4941–4946

    Article  CAS  Google Scholar 

  • Chandrasekhar K, Venkata Mohan S (2014a) Bio-electrohydrolysis as a pretreatment strategy to catabolize complex food waste in closed circuitry: function of electron flux to enhance acidogenic biohydrogen production. Int J Hydrog Energy 39(22):11411–11422

    Article  CAS  Google Scholar 

  • Chandrasekhar K, Venkata Mohan S (2014b) Induced catabolic bio-electrohydrolysis of complex food waste by regulating external resistance for enhancing acidogenic biohydrogen production. Bioresour Technol 165:372–382

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekhar K, Lee YJ, Lee DW (2015) Biohydrogen production: strategies to improve process efficiency through microbial routes. Int J Mol Sci 16(4):8266–8293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandrasekhar K, Kumar S, Lee BD, Kim SH (2020) Waste based hydrogen production for circular bioeconomy: current status and future directions. Bioresour Technol 302:122920

    Article  CAS  PubMed  Google Scholar 

  • Chen C-Y, Yang MH, Yeh KL, Liu CH, Chang JS (2008) Biohydrogen production using sequential two-stage dark and photo fermentation processes. Int J Hydrog Energy 33(18):4755–4762

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  PubMed  Google Scholar 

  • Christiansen L, Bois von Kursk O, Haselip JA (2018) UN Environment Emissions Gap Report 2018. UNEP DTU Partnership, https://orbit.dtu.dk/en/publications/un-environment-emissions-gap-report-2018

  • Dasgupta CN, Jose Gilbert J, Lindblad P, Heidorn T, Borgvang SA, Skjanes K, Das D (2010) Recent trends on the development of photobiological processes and photobioreactors for the improvement of hydrogen production. Int J Hydrog Energy 35(19):10218–10238

    Article  CAS  Google Scholar 

  • Ding C, Yang KL, He J (2016) Biological and fermentative production of hydrogen. In: Luque R, Lin CSK, Wilson K, Clark J (eds) Handbook of biofuels production. Woodhead Publishing, Cambridge, pp 303–333

    Google Scholar 

  • Durmaz Y (2007) Vitamin E (α-tocopherol) production by the marine microalgae Nannochloropsis oculata (Eustigmatophyceae) in nitrogen limitation. Aquaculture 272(1-4):717–722

    Article  CAS  Google Scholar 

  • Efremenko EN, Nikolskaya AB, Lyagin IV, Senko OV, Makhlis TA, Stepanov NA, Maslova OV, Mamedova F, Varfolomeev SD (2012) Production of biofuels from pretreated microalgae biomass by anaerobic fermentation with immobilized Clostridium acetobutylicum cells. Bioresour Technol 114:342–348

    Article  CAS  PubMed  Google Scholar 

  • Enamala MK, Enamala S, Chavali M, Donepudi J, Yadavalli R, Kolapalli B, Aradhyula TV, Velpuri J, Kuppam C (2018) Production of biofuels from microalgae - a review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae. Renew Sust Energ Rev 94:49–68

    Article  CAS  Google Scholar 

  • Esper B, Badura A, Rogner M (2006) Photosynthesis as a power supply for (bio-)hydrogen production. Trends Plant Sci 11(11):543–549

    Article  CAS  PubMed  Google Scholar 

  • Evvyernie D, Morimoto K, Karita S, Kimura T, Sakka K, Ohmiya K (2001) Conversion of chitinous wastes to hydrogen gas by Clostridium paraputrificum M-21. J Biosci Bioeng 91(4):339–343

    Article  CAS  PubMed  Google Scholar 

  • Fakas S, Papanikolaou S, Batsos A, Galiotou-Panayotou M, Mallouchos A, Aggelis G (2009) Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass Bioenergy 33(4):573–580

    Article  CAS  Google Scholar 

  • Fang HH, Liu H (2002) Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour Technol 82(1):87–93

    Article  CAS  PubMed  Google Scholar 

  • Ghirardi ML, Dubini A, Yu J, Maness PC (2009) Photobiological hydrogen-producing systems. Chem Soc Rev 38(1):52–61

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Roy S (2019) Novel integration of biohydrogen production with fungal biodiesel production process. Bioresour Technol 288:121603

    Article  CAS  PubMed  Google Scholar 

  • Gray CT, Gest H (1965) Biological formation of molecular hydrogen. Science 148(3667):186–192

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez-Wing MT, Silaban A, Barnett J, Rusch KA (2014) Light irradiance and spectral distribution effects on microalgal bioreactors. Eng Life Sci 14(6):574–580

    Article  CAS  Google Scholar 

  • Hallenbeck PC (2012) Hydrogen production by cyanobacteria. In: Hallenbeck PC (ed) Microbial technologies in advanced biofuels production. Springer, Boston, pp 15–28

    Chapter  Google Scholar 

  • Hallenbeck PC (2013) Fundamentals of biohydrogen. In: Pandey A, Chang J-S, Hallenbecka PC, Larroche C (eds) Biohydrogen. Elsevier, Amsterdam, pp 25–43

    Chapter  Google Scholar 

  • Hallenbeck PC (2014) Microbial paths to renewable hydrogen production. Biofuels 2(3):285–302

    Article  CAS  Google Scholar 

  • Han W, Hu Y, Li S, Li F, Tang J (2016) Biohydrogen production in the suspended and attached microbial growth systems from waste pastry hydrolysate. Bioresour Technol 218:589–594

    Article  CAS  PubMed  Google Scholar 

  • Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1(5):763–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasnaoui S, Pauss A, Abdi N, Grib H, Mameri N (2020) Enhancement of bio-hydrogen generation by Spirulina via an electrochemical photo-bioreactor (EPBR). Int J Hydrog Energy 45(11):6231–6242

    Article  CAS  Google Scholar 

  • Hemaiswarya S, Raja R, Carvalho IS, Ravikumar R, Zambare V, Barh D (2012) An Indian scenario on renewable and sustainable energy sources with emphasis on algae. Appl Microbiol Biotechnol 96(5):1125–1135

    Article  CAS  PubMed  Google Scholar 

  • Hemschemeier A, Melis A, Happe T (2009) Analytical approaches to photobiological hydrogen production in unicellular green algae. Photosynth Res 102(2-3):523–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holladay JD, Hu J, King DL, Wang Y (2009) An overview of hydrogen production technologies. Catal Today 139(4):244–260

    Article  CAS  Google Scholar 

  • Hosseini SE, Wahid MA (2016) Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development. Renew Sust Energ Rev 57:850–866

    Article  CAS  Google Scholar 

  • Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106(9):4044–4098

    Article  CAS  PubMed  Google Scholar 

  • Hydrogen Generation Market (2015) Hydrogen generation market by generation, application (petroleum refinery, ammonia production, methanol production, transportation, power generation), technology (steam reforming, water electrolysis, & others), storage, and region - Global forecast to 2023, EP1708

    Google Scholar 

  • IEA (2019) World energy outlook 2019, IEA, Paris. https://www.iea.org/reports/world-energy-outlook-2019

  • Jin E, Polle J, Lee HK, Sang M, Hyun C, A. (2003) Xanthophylls in microalgae: from biosynthesis to biotechnological mass production and application. J Microbiol Biotechnol 13:165–174

    CAS  Google Scholar 

  • Jones CS, Mayfield SP (2012) Algae biofuels: versatility for the future of bioenergy. Curr Opin Biotechnol 23(3):346–351

    Article  CAS  PubMed  Google Scholar 

  • Kadier A, Kalil MS, Abdeshahian P, Chandrasekhar K, Mohamed A, Azman NF, Logroño W, Simayi Y, Hamid AA (2016) Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals. Renew Sust Energ Rev 61:501–525

    Article  CAS  Google Scholar 

  • Kadier A, Jiang Y, Lai B, Rai PK, Chandrasekhar K, Mohamed A, Kalil MS (2018) Biohydrogen production in microbial electrolysis cells from renewable resources. In: Bioenergy and biofuels. CRC Press, Boca Raton, pp 331–356

    Chapter  Google Scholar 

  • Kakarla R, Kuppam C, Pandit S, Kadier A, Velpuri J (2017) Algae—the potential future fuel: challenges and prospects. In: Kalia VC, Kumar P (eds) Microbial applications, vol 1. Springer, Cham, pp 239–251

    Chapter  Google Scholar 

  • Kalamaras CM, Efstathiou AM (2013) Hydrogen production technologies: current state and future developments. Conf Pap Energy 2013:1–9

    Article  CAS  Google Scholar 

  • Karsten U, Lembcke S, Schumann R (2007) The effects of ultraviolet radiation on photosynthetic performance, growth and sunscreen compounds in aeroterrestrial biofilm algae isolated from building facades. Planta 225(4):991–1000

    Article  CAS  PubMed  Google Scholar 

  • Khanal S (2003) Biological hydrogen production: effects of pH and intermediate products. Int J Hydrog Energy 29(11):1123–1131

    Google Scholar 

  • Khanna N, Das D (2013) Biohydrogen production by dark fermentation. Wiley Interdiscip Rev 2(4):401–421

    CAS  Google Scholar 

  • Khorcheska B, Anastasia G, Elena I, Jianguo L, and Anatoly T (2015) Sustainable hydrogen photoproduction by phosphorus-deprived marine green Microalgae Chlorella sp. Int J Mol Sci 16(2):2705–2716

    Google Scholar 

  • Kirtay E (2011) Recent advances in production of hydrogen from biomass. Energy Convers Manag 52(4):1778–1789

    Article  CAS  Google Scholar 

  • Kose A, Oncel SS (2017) Biohydrogen production from microalgae: An enzyme perspective. In: Singh A, Rathore D (eds) Biohydrogen production: sustainability of current technology and future perspective. Springer, New Delhi, pp 181–206

    Chapter  Google Scholar 

  • Kosourov S, Seibert M, Ghirardi ML (2003) Effects of extracellular pH on the metabolic pathways in sulfur-deprived, H2-producing Chlamydomonas reinhardtii cultures. Plant Cell Physiol 44(2):146–155

    Article  CAS  PubMed  Google Scholar 

  • Kosourov S, Patrusheva E, Ghirardi ML, Seibert M, Tsygankov A (2007) A comparison of hydrogen photoproduction by sulfur-deprived Chlamydomonas reinhardtii under different growth conditions. J Biotechnol 128(4):776–787

    Article  CAS  PubMed  Google Scholar 

  • Kumar N, Das D (2000) Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochem 35(6):589–593

    Article  CAS  Google Scholar 

  • Kumar G, Sivagurunathan P, Pugazhendhi A, Thi NBD, Zhen G, Chandrasekhar K, Kadier A (2017) A comprehensive overview on light independent fermentative hydrogen production from wastewater feedstock and possible integrative options. Energy Convers Manag 141(Suppl C):390–402

    Article  CAS  Google Scholar 

  • Kumar S, Sharma S, Thakur S, Mishra T, Negi P, Mishra S, Hesham AE-L, Rastegari AA, Yadav N, Yadav AN (2020) Bioprospecting of microbes for biohydrogen production: current status and future challenges. In: Molina G, Gupta V, Singh B, Gathergood N (eds) Bioprocessing for biomolecules production. Wiley, Hoboken

    Google Scholar 

  • Kuppam C, Pandit S, Kadier A, Dasagrandhi C, Velpuri J (2017) Biohydrogen production: integrated approaches to improve the process efficiency. In: Kalia VC, Kumar P (eds) Microbial applications, vol 1. Springer, Cham, pp 189–210

    Chapter  Google Scholar 

  • Lay J (2003) Influence of chemical nature of organic wastes on their conversion to hydrogen by heat-shock digested sludge. Int J Hydrog Energy 28(12):1361–1367

    Article  CAS  Google Scholar 

  • Lee K, Lin P, Fangchiang K, Chang J (2007) Continuous hydrogen production by anaerobic mixed microflora using a hollow-fiber microfiltration membrane bioreactor. Int J Hydrog Energy 32(8):950–957

    Article  CAS  Google Scholar 

  • Levin D (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrog Energy 29(2):173–185

    Article  CAS  Google Scholar 

  • Li L, Zhang L, Liu J (2015) The enhancement of hydrogen photoproduction in marine Chlorella pyrenoidosa under nitrogen deprivation. Int J Hydrog Energy 40(43):14784–14789

    Article  CAS  Google Scholar 

  • Lin C, Lay C (2005) A nutrient formulation for fermentative hydrogen production using anaerobic sewage sludge microflora. Int J Hydrog Energy 30(3):285–292

    Article  CAS  Google Scholar 

  • Liu G, Shen J (2004) Effects of culture and medium conditions on hydrogen production from starch using anaerobic bacteria. J Biosci Bioeng 98(4):251–256

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Bukatin V, Tsygankov A (2006) Light energy conversion into H2 by Anabaena variabilis mutant PK84 dense cultures exposed to nitrogen limitations. Int J Hydrog Energy 31(11):1591–1596

    Article  CAS  Google Scholar 

  • Liu Y, Yu P, Song X, Qu Y (2008) Hydrogen production from cellulose by co-culture of Clostridium thermocellum JN4 and Thermoanaerobacterium thermosaccharolyticum GD17. Int J Hydrog Energy 33(12):2927–2933

    Article  CAS  Google Scholar 

  • Lo Y-C, Saratale GD, Chen W-M, Bai M-D, Chang J-S (2009) Isolation of cellulose-hydrolytic bacteria and applications of the cellulolytic enzymes for cellulosic biohydrogen production. Enzym Microb Technol 44(6-7):417–425

    Article  CAS  Google Scholar 

  • Logan BE, Oh SE, Kim IS, Van Ginkel S (2002) Biological hydrogen production measured in batch anaerobic respirometers. Environ Sci Technol 36(11):2530–2535

    Article  CAS  PubMed  Google Scholar 

  • Lopespinto F (2002) A brief look at three decades of research on cyanobacterial hydrogen evolution. Int J Hydrog Energy 27(11-12):1209–1215

    Article  CAS  Google Scholar 

  • Ma J, Zhao QB, Laurens LL, Jarvis EE, Nagle NJ, Chen S, Frear CS (2015) Mechanism, kinetics and microbiology of inhibition caused by long-chain fatty acids in anaerobic digestion of algal biomass. Biotechnol Biofuels 8(1):141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maathuis FJ (2009) Physiological functions of mineral macronutrients. Curr Opin Plant Biol 12(3):250–258

    Article  CAS  PubMed  Google Scholar 

  • Maneeruttanarungroj C, Lindblad P, Incharoensakdi A (2010) A newly isolated green alga, Tetraspora sp. CU2551, from Thailand with efficient hydrogen production. Int J Hydrog Energy 35(24):13193–13199

    Article  CAS  Google Scholar 

  • Manish S, Banerjee R (2008) Comparison of biohydrogen production processes. Int J Hydrog Energy 33(1):279–286

    Article  CAS  Google Scholar 

  • Mathews J, Wang G (2009) Metabolic pathway engineering for enhanced biohydrogen production. Int J Hydrog Energy 34(17):7404–7416

    Article  CAS  Google Scholar 

  • Melis A, Happe T (2005) Trails of green alga hydrogen research — from Hans Gaffron to new frontiers. In: Beatty JT, Gest H, Allen JF (eds) Discoveries in photosynthesis. Springer, Dordrecht, pp 681–689

    Chapter  Google Scholar 

  • Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122(1):127–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohan SV, Pandey A (2013) Biohydrogen production. In: Pandey A, Chang J-S, Hallenbecka PC, Larroche C (eds) Biohydrogen. Elsevier, Amsterdam, pp 1–24

    Google Scholar 

  • Mona S, Kumar SS, Kumar V, Parveen K, Saini N, Deepak B, Pugazhendhi A (2020) Green technology for sustainable biohydrogen production (waste to energy): a review. Sci Total Environ 728:138481

    Article  CAS  PubMed  Google Scholar 

  • Moreira SM, Moreira-Santos M, Guilhermino L, Ribeiro R (2006) Immobilization of the marine microalga Phaeodactylum tricornutum in alginate for in situ experiments: bead stability and suitability. Enzym Microb Technol 38(1-2):135–141

    Article  CAS  Google Scholar 

  • Mu Y, Yu H-Q, Wang G (2007) Evaluation of three methods for enriching H2-producing cultures from anaerobic sludge. Enzym Microb Technol 40(4):947–953

    Article  CAS  Google Scholar 

  • Muradov N, Veziroglu T (2005) From hydrocarbon to hydrogen-carbon to hydrogen economy. Int J Hydrog Energy 30(3):225–237

    Article  CAS  Google Scholar 

  • Nandi R, Sengupta S (1998) Microbial production of hydrogen: an overview. Crit Rev Microbiol 24(1):61–84

    Article  CAS  PubMed  Google Scholar 

  • Nath K, Kumar A, Das D (2006) Effect of some environmental parameters on fermentative hydrogen production by Enterobacter cloacae DM11. Can J Microbiol 52(6):525–532

    Article  CAS  PubMed  Google Scholar 

  • Ngo TA, Nguyen TH, Bui HTV (2012) Thermophilic fermentative hydrogen production from xylose by Thermotoga neapolitana DSM 4359. Renew Energy 37(1):174–179

    Article  CAS  Google Scholar 

  • Nguyen TA, Han SJ, Kim JP, Kim MS, Sim SJ (2010) Hydrogen production of the hyperthermophilic eubacterium, Thermotoga neapolitana under N2 sparging condition. Bioresour Technol 101(Suppl 1):S38–S41

    Article  CAS  PubMed  Google Scholar 

  • Ni M, Leung M, Sumathy K, Leung D (2006) Potential of renewable hydrogen production for energy supply in Hong Kong. Int J Hydrog Energy 31(10):1401–1412

    Article  CAS  Google Scholar 

  • Noike T, Mizuno O (2000) Hydrogen fermentation of organic municipal wastes. Water Sci Technol 42(12):155–162

    Article  CAS  Google Scholar 

  • Noth J, Krawietz D, Hemschemeier A, Happe T (2013) Pyruvate:ferredoxin oxidoreductase is coupled to light-independent hydrogen production in Chlamydomonas reinhardtii. J Biol Chem 288(6):4368–4377

    Article  CAS  PubMed  Google Scholar 

  • Ohta S, Miyamoto K, Miura Y (1987) Hydrogen evolution as a consumption mode of reducing equivalents in green algal fermentation. Plant Physiol 83(4):1022–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oncel SS (2015) Biohydrogen from microalgae, uniting energy, life, and green future. In: Kim S-K (ed) Handbook of marine microalgae. Academic, Boston, pp 159–196

    Chapter  Google Scholar 

  • Raksajit W, Satchasataporn K, Lehto K, Mäenpää P, Incharoensakdi A (2012) Enhancement of hydrogen production by the filamentous non-heterocystous cyanobacterium Arthrospira sp. PCC 8005. Int J Hydrog Energy 37(24):18791–18797

    Article  CAS  Google Scholar 

  • Riediger ND, Othman RA, Suh M, Moghadasian MH (2009) A systemic review of the roles of n-3 fatty acids in health and disease. J Am Diet Assoc 109(4):668–679

    Article  CAS  PubMed  Google Scholar 

  • Ritchie H, Roser M (2020) Fossil fuels, vol. 2020. https://ourworldindata.org/fossil-fuels

  • Rosen MA (2017) Recent advances in hydrogen production from biomass. Biofuels 8(6):633–633

    Article  CAS  Google Scholar 

  • Saifuddin N, Priatharsini P (2016) Developments in bio-hydrogen production from algae: a review. Res J Appl Sci Eng Technol 12(9):968–982

    Article  CAS  Google Scholar 

  • Saratale GD, Saratale RG, Chang J-S (2013) Biohydrogen from renewable resources. In: Pandey A, Chang J-S, Hallenbecka PC, Larroche C (eds) Biohydrogen. Elsevier, Amsterdam, pp 185–221

    Chapter  Google Scholar 

  • Sasikala C, Ramana CV, Prasad GS (1994) H2 production by mixed cultures. World J Microbiol Biotechnol 10(2):221–223

    Article  CAS  PubMed  Google Scholar 

  • Sen U, Shakdwipee M, Banerjee R (2008) Status of biological hydrogen production. J Sci Ind Res 67:980–993

    CAS  Google Scholar 

  • Sheng T, Zhao L, Gao L, Liu W, Wu G, Wu J, Wang A (2018) Enhanced biohydrogen production from nutrient-free anaerobic fermentation medium with edible fungal pretreated rice straw. RSC Adv 8(41):22924–22930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin H (2004) Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. Int J Hydrog Energy 29(13):1355–1363

    Article  CAS  Google Scholar 

  • Shizas I, Bagley DM (2005) Fermentative hydrogen production in a system using anaerobic digester sludge without heat treatment as a biomass source. Water Sci Technol 52(1-2):139–144

    Article  CAS  PubMed  Google Scholar 

  • Sindhu R, Binod P, Pandey A, Ankaram S, Duan Y, Awasthi MK (2019) Biofuel production from biomass. In: Kumar S, Kumar R, Pandey A (eds) Current developments in biotechnology and bioengineering. Elsevier, London, pp 79–92

    Chapter  Google Scholar 

  • Singh NK, Sonani RR, Rastogi RP, Madamwar D (2015) The phycobilisomes: an early requisite for efficient photosynthesis in cyanobacteria. EXCLI J 14:268–289

    PubMed  PubMed Central  Google Scholar 

  • Skjanes K, Rebours C, Lindblad P (2013) Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Crit Rev Biotechnol 33(2):172–215

    Article  CAS  PubMed  Google Scholar 

  • Srikanth S, Mohan SV (2012) Regulatory function of divalent cations in controlling the acidogenic biohydrogen production process. RSC Adv 2(16):6576–6589

    Article  CAS  Google Scholar 

  • Stripp ST, Happe T (2009) How algae produce hydrogen--news from the photosynthetic hydrogenase. Dalton Trans 45(45):9960–9969

    Article  CAS  Google Scholar 

  • Sun Y, Liu J, Xie T, Xiong X, Liu W, Liang B, Zhang Y (2014) Enhanced lipid accumulation by Chlorella vulgaris in a two-stage fed-batch culture with glycerol. Energy Fuel 28(5):3172–3177

    Article  CAS  Google Scholar 

  • Surai AP, Surai PF, Steinberg W, Wakeman WG, Speake BK, Sparks NH (2003) Effect of canthaxanthin content of the maternal diet on the antioxidant system of the developing chick. Br Poult Sci 44(4):612–619

    Article  CAS  PubMed  Google Scholar 

  • Tanisho S, Wakao N, Kosako Y (1983) Biological hydrogen production by Enterobacter aerogenes. J Chem Eng Jpn 16(6):529–530

    Article  CAS  Google Scholar 

  • Tsygankov AA, Hall DO, Liu JG, Rao KK (1999) An automated helical photobioreactor incorporating cyanobacteria for continuous hydrogen production. In: Zaborsky OR, Benemann JR, Matsunaga T, Miyake J, Pietro AS (eds) BioHydrogen. Springer, Boston, pp 431–440

    Chapter  Google Scholar 

  • Valdez-Vazquez I, Poggi-Varaldo HM (2009) Hydrogen production by fermentative consortia. Renew Sust Energ Rev 13(5):1000–1013

    Article  CAS  Google Scholar 

  • Valdezvazquez I, Riosleal E, Esparzagarcia F, Cecchi F, Poggivaraldo H (2005) Semi-continuous solid substrate anaerobic reactors for H production from organic waste: mesophilic versus thermophilic regime. Int J Hydrog Energy 30(13-14):1383–1391

    Article  CAS  Google Scholar 

  • Vatsala TM, Seshadri CV (1985) Microbial production of hydrogen-a review. Proc Ind Natl Sci Acad 51:282–295

    CAS  Google Scholar 

  • Venkata Mohan S, Pandey A (2019) Sustainable hydrogen production. In: Pandey A, Mohan SV, Chang J-S, Hallenbeck PC, Larroche C (eds) Biohydrogen. Elsevier, London, pp 1–23

    Google Scholar 

  • Venkata Mohan S, Chiranjeevi P, Chandrasekhar K, Babu PS, Sarkar O (2019) Acidogenic biohydrogen production from wastewater. In: Pandey A, Mohan SV, Chang J-S, Hallenbeck PC, Larroche C (eds) Biohydrogen. Elsevier, London, pp 279–320

    Chapter  Google Scholar 

  • Vignais PM (2008) Hydrogenases and H+-reduction in primary energy conservation. In: Schäfer G, Penefsky HS (eds) Bioenergetics: energy conservation and conversion. Springer, Heidelberg, pp 223–252

    Chapter  Google Scholar 

  • Wang Q (1999) Upgrading of anaerobic digestion of waste activated sludge by ultrasonic pretreatment. Bioresour Technol 68(3):309–313

    Article  CAS  Google Scholar 

  • Wang J, Yin Y (2018) Fermentative hydrogen production using pretreated microalgal biomass as feedstock. Microb Cell Factories 17(1):22

    Article  CAS  Google Scholar 

  • Wang ZX, Zhuge J, Fang H, Prior BA (2001) Glycerol production by microbial fermentation: a review. Biotechnol Adv 19(3):201–223

    Article  CAS  PubMed  Google Scholar 

  • Wang CC, Chang CW, Chu CP, Lee DJ, Chang B-V, Liao CS, Tay JH (2003) Using filtrate of waste biosolids to effectively produce bio-hydrogen by anaerobic fermentation. Water Res 37(11):2789–2793

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Lu W, Chang J (2007) Feasibility study on fermentative conversion of raw and hydrolyzed starch to hydrogen using anaerobic mixed microflora. Int J Hydrog Energy 32(16):3849–3859

    Article  CAS  Google Scholar 

  • Weber J, Krujatz F, Hilpmann G, Grützner S, Herrmann J, Thierfelder S, Bienert G, Illing R, Helbig K, Hurtado A, Cuniberti G, Mertig M, Lange R, Günther E, Opitz J, Lippmann W, Bley T, Haufe N (2014) Biotechnological hydrogen production by photosynthesis. Eng Life Sci 14(6):592–606

    Article  CAS  Google Scholar 

  • Woodward J, Orr M, Cordray K, Greenbaum E (2000) Enzymatic production of biohydrogen. Nature 405(6790):1014–1015

    Article  CAS  PubMed  Google Scholar 

  • Wu KJ, Saratale GD, Lo YC, Chen WM, Tseng ZJ, Chang MC, Tsai BC, Su A, Chang JS (2008) Fermentative production of 2, 3 butanediol, ethanol and hydrogen with a Klebsiella sp. strain isolated from sewage sludge. Bioresour Technol 99:7966–7970

    Article  CAS  PubMed  Google Scholar 

  • Yildiz FH, Davies JP, Grossman AR (1994) Characterization of sulfate transport in Chlamydomonas reinhardtii during sulfur-limited and sulfur-sufficient growth. Plant Physiol 104(3):981–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokoi H, Saitsu A, Uchida H, Hirose J, Hayashi S, Takasaki Y (2001) Microbial hydrogen production from sweet potato starch residue. J Biosci Bioeng 91(1):58–63

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

There is no conflict of interest between authors.

Financial and Ethical Disclosure

No financial and ethical issues involved.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, M., Chavali, M., Enamala, M.K., Obulisamy, P.K., Dixit, R., Kuppam, C. (2020). Algal Bioeconomy: A Platform for Clean Energy and Fuel. In: Verma, P. (eds) Biorefineries: A Step Towards Renewable and Clean Energy. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-15-9593-6_13

Download citation

Publish with us

Policies and ethics