Skip to main content

Advertisement

Log in

Biofilm-based algal cultivation systems

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biofilm-based algal cultivation has received increased attention as a potential platform for algal production and other applications such as wastewater treatment. Algal biofilm cultivation systems represent an alternative to the suspension-based systems that have yet to become economically viable. One major advantage of algal biofilm systems is that algae can be simply harvested through scraping and thus avoid the expensive harvesting procedures used in suspension-based harvesting such as flocculation and centrifugation. In recent years, an assortment of algal biofilm systems have been developed with various design configurations and biomass production capacities. This review summarizes the state of the art of different algal biofilm systems in terms of their design and operation. Perspectives for future research needs are also discussed to provide guidance for further development of these unique cultivation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barros A, Goncalves A, Simoes M, Pires J (2015) Harvesting techniques applied to microalgae: a review. Renew Sustain Energy Rev 41:1489–1500

    Article  Google Scholar 

  • Bernstein H, Kesaano M, Moll K, Smith T, Gerlach R, Carlson R, Miller C, Peyton B, Cooksey K, Gardner R, Sims R (2014) Direct measurement and characterization of active photosynthesis zones inside wastewater remediating and biofuel producing microalgal biofilms. Bioresour Technol 156:206–215

    Article  CAS  PubMed  Google Scholar 

  • Bioprocess H2O LLC (2014) Systems, apparatuses and methods for treating wastewater. Patent US8809037 B2. 19 Aug 2014

  • Blanken W, Janssen M, Cuaresma M, Libor Z, Bhaiji T, Wiffels R (2014) Biofilm growth of Chlorella sorokiniana in a rotating biological contactor based photobioreactor. Biotechnol Bioeng 111:2436–2445

    Article  CAS  PubMed  Google Scholar 

  • Boelee N, Janssen M, Temmink H, Shrestha R, Buisman C, Wijffels R (2014) Nutrient removal and biomass production in an outdoor pilot-scale phototrophic biofilm reactor for effluent polishing. Appl Biochem Biotechnol 172:405–422

  • Brune D, Lundquist T, Benemann J (2009) Microalgal biomass for greenhouse gas reductions: potential for replacement of fossil fuels and animal feeds. J Environ Eng 135:1136–1144

    Article  CAS  Google Scholar 

  • Cao J, Yuan W, Pei Z, Davis T, Cui Y, Beltran M (2009) A preliminary study of the effect of surface texture on algae cell attachment for a mechanical-biological energy manufacturing system. J Manuf Sci Eng 131:645051–645053

    Article  Google Scholar 

  • Cheng P, Wang J, Liu T (2014) Effects of nitrogen source and nitrogen supply model on the growth and hydrocarbon accumulation of immobilized biofilm cultivation of B. braunii. Bioresour Technol 166:527–533

    Article  CAS  PubMed  Google Scholar 

  • Christenson L, Sims R (2012) Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by-products. Biotechnol Bioeng 109:1674–1684

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Yuan W, Cao J (2014) Effect of surface texturing on microalgal cell attachment to solid carriers. Int J Agric Biol Eng 7:82–91

    CAS  Google Scholar 

  • Dassey A, Theegala C (2013) Harvesting economics and strategies using centrifugation for cost effective separation of microalgae cells for biodiesel applications. Bioresour Technol 128:241–245

    Article  CAS  PubMed  Google Scholar 

  • Dau H, Zaharieva I (2009) Principles, efficiency, and blueprint character of solar-energy conversion in photosynthetic water oxidation. Acc Chem Res 42:1861–1870

    Article  CAS  PubMed  Google Scholar 

  • Davis R, Aden A, Pienkos P (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy 88:3524–3531

    Article  Google Scholar 

  • Fitch M, England E (2002) Biological fixed film systems. Water Environ Res 74:1–87

    Article  Google Scholar 

  • Gao F, Yang Z, Li C, Zeng G, Ma D, Zhou L (2015) A novel algal biofilm membrane photobioreactor for attached microalgae growth and nutrients removal from secondary effluent. Bioresour Technol 179:8–12

    Article  CAS  PubMed  Google Scholar 

  • Genin S, Aitchison S, Allen D (2013) Design of algal film photobioreactors: material surface energy effects on algal film productivity, colonization and lipid content. Bioresour Technol 155:136–143

    Article  PubMed  Google Scholar 

  • Gerde J, Yao L, Lio J, Wen Z, Wang T (2014) Microalgae flocculation: impact of flocculant type, algae species and cell concentration. Algal Res 3:30–35

    Article  Google Scholar 

  • Godos I, Gonzalez C, Becares E, Garcia-Encina P, Munoz R (2008) Simultaneous nutrients and carbon removal during pretreated swine slurry degradation in a tubular biofilm photobioreactor. Environ Biotechnol 82:187–194

    Article  Google Scholar 

  • Gross M, Wen Z (2014) Yearlong evaluation of performance and durability of a pilot-scale revolving algal biofilm (RAB) cultivation system. Bioresour Technol 171:50–58

    Article  CAS  PubMed  Google Scholar 

  • Gross M, Henry W, Michael C, Wen Z (2013) Development of a rotating algal biofilm growth system for attached microalgae growth with in situ biomass harvest. Bioresour Technol 150:195–201

    Article  CAS  PubMed  Google Scholar 

  • Gross M, Mascarenhas V, Wen Z (2015) Evaluating algal growth performance and water use efficiency of pilot-scale revolving algal biofilm (RAB) culture systems. Biotechnol Bioeng. in press

  • Gullicks H, Hasan H, Das D, Moretti C, Hung Y (2011) Biofilm fixed film systems. Water 3:843–868

    Article  CAS  Google Scholar 

  • Guzzon A, Bohn A, Diociaiutic M, Albertano P (2008) Cultured phototrophic biofilms for phosphorous removal in wastewater treatment. Water Res 42:4357–4367

    Article  CAS  PubMed  Google Scholar 

  • Hassard F, Biddle J, Carmell E, Jefferson B, Tyrell S, Stephenson T (2015) Rotating biological contactors for wastewater treatment—a review. Process Saf Environ Protect 94:285–306

    Article  CAS  Google Scholar 

  • He S, Xue G (2010) Algal-based immobilization process to treat the effluent from a secondary wastewater treatment plant (WWTP). J Hazard Mater 178:895–899

    Article  CAS  PubMed  Google Scholar 

  • Hill R, Fanta S, Roberts B (2009) Quantifying phosphorus and light effects in stream algae. Limnol Oceanogr 54:368–380

    Article  CAS  Google Scholar 

  • Irving T, Allen D (2011) Species and material considerations in the formation and development of microalgal biofilms. Appl Microbiol Biotechnol 92:283–294

    Article  CAS  PubMed  Google Scholar 

  • Johnson M, Wen Z (2010) Development of an attached microalgal growth system for biofuel production. Appl Microbiol Biotechnol 85:525–534

    Article  CAS  PubMed  Google Scholar 

  • Kang J, Wang T, Xin H, Wen Z (2014) A laboratory study of mitigating ammonia gas emission from animal production operations using microalgae. J Air Waste Manag Assoc 64:330–339

    Article  CAS  PubMed  Google Scholar 

  • Katarzyna L, Sai G, Singh O (2015) Non-enclosure methods for non-suspended microalgae cultivation: literature review and research needs. Renew Sust Energ Rev 14:1418–1427

    Article  Google Scholar 

  • Kesaano M, Sims R (2014) Algal biofilm based technology for wastewater treatment. Algal Res 5:231–240

    Article  Google Scholar 

  • Kesaano M, Gardner R, Moll K, Lauchnor E, Gerlach R, Petron B, Sims R (2015) Dissolved inorganic carbon enhanced growth, nutrient uptake, and lipid accumulation in wastewater grown microalgal biofilms. Bioresour Technol 180:7–15

    Article  CAS  PubMed  Google Scholar 

  • Kibede-Westhead E, Pizarro C, Mulbry W, Wilkie A (2003) Production and nutrient removal by periphyton grown under different loading rates of anaerobically digested flushed dairy manure. J Phycol 39:1275–1282

    Article  Google Scholar 

  • Kohler J, Hansen P, Wahl M (1999) Colonization patterns at the substratum-water interface: how does surface microtopography influence recruitment patterns of sessile organisms? Biofouling 14:237–248

    Article  Google Scholar 

  • Lin Y, Leu J, Lan C, Lin P, Chang F (2003) Kinetics of inorganic carbon utilization by microalgal biofilm in a flat plate photobioreactor. Chemosphere 53:779–787

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Wang J, Hu Q, Cheng P, Ji B, Liu J, Chen Y, Zhang W, Chen X, Chen L, Gao L, Ji C, Wang H (2013) Attached cultivation technology of microalgae for efficient biomass feedstock production. Bioresour Technol 127:216–222

    Article  CAS  PubMed  Google Scholar 

  • Mata T, Martins A, Caetanao N (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    Article  CAS  Google Scholar 

  • Michael C, del Ninno M, Gross M, Wen Z (2015) Use of wavelength-selective optical light filters for enhanced microalgal growth in different algal cultivation systems. Bioresour Technol 179:473–482

  • Mulbry W, Wilkie A (2001) Growth of benthic freshwater algae on dairy manures. J Appl Phycol 13:301–306

    Article  Google Scholar 

  • Mulbry W, Kondrad S, Pizarro C, Kibede-Westhead E (2008) Treatment of dairy manure effluent using freshwater algae: algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers. Bioresour Technol 99:8137–8142

    Article  CAS  PubMed  Google Scholar 

  • Naumann T, Çebi Z, Podola B, Melkonian M (2013) Growing microalgae as aquaculture feeds on twin-layers: a novel solid-state photobioreactor. J Appl Phycol 25:1413–1420

    Article  CAS  Google Scholar 

  • Orandi S, Lewis D, Moheimani N (2012) Biofilm establishment and heavy metal removal capacity of an indigenous mining algal microbial consortium in a photo-rotating biological contactor. J Ind Microbiol Biotechnol 39:1321–1331

    Article  CAS  PubMed  Google Scholar 

  • Ozkan A, Berberoglu H (2013) Cell to substratum and cell to cell interactions of microalgae. Colloids Surf B: Biointerfaces 112:302–309

    Article  CAS  PubMed  Google Scholar 

  • Ozkan A, Kinney K, Katz L, Berberoglu H (2012) Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor. Bioresour Technol 114:542–548

    Article  CAS  PubMed  Google Scholar 

  • Palmer J, Flint S, Brooks J (2007) Bacterial cell attachment, the beginning of a biofilm. J Ind Microbiol Biotechnol 34:577–588

    Article  CAS  PubMed  Google Scholar 

  • Pittman J, Dean A, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102:17–25

    Article  CAS  PubMed  Google Scholar 

  • Pohlon E, Marxsen J, Kusel K (2009) Pioneering bacterial and algal communities and potential extracellular enzyme activities of stream biofilms. FEMS Microb Ecol 71:364–373

    Article  Google Scholar 

  • Posadas E, Garcia-Encina P, Soltau A, Dominguez A, Diaz I, Munoz R (2013) Carbon and nutrient removal from centrates and domestic wastewater using algal–bacterial biofilm bioreactors. Bioresour Technol 139:50–58

    Article  CAS  PubMed  Google Scholar 

  • Przytocka-Jusiak M, Baszczyk M, Kosinska E, Bisz-Konarzewska A (1984) Removal of nitrogen from industrial wastewaters with the use of algal rotating disks and denitrification packed bed reactor. Water Res 18:1077–1082

    Article  CAS  Google Scholar 

  • Schnurr P, Espie G, Allen G (2013) Algae biofilm growth and the potential to stimulate lipid accumulation through nutrient starvation. Bioresour Technol 136:337–344

    Article  CAS  PubMed  Google Scholar 

  • Schultze L, Simon M, Li T, Langenbach D, Podola B, Melkonian M (2015) High light and carbon dioxide optimize surface productivity in a Twin-Layer biofilm photobioreactor. Algal Res 8:37–44

    Article  Google Scholar 

  • Sekar R, Venugopalan V, Satpathy K, Nair K, Rao V (2004) Laboratory studies on adhesion of microalgae to hard substrates. Hydrobiologia 512:109–116

    Article  Google Scholar 

  • Shi J, Podola B, Meklonian M (2014) Application of a prototype-scale Twin-Layer photobioreactor for effective N and P removal from different process stages of municipal wastewater by immobilized microalgae. Bioresour Technol 154:260–266

  • Spengel D, Dzombak D (1992) Biokinetic modeling and scale-up considerations for rotating biological contactors. Water Environ Res 64:223–235

  • Tian Y, Zheng L, Sun D (2006) Functions and behaviors of activated sludge extracellular polymeric substances (EPS): a promising environmental interest. J Environ Sci 18:420–427

    CAS  Google Scholar 

  • Tredici MR (2010) Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 1:143–162

    Article  CAS  Google Scholar 

  • Zamalloa C, Boon N, Verstraete W (2013) Decentralized two-stage sewage treatment by chemical-biological flocculation combined with microalgae biofilm for nutrient immobilization in a roof installed parallel plate reactor. Bioresour Technol 130:152–160

    Article  CAS  PubMed  Google Scholar 

  • Zuang L, Hu H, Wu Y, Wang T, Zhang T (2014) A novel suspended-solid phase photobioreactor to improve biomass production and separation of microalgae. Bioresour Technol 153:399–402

    Article  Google Scholar 

Download references

Conflict of interest

Authors Z. Wen, M. Gross, and D. Jarboe have equity interests and management roles in Gross-Wen Technologies, LLC. The terms of this arrangement have been reviewed and approved by Iowa State University in accordance with its conflict of interest policies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyou Wen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gross, M., Jarboe, D. & Wen, Z. Biofilm-based algal cultivation systems. Appl Microbiol Biotechnol 99, 5781–5789 (2015). https://doi.org/10.1007/s00253-015-6736-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6736-5

Keywords

Navigation